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Abstract: The S-integral is a generalized integral of Riemann type which is defined in terms
of the Thomson’s local systems. In this note we prove Gronwall-Bellman’s inequality for the
S-integral. As special cases we also obtain Gronwall-Bellman’s inequalities for the Henstock
integral and the Burkill approximately continuous integral.
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1. Introduction

Thomson!” studied the continuity and differentiation of a real function by means of what
he calls local systems. In fact, local systems can also be used in the study of integration. In [11]
such an integral, called the S-integral, was defined. The S-integral is a generalized integral of
Riemann type which includes as special cases the Henstock integrall¥], the Burkill approximately
continuous integral?l and an integral based on the dyadic derivativel4.

The classical Gronwall’s inequality, which plays an important role in analysis of differential
equations, is usually formulated and proved within continuous functions®l. In [6], Schwabik
proved the Gronwall’s inequality for the Henstock integral which is used in the study of Kurzweil
equations. In [9] and [10], we obtained the Gronwall’s inequalities for the Burkill approximately
continuous integral and the S-integral respectively. In this note we would like to prove a more
general inequality of Gronwall type for the S-integral.

The paper is organized as follows. In §2, we recall some necessary notions and facts in
the S-integral. In §3, we establish an integration by parts formula for the S-integral. In the
last section, by using the results obtained in §3, we prove the Gronwall-Bellman’s inequality for
the S-integral, which is our main result. As special cases, we also give the Gronwall-Bellman’s
inequalities for the Henstock integral and the Burkill approximately continuous integral.

2. S-integral

In this section we briefly recall some necessary notions and facts in the S-integral. For
details see [11].
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Let R be the real line and 2F the collection of all subsets of R. Suppose for every = € R,
there corresponds a nonempty S(z) C 2R such that

(@) {=} ¢ S(=);

(i) if o € S(z), then z € o;

(iii) if o1 € S(z) and o1 C 79, then o3 € S(z);

(iv) if o € S(z) and § > 0, then o N (z — 8,z + 6) € S(x).
Then S = {S(z); z € R} is called a local system!”\.

Using the local system S one can define the S-limit or S-continuity of a function at a point
. Moreover, the S-derivative of f at z is defined to be

. fly) — f(=)
S-Df(z) = S- 51351” —v—z (2.1)

If S-Df(x) exists for each z in the domain, then f is said to be S- differentiable (see [7] for
details).

A local system S is said to be bilateral if for every z € R, o contains points on either side
of £ whenever o is in S(z). It is said to be filtering if for every r € R, we have o N2 € S(z)
whenever 0, and o2 belong to S(z). It satisfies the intersection condition if for every collection
of sets {a(z);z € R} with o(z) € S(z) there is a positive function & defined on R such that if
0 < y — z < min{d(z),d(y)}, then o(z) No(y) N [z,y] # 0.

Henceforth we will always assume that all local systems we use are bilateral, filtering and
satisfy the intersection condition.

Let S = {S(z);z € R} be a given local system. A collection of sets = {n,;z € R} with
Nz € S(z) is called a choice from S. For a choice n from S and a compact interval [a, b}, by an
n-fine partition of [a, b] we mean a finite collection

{([zs=1,zi), t:);4 = 1,2,---,n}
with the following properties
a=20<T1 < <Tp=>
and
i € [Zie1,Zi), Tim1,T; €7y, 1=1,2,---,n.

A collection {([ui,vs), t:);4 = 1,2,---,p} is called an 7-fine partial partition of [a, ] if it has the
following conditions

and

ti € [us,vi), w,vi€M, i=1,2,---,p.
Definition 2.11'Y A function f : [a,b] — R will be termed S-integrable if there is a num-
ber I such that for every € > 0 there exists a choice n from the local system S such that if
{([zs—1, 23], t:);¢ = 1,2, -+ ,n} is an n-fine partition of [a,b], then

| Zf(ti)(xi —zi) -1 <e. (2.2)

i=1
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The number I, written as (S) [ : f(t)dt, is called the S-integral of f.

The S-integral includes as special cases many known integrals of generalized Riemann type
and shares many of their properties. The next theorem gives a descriptive definition of the
S-integral.

