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1. Introduction

In this paper, we will study the Davey-Stewartson equation:

8A 8?A 9%°A

— e (] —— — [J——— = —_ 2
5t %57 bay2 XA - BlA*|A+7QA, t>0,(z,y) €Q, (1)
aZQ 62Q _ 82 2
W“‘@;-@;(Ml ), t>0,(z,y) €, (2)
Alt,z,y) =0,Q(t,z,y) =0, t>0,(z,y) € 0%, 3)
A(O,.’l), y) = Ao(x,y), (.’E, y) € Qa (4)

where @ = a; + iag,b = by + b2, 8 = 51 + 48,7 = 7 + i72 and x = x1 + tXx2 are complex
constants, and © C R? is a smooth bounded domain. In order to ensure the uniqueness of Q, we
must add [, Q(¢, z,y)dzdy = 0.
We consider —A as an isomorphism from W2?(R) into LP(Q)(1 < p < +00) and (—A)~! is
its inverse. From (2) and (3) we can solve Q in terms of A.
19%(14P)

Q=—(-2) =55 SE(AP).

Thus we can reduce (1) and (2) into a nonlocal nonlinear Schrodinger (or Ginzburg-Landau)-like

equation

0A 0%A _0%A 2
ot a6$2 bayz X BlA| YAE(|A]%), t>0, (-'L',y) € (5)
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Alt,z,y) =0, t>0,(z,y) €09, (6)
A(O,x, y) = AO(-T’ y)i (xa y) €N (7)

By Sobolev inequality, there exists a minimal C(p) > 0(1 < p < +00) such that
Ou oo
Hgy—gllp < Clp)llAullp, u e C3°(Q)
where |||, denotes the norm in LP(Q2). Thus
IE@l, < CO)llullp, v e C3°(Q) (8)

and E = (—A)_l'aé':'[ can be extended to a bounded linear operator on LP(Q)(1 < p < +00)
with norm C(p). In fact, 8%27 and A can commute in W2P((), and (—~A)™! is linearly bounded
from L?(Q) into W?P(Q). Therefore E = %,(—A)‘l is the extension of E on LP(f) with
Bl L(Liqy)- The system (1),(2) was firstly derived by Davey etcll) to model the evolution of a
three-dimensional disturbance in the nonlinear regime of plane Poiseuille low. A(t,z,y) stands
for the complex amplitude, and Q(¢,z,y) describes the perturbation of the real relocity. In
recent years, Davey-Stewartson equations have drawn much attention of many physicists and
mathematicians. The local and global existence, stability of plane wave solutions,solitons, lump
solutions, nature of solutions that develop singularities and the long time behavior of solutions
have been studied by many authors, such as Davey, Hocking and Stewartson!!), C.A.Holmes/®,
Ghidaglia and Saut¥), Anker and Freeman!?, Ablowitz and Fokasl¥, Tsutsumil®, Hayashi and
Sautl®!, Linaves and Poncel”, Boling Guo and Yongsheng Lil% etc (cf. references therein). In
recent years, Professor Dai and many other authors have studied the exponential attractor in
Hilbert spaces sufficiently®=12], But in this paper, we will study the exponential attractor of
the system (1)-(4) via (5)-(7)in Banach space. We will prove that, if the parameters satisfy the
following conditions

(H] k = min{a;,b:} > 0,61 > 0,61 + C(2)11 > 0,x1 > 0,

the system (5)-(7) has an exponential attractor in a Banach subspace of LP(Q), where C(2) is
C(p) when p = 2.

In the second part of this thesis, we give some preliminaries, and in the third part we obtain
the main results.

Throughout this paper, W*?(Q) and Wy'* denote the usual Sobolev spaces. H*(Q) =
W*2(Q), ||-ls,» is the norm of W*P(Q), ||.|lp = ||||o,p, and A is the complex conjugate of A. C is
a common constant and may assume different values in different formula.

2. Preliminaries

Definition 112 Suppose E is a Banach space. We say that a compact set M is the exponential
attractor of (S(t), B), if AC M C B and
1) SEOMC M, Vt>o;
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2) The fractal dimension of M is finite, i.e., d¢(M) < oo;
3) M attracts exponentially all the obits from B, i.e., there exist Cg, C; such that

distg(S(t)B, M) < Coe~C1t, Vi >0,

where S(t) is the semigroup of solution operators and B is the compact absorbing set of S(t) in
E.