A function F': [a,b] — R is said to satisfy the strong Lusin condition on [a, b] with respect
to the system S if for every E C [a,b] of measure zero and every € > 0, there exists a choice
n from S such that if {([u;,v],%:);¢ = 1,2,.--,p} is an n-fine partial partition of [a,b] with
{t;i=1,2,---,p} C E, then we have

P
> IF@w) - Flw)| <e. (2.3)
i=1
Theorem 2.2 A function f : [a,b] — R is S-integrable on {a, b] if and only if there exists
a function F : [a,b] — R satisfying the strong Lusin condition on [a,b] with respect to S and
S-DF(z) = f(z) almost everywhere in [a,b]. In this case,

b
(8) / f(z)dz = F(b) ~ F(a). (2.4)

3. Integration by parts for the S-integral

In this section we establish an integration by parts formula for the S-integral, which will be
used in the proof of our main result. Let S be a given local system and {a, b] a compact interval.

Proposition 3.1 Let F: [a,b] — R be a function that satisfies the strong Lusin condition on
[a,b] with respect to S. Then, for every function G : [a,b] — R, every E C [a,b] of measure
zero and every € > 0, there exists a choice n) from S such that if {([ui,vs),t:);4 = 1,2,---,p} is
an n-fine partial partition of [a,b] with {t;;4=1,2,---,p} C E, then we have

P
S |G ) F () — Fw)]| <e. 3.1)

i=1
Proof Put
E,={z;z€ E,k-1<L|G(z)| <k}, k=1,2,---.
It is easy to see that E = {J;—, Ex and that Ex N E; = 0 for k # . For each nonempty Ej, take
a choice 7(®) from S such that if {([ui,vi],t:);4 =1,2,---,p} is an n(*)-fine partial partition of
[a,b] with {t;;4=1,2,---,p} C Ex, then

S 1Fw) - Flus)] < /(k2%).

=1

Now construct a new choice 7 as follows. For t € R\ E, set n; = R; for z € E, set n, = ngk)

if some Ej contains z ( existence and uniqueness of such Ej is obvious ). We see that if
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{(lws, v}, t:);¢ = 1,2,---,p} is an n-fine partial partition of [a,b] with {t;;i = 1,2,---,p} C E,
then we have
P
Y G F@) - Fl| =Y Y |Gt [F(w) - Flw)|
i=1 KEN t;€E}

< Z k Z |F(v;) — F(u;)]]

k€N t;EE,

<N ke/(k2F) <,

keN
where N = {k; Ex N {t1,t2,- -, tp} # 0}.

Proposition 3.2 If F,G : [a,b] — R satisfy the strong Lusin condition on {a,b] with respect
to the system S, then so does their product FG.

Proof Let E C [a,b] of measure zero and € > 0 be given. Take a choice n*) from S such that if
{([us, i), t:);4 = 1,2, - - -, p} is an nM)-fine partial partition of [a,b] with {¢;;¢4=1,2,---,p} C E,
then we have

max { Z |F(vs) — F(us)], Z |G(vi) — G(u,)l} < min{e/4,1}.
In particular
max {|F(t;) — F(w)|, |G(v:) — G(t;)|} < min{e/4,1}, i=1,2,---,p.

By Proposition 3.1, we can take another choice 7(® from S such that if {([us,vs],t:);é =
1,2,---,p} is an n{®-fine partial partition of [a,b] with {t;;4 = 1,2,---,p} C E, then we have

mase { D |G()[F () = Ful], 3 |F()[G() - Gludl| } < e/4.

=1
Now put . = 787 2, for z € R. Obviously, n = {n,;z € R} is a choice. Let {([us, v, t:);4 =
1,2,---,p} be an n-fine partial partition of [a,b] with {t;;4 =1,2,---,p} C E. Then we see that

P

2 |P(:)G(v) - F(u)G(w)|
<D _IGIF @) = Fwi)]| + 3 [F(u)[G () - Glws)]|
i=1 i=1

< 3 |G(w) - G| F(vi) — F(us)| + Z |G(t:)IF(vi) — Flug)|+

i=1

Y IF®:) - F@i)||Gws) — Glws)| + 3 |F(t)[G(vs) ~ Glus)]|
i=1 =1

< |F(w) - Flus)| + Z |G () - Glw)| +¢/2

=1

<e.
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This completes the proof.
Using Theorem 2.2 and Proposition 3.2, we can easily come to the next useful proposition.

Proposition 3.3 Let f,g : [a,b] — R be S-integrable and
F@) =a+(8) [ f0d GE=a+©) [ o,
where cy, ¢z are constants. Then the function fG + Fg is S-integrable on [a,b], moreover
5) [ 1(@)6a) + FR)g(@)lds = FOIGH) ~ Fa)G) (52)

where [u,v] C [a, ).
In the following we denote by (H) [, : @(z)dz the Henstock integral of a function ¢(z) which
is Henstock integrable on the interval [u,v]. The next theorem gives an integration by parts

formula for the S-integral.

Theorem 3.4 Let f : [a,b) — R be S-integrable and g : [a,b] — R a function of bounded
variation. Define

@)= +(5) [ “ow, 6@)=a+ @) [ o,

where ¢;,co are constants. Assume that F is Henstock integrable on [a,b]. Then the product

fG is S-integrable on [a, b], moreover,
(5) / ’ f(2)G(z)dz = F(v)G(v) — F(u)G(u) — (H) /u 'F (z)g(z)dz, (3.3)

where [u,v] C [a,b].

Proof g is Henstock integrable on [a, b] since it is bounded variation on {a,b]. Hence g is also
S-integrable on [a, b] and

Glz) = c3 + (H) / " 0(8)dt = ¢z + (S) / " g()dt. (3.4)

Therefore, fG + Fg is S-integrable on {a, b].
On the other hand, by a result in [5], we know that the product Fg is Henstock integrable
on [a, b] since F is Henstock integrable on [a,b]. Hence Fyg is also S-integrable on [a, b] and

(8) /: F(z)g(z)dz = (H) /uv F(z)g(z)dz, [u,v] C [a,b). (3.5)

This together with the S-integrability of fG + Fg implies that the product fG is S-integrable
on [a,b]. (3.3) easily follows from (3.2) and (3.5).

4. Gronwall-Bellman’s inequality for S-integral

We now prove Gronwall-Bellman’s inequality for the S-integral, which is our main result.
Let S be a given local system and 7’ > 0. In additon, for a function ¢(t}, its Burkill approximately
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continuous integral is denoted by (AP) [, : e(t)dt.

Theorem 4.1 Let f, g : [0,7] — R be S-integrable. Assume that G(z) = (S) [ g(t)dt is
Henstock integrable on [0, T]. If there is a constant k > 0 such that

£(2) < g(@) + k- () /0 “fa, zel0,T), (4.1)

then
(@) < glz) + K- (5) /0 o()F@at, z e [0,T). (4.2)

If (4.1) holds a.e., then so does (4.2).

Proof Define -
F(z) = (S) /0 ft)dt, z€0,T). (4.3)

Then (4.1) becomes
f(z) < g(z) + kF(z), z€[0,T). (44)

Put () = ~ke~*=, B(z) = e~*=. Then we see
$-D¥(z) = p(z), =€ [0,T). (4.5)
By the Theorem 2.2, ¢(z) is S-integrable on [0, T] and
®(z) =1+ () /0 " o)dt, ze0,T]. (4.6)
Multiplying both sides of (4.4) by ®(z) yields
f(2)2(z) + F(z)p(z) < g(z)®(z), = €0,T]. (4.7)

By Proposition 3.3 and Theorem 3.4, both f(z)®(z) + F(z)¢(z) and g(x)®P(z) are S-integrable
on [0, T}, and moreover,

F(2)8(z) = (5) /0 ") + F)p(®)dt < (5) / “gnea, zel0T)  (48)
which implies
F@)<(5) [ * gOB@)@E@)] = (5) i “eFe0dr, e[0T (49)
(1] 0

Combining (4.1), (4.3) and (4.9), we get (4.2). If (4.1) holds a.e., then in the same way we can
show that (4.2) also holds a.e. The proof is complete.

Theorem 4.1 gives Gronwall-Bellman’s inequality for the S-integral. As special cases of the
theorem, we immediately get Gronwall-Bellman’s inequalities for the Henstock integral and the
Burkill approximately continuous integral as follows.

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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Corollary 4.2 Let f, g: [0,T] — R be Henstock integrable. If there is a constant k > 0 such
that

@) < oe) + - (8) [ “fat, we o), (4.10)
then -
@) < 9(z) + k- (H) /0 a(t)ekE0ds, 3 [0,T]. (411)

If (4.10) holds a.e., then so does (4.11).

Corollary 4.3 Let f, g : [0,7] — R be integrable in the sense of the Burkill approximately
continuous integral. Assume that G(z) = (AP) [ g(t)dt is Henstock integrable on [0,T). If
there is a constant k > 0 such that

£(z) < g(z) + k- (AP) / “jeat, zelo,T), (412)

then .
(@) < g(z) + k- (AP) /0 o)eH=0at, z e [0,T), (4.13)

If (4.12) holds a.e., then so does (4.13).
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