Definition 21'% If for every & € (0,3), there exists an orthogonal projector with rank N such
that for all u,v € B,

I8(t)u — S(t)vlle < blju — vl 5, 9)
or

|@n (St )u — S(t)v)lle < | Pn(S(te)u — S(t)v)l e, (10)

then we say S(t) is squeezing. Here t. > 0 is a constant, Py is an orthogonal projector and
Qn =1- Py.
Definition 3121 For every u, v in the compact set B, if there exists a bounded function I(t)
such that

18t — SE)vlle < Utllu — vz, (11)
then we say S(t) is Lipschitz continuous in B and call I(t) the Lipschitz constant of S(t). Here

I(t) does not depend on u and v.
Now we give a proposition:

Proposition 12 Suppose S(t) is squeezing and Lipschitz continuous, then exists an exponential
attractor M for (S(t), B) and

M= J stM., (12)

0<t<t.

where o oo
M. = A J(U U 5@P)ES). (13)

J=1k=1

Moreover,

dr(M) < CNo +1, (14)
distg(S(t)B, M) < Coe ¢, (15)

where No,E®) are defined as in [12]; C, Co,C) have no connection with the elements of B; and

t. is a positive constant.

Proof We utilize that B is compact in F and it is positive invariant for S(t) with B instead of
X in [15], and note that S(t) is Lipschitz continuous and has a squeezing property in B, then
this theorem is proved by the same method of the proof of Theorem in [15].

3. Main results
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The functional setting of Davey-Stewartson system has the form

A+ LpA = f(A), A(0) = Ao, (16)
where
82 9?

is a differential operator on X, = LP(f2) with domain D(L,) = W%?(Q2) N Wy*?(R), and
f(A) = xA - BlAPA - yAE(|AP). (18)

It is obvious that, under the assumption [H], the spectra lies in the half plane {Z|ReZ >
w,w > 0}. The symbol of Ly, is L(£) = —aé? — b€ and its real part ReL(£) < —k&2. Thus L(¢) is
a strongly elliptic polynomial and —L, = —L(ig—’z-, ig%) generates a bounded analytic semigroup
e~L#! on X,. Therefore we can define the functional powers Lg of L, with domain X& = D(Lg),
a > 0. The semigroup e~ L#t satisfies the following properties:

e~ Al xg < Mae™ || Allxs, VA€ X7, t<0, (19)
e Lot Al xs < Mot~ % “*||Alx,, VA€ XZ, t>0, (20)
for some w >0 and My, > 0. For0<a <1,
WE¥P(Q) C D(LE) C WP, 0<a<l, (21)
WaP(@) N WA (9) = D(L),  <a<1 (22)

The abstract Cauchy problem (16) can be equivalently expressed in an integral form
t
A() = e~ et Ao + / &=L (t=9) £(A(s))ds. (23)
0

Throughout this paper, we denote a; = %, a2 = max{3, %} Then 0 < @1 < a3 < 1, and

L>*(Q2) for a > az whenp > 2, and for @ > a2 when 1 <p < 2, (24)

L*(Q), fora>o,1<p< oo,
X% s
L) fora>azandanyl<g<oowhenl<p<2.

Therefore the nonlinear mapping f(A) is locally Lipschitz continuous from Xg into X, for
a > a; and
1£(A)lx, < Ca(llAlxg + 1Al%s), (25)

(A1) — f(A2)llxg < C(a, R)|| AL — Azfixa. (26)
For o > a, when p > 2 and for a > ap, when 1 < p < 2’X: is an algebra and
1£(A)lx, < CalllAllxg +IAllks) (27)

for all Ay,Az € X7 with ||Akllxg < R, k =1,2. Especially f(4) is C* mapping in D(L}), for
integer 7 > 1.
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We have known the following results!®!,

Proposition 2% Let [H] hold and o > oy = 3—1. For any Ag € X, system(5)—(7) has a unique
global solution
oo
A€ C(lo,+00) X)) [ CF((0, +00); D(LI)). (28)

Jk=1
Thus the system (5)—(7) defines a continuous semigroup S(t) on X2.

Proposition 3% Let [H] hold and a; = %p,az = max{1/2,1/p}, then S(t), the semigroup
generated by the system (5)—(7), has a compact absorbing set By and has a global attractor A.
In the following we give the main results of this paper:

Theorem 1 Let A;(t),A2(t) be two solutions of problem (5)~(7) in B. We denote w = A; — As.
If

lw®llxg < 1()[w(0)lxg, (29)

IQNW (#)lxg < (Cae™%% + Cady%, e % +1%) [w(0)] xg, (30)

then S(t) is Lipschitz continuous and squeezing on B. Therefore, S(t) has an exponential attrac-

tor M in Banach subspace X3 and its fractal dimension is finite, i.e., df(M) < CNo + 1. Thus
dr(A) < CNo + 1, where A is the global attractor of system (5)—(7) in X and Np satisfies

Ang > max{(g—: In(32v3C,))/*, (32v3Cse) /). (31)

Proof From Definitions 1 and 3, we easily know that S(¢) is Lipschitz continuous on B. Now
we start to prove the squeeze property. If | Pvwljxe < [|@nw] xg, because A% and Pn,Qn can
commute, we have [[wllxg?® = | Pvwllxs® + |Qnwlixs® < 21Qnwl%, from (30)

lollxs < V2(Coe™%* + CaXy, €% W) w(0)) g

t > t,. Now we fix t, and choose Ny such that Ay, > max{(g-gL In(32v2C2))/ @, (32v/2C4e) 2},
then when N > Ny

We choose an appropriate t.,t. > zl.;ln(32\/§Cg), therefore we have v/2C;e~C3t < 35 when

—a it o L
\/§C4AN.-1|-16 SN < 3_2, Vt > L,

1
lw@®lixg < {5llwOlixg, V¢2t,N 2 No.

Thus we get [[w(t)llxs < 3llw(0)] x5 and conclude the proof of squeeze property. We use
the proof in [13] and get dr(M) < CNp + 1, where C is an absolute constant. Especially, we
obtain dr(A) < CNy + 1. Consequently, the Proof of Theorem 1 is complete.

Theorem 2 Let [H] hold, system (5)—(7) has an exponential attractor M in a Banach subspace
X and its fractal dimension is finite, i.e., dp(M) < CNo + 1, where Ny satisfies

An, > max{1,2¥ 8, (2% T8 M,) % M,}, (32)
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where C,,C3 are defined in (42), (43); An, is the Noth eigenvalue of Ly; 8 is any real number in
(o, 1); and M, is a constant that only depends on . Especially, we have an estimation of the
fractal dimension of attractor A: dp(A) < CNp+1.

Before proving Theorem 2, we give two lemmas(l:

Lemma 1 Suppose B is a compact positive invariant set of S(t) in X7 and A(t) is any function
in B, then ||A(¢)||x¢ is continuous in ¢.

Lemma 2 Suppose 0 < a < 1, g(s) is a positive function and is continuous about s, if

g(t) < Coe™ + 4 /0 t e~ 2ME=2) (1 — 5)~g(s)ds, (33)
o(s) <28 (e + (1 + %)"—Eﬁem)co, (34)
To = €% (20(1 ~ §)) 75 (55) %", (35)
Iy = (201 - B) (55) 7" O, (36)

The proofs of these two lemmas are very similar to that in [15], and are omitted. Now we
begin to prove Theorem 2.

Proof We must prove two points: (i) S(t) has a positive compact set B in X2, and
(ii) w(t) must satisfy the conditions of Theorem 1.
From Proposition 3, By is a compact absorbing set in Xgof § (¢), therefore there exists ¢y > 0

such that S(t)Bo C Bo when ¢ > ¢o. Choosing B= |J S(t)Bo, then we can easily prove that
0<t<to

B is the compact positive invariant set of S(z) in Xy By the definition of Bp, indeed, we know
that there exists to(Bo) such that S(t)By C Bo, Vt > to(Bo), denoting ¢ = ktg(Bo) +t1,0 < t; <
to(Bo), thus we get

sB=|J 5®SKB)Bl) | S(s)S((k+1)to(Bo))Bo

t1<s<to(Bo) 0<s<ty
c U se@Bl U s)BocB. (37)
t1<8<to(Bo) 0<s<t;

The absorbing property is clear and the proof of (i) is complete.

(ii) Suppose A;(t), A2(t) are the two solutions with initial values A, 9, A2, respectively,
from A 0,420 € B, we get A(t), A2(t) € B. For any t > 0, denoting w(t) = A;(t) — As(t),
then we obtain

wy + Lp = f(A1) — f(A42), w(0) = wo. (38)

By using (19)—(21),(23) and constant variation formula

w(t) = e Lel=y(5) + / t e~LPE=)(f(A1) - f(A2))ds, for 6 <t <T,
J



3 HUANG Jian, et al: Exponential attractor for Davey-Stewartson equation in - - - 397

then
lw®lxg < Mae™C=w(8)llxg + /6 t MoemC=9)(t — 5)*||f(A1) — f(A2)lIx, ds,

using (26)

lw®lxg < Mae™¢P|lw(8)lxg + Cl, R) /6 t Moe ™9 (t — 5)"*|lw(t)|xgds,  (39)
choosing § =0,

[w(®)lxg < Mae™*|lw(0)l|xg + C(a, R) _/0 t Moe™t9(t — 5)"*||lw(t)|xgds.  (40)

Using Lemma 2 and choosing Cy = Ma|lw(0)llxg, C1 = MaC(e, R), we complete the first

point of Theorem 1.

If w(t) € QnXg, then |le=rtw| xe < Mae *N+1*|Jw(t)|lzg, where ANy is the (N +1)th
eigenvalue of L,,. Similar to the computation process of (42), we obtain

t
lw@®lxs < Mae™" " t|Q@nwollxg + Ma(e, R) / e 109 (¢ — )=l (t)]| xo ds.
0
Choosing g(s) = ||w(s)||x;, Co = Ma||QNwo||x;, C: = M,C(a, R), using Lemma 2, we get

Avialgt ez
l(®)llxg < 28 (1% + (1 + 2250 ) 5% N M, | Qrvwol g

IB —_
for
1+ ____al‘glj\z.;.l )9_‘?2 < (ﬂ i aF(TII\N+1)g-§£

< 2818273 8 — 0)' "B M.C(e, RIT(1 - B) 303,

= CoA\Rh s (41)
where

C, =28a% 2158 (5 - a)'" B M,C(o, R)['(1 - B)B. (42)
Thus
lw(®)lxg < 28 Ma(e™2¥+2* + CoAF, ™) | Qnwollxg

where

o

T; = 23 (a!PT(1 - §))3 8B MaClo, AR 1 = Cadpins
Cs =28 (a’PI(1 - B))# *~ B MuC(e, R). (43)

Using Theorem 1

7 :
lw(®)llxg < (28 Mae™w43% + 2B G MR, %41 () x5,

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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choosing t. = ln(2*+%Ma) and an appropriate big N such that Ay > 1, we obtain 28 Mye= v+t >
35 when ¢ > t,; choosing No again, such that

AN, > max{1,2¥+#C,(2%+8)% 0,3,

then

1 1
lw®lixg < 5lw@)lx; < Flw)llxg

when N > Np.
This proves the squeezing property of S(¢) and the supper-boundary of fractal dimension of
exponential attractor. We complete the proof of Theorem 2.

References:

[1}] DAVEY A, HOCHING L M, STEWARTSON K. On the nonlinear evolution of three-dimensional disturbances
in plane Poiseuille flow [J]. J. Filuid Mech., 1974, 83(3): 529-536.
{2] ANKER D, FREEMAN N C. On the soliton solutions of the Davey-Stewartson equation for long waves [J].
Proc. Roy. Soc. London Ser.A, 1978, 360: 529-540.
[3] ABLOWITZ M J, FOKAS A S. On the inverse scattering transform of multidimensional nonlinear equation
related to first-order systems in plane [J]. J. Math. Phys., 1984, 25: 2494-2505.
[4] GHIDAGLIA J M, SAUT J C. On the initial value problem for the Davey-Stewartson systems [J]. Nonlinearity,
1990, 3: 475-506.
(5] HAYASCHI N, SAUT J C. Global existence of small solutions to the Davey-Stewartson and the Ishimori
systems [J]. Differential Integral Equations, 1995, 8: 1657-01675.
(6] HOLMES C A. Bounded solutions of the nonlinear parabolic amplitude equation for plane Poiseuille flow [J].
Proc. Roy. Soc. London Ser.A, 1985, 402: 299-322.
[7] LINARES F, PONCE G. On the Davey-Stewartson systems [J]. Ann. Inst. H. Poincaré Anal. Non Linéaire,
1993, 10: 523-548.
[8] TSUTSUMI M. Decay of weak solutions to the Davey-Stewartson systems [J]. J. Math. Anal. Appl., 1994,
182(3): 680-704.
[9] DAI Zheng-de, GUO Bo-ling. Inertial manifolds and approximate inertial manifolds [C]. The Publishing House
of Science, 2000.
{10] DAI Zheng-de, GUO Bo-ling. Inertial fractal sets for dissipative Zakharov systems [J]. Acta Math. Appl.
Sinica, 1997, 13(3): 279-288.
[11] DU Xian-yun, DAI Zheng-de. The exponential attractor of generalited two dimension Ginzburg-Landau
equation [J]. J. Math. Study, 1998, 8(31): 278-284.
[12] EDEN A, FOIAS C, NICOLAENKO B. et al. Exponential Attractor for Dissipative Evolution Equation [M].
Research in Applied Mathematics, 37. Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994.
(13] WU Jian-hua. The global attractors for reaction-diffusion equations in fractional power spaces [J]. Chinese
Ann. Math. Ser.A, 1999, 20(1): 33-38.
[14] EDEN A, FOIAS C, NICOLAENKO B. et al. Inential Sets for Dissipative Evolution Equation [M]. IMA
Preprint Series 812, 1991.
{15] DAI Zheng-de. The exponential attractors for reaction-diffusion equation with dispersion in fractional power
spaces [J]. Acta Math. Appl. Sinica, 1999, 12(3): 15-20. (in Chinese)

Davey-Stewartson ﬁ*ﬁﬁ Banach E‘IE]'*’E’\HE’&%% |5

T, REE
(ZEKFERFR, =¥ B 650091)

W% RATFET DS HRE Banach ZH] X2 FHIEERSIT, HEBBIHMELEREMST.
X§i7: Davey-Stewartson F#; 35¥H3|F; Banach 23]



