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1. Introduction

The Vector Variational Inequality (for short, VVI) in a finite dimensional Euclidean space
was introduced in [1] and the applications were given. Chen and Cheng!? studied the VVI
in infinite dimensional space and applied it to Vector Optimization Problem (for short, VOP).
Since then, many authors have intensively studied the VVI on different assumptions in infinite-
dimensional spaces. Lee et al.Bl, Lin et al.l4, Konnov and Yao!%, Yang and Yao!®, and Oettli
and Schlager!”! studied the generalized vector variational inequality and obtained some existence
results. Chen et al.l8! and Lee et al.l% introduced and studied the generalized vector quasi-
variational inequality and established some existence theorems. Ding{1%1! and Luol*? studied
the generalized vector variational-like inequalities. Ding{13l introduced and studied a class of gen-
eralized vector quasi-variational-like inequality problem (in short, GVQVLIP). By employing the
scalarization technique, Dingl'® established several existence results for (GVQVLIP) involving
C4-n-monotone and weakly Cy-7-monotone set-valued mappings.

In this paper, we use the maximal element theorem with an escaping sequence in [20] to
prove the existence results of a solution for (GVQVLIP) without any monotonity conditions in
a noncompact topological space setting.

2. Preliminaries
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Let Y be a real Hausdorff topological vector space and X be a nonempty convex subset
in a real locally convex Hausdorff topological vector space E. we denote L(E,Y) the space of
all continuous linear operators from F into Y and by < u,y > the evaluation of u € L(E,Y)
at y € E. Let ¢ is the family of all bounded subsets of X whose union is total in E, i.e., the
linear hull of U{S : S € o} is dence in X. Let B be a neighbourhood base of 0 in Y. When
S runs through o, V through B, the family M(S,V) = {l € L(E,Y) : Uzes <,z >C V} is
a neighbourhood base of 0 in L(E,Y) at z € E (see [14, pp. 79-80]). By the Corollary of
Schaefer(!4l, L(E,Y’) becomes a locally convex topological vector space under o-topology, where
Y is assumed a locally convex topological space.

Lemma 2.119 Let E and Y be real Hausdorff topological vector spaces and L(E,Y) be the
topological vector space under the o-topology. Then, the bilinear mapping

(,):LEY)xE—-Y

is continuous on L(E,Y’), where < [,z > denotes the evaluation of the linear operator! € L(X,Y)
atze X.
Let intA and CoA denote the interior and convex hull of a set A, respectively, and C :
X — 2Y be a set-valued mapping such that C(z) is a closed pointed and convex cone with
intC(z) # 0 for each z € X. Let n: X x X — E be a single-valued mapping, D : X — 2% and
T : X — 2L(EY) be two set-valued mappings. Ding!*3 introduced a generalized vector quasi-
variational-like inequality problem (GVQVLIP), which is to find £ in X such that £ € D(Z),
and
Vy € D(Z),3 € T(Z): {D,n(y,%)) ¢ —intC(Z). 1)

Then the point Z is said to be a solution of the (GVQVLIP).
It is easy to see that Z is a solution of the (GVQVLIP) is equivalent to Z in X satisfying
Z € D(z), and
Yy € D(z), (T(z),n(y, %)) € —intC(Z), @)

where (T'(2),7(y, %)) = Uver(z) (v, (¥, 2))-

The following problems are special cases of the (GVQVLIP).

(i) For all z € X, if D(z) = X, then the (GVQVLIP) reduces to the generalized vector
variational-like inequality problem (in short, GVVLIP) which is to find % in X such that there

exists an 9 € T'(Z) satisfying
(9,n(y, %)) ¢ —intC(z), Vy € X. (3)

This problem was studied in [10-12].
(i) If T is a single-valued mapping and n(y,z) =y — g9(z),Vz,y € X, whereg: X - E'is
a single-valued mapping, then the (GVQVLIP) reduces to finding Z in X such that £ € D(z),
satisfying
(T(z),y — 9(z)) ¢ —intC(z), Vy € D(Z). ()
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This is a new problem. If for all z € X, D(z) = X, then the problem (4) reduces to finding Z in
X such that
(T(z),y — 9(2)) ¢ —intC(Z), Vy € X. (5)
The problem (5) was considered by Siddigi et al.l%].
(ii) I n(y,z) =y — z, Vz,y € X, then the (GVQVLIP) reduces to finding Z in X such
that Z € D(Z), and
Vy € D(z),30 € T(Z) : (b,y — z) ¢ —intC(Z). (6)
Problem (6) is called the generalized vector quasivariational inequality problem (GVQVIP) which
is new. When C(z) = C, Vz € X is a constant cone, problem (6) was studied by Chen and Lil®
and Lee et al.l%.
(iv) If D(z) = X, Vz € X and n(y,z) =y — z, Vz,y € X, then the (GVQVLIP) reduces to
finding % in X such that

Vy € X,30 € T(Z) : (9,n(y,Z)) ¢ —intC(Z). (7

Problem (7) and its special cases are called the generalized vector variational inequality (GVVIP)
which was introduced and studied in [3-7].

(v) If T is a single-valued function, then the (GVQVLIP) reduces to finding Z in X such
that £ € D(Z), and

(T(2),n(y, 2)) ¢ —intC(2), Vy € D(Z). )

When D(z) = X, Vz € X, problem (8) and its special cases were studied in {1,2].

(vi) Y = R and C(z) = [0,0),Vz € X, then L(E,Y) = E*, where E* is the dual space
of E, and the (GVQVLIP) reduces to finding # in X such that Z € D(Z), and

Vy € D(z),30 € T(Z) : (9,n(y, Z)) 2 0. (9)

Problem (9) includes many classes of scalar type generalized quasivariational inequality
and generalized variational-like inequality problems as special cases (see [16] and the references
therein).

In order to prove the main results, we need the following definitions and lemmas.

Definition 2.11% Let E,Y be two real topological vector spaces, X be a nonempty and convex
subset of E, C : X — 2Y be a set-valued mapping such that C(z) is a closed pointed and convex
cone for each z € X. Let n: X x X — E be a single-valued mapping. T : X — 2MEY) js said
to satisfy the generalized L-n)-condition iff for any finite set {y1,y2, -, yn} in X, Z = E;=1 ;5Y;
with o; > 0 and 377 oj = 1, there exists § € T(Z), such that

(5,3 asm(us, ) ¢ -imiC(@).

=1

Remark 2.1 If 9(y,z) is affine in the first argument and Vz € X, 3v € T(z), such that

(771 77(33, :II)) ¢ —-intC(a:),
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then T satisfies the generalized L-n-condition.

Remark 2.2 If n(y,z) =y — z, Vz,y € X, then we have that

n
<z‘1, > oy - :Z')> =(5,% %)) =0¢ —intC(%), Yo € T(%).
j=1
And hence T satisfies the generalized L-n-condition trivially.

Let X be a topological space. A subset S of X is said to be compactly open (respectively,
compactly closed) in X if for any nonempty compact subset K of X, SN K is open (respectively,
closed) in S . Let Y be a topological spaces and T': X — 2Y be a set-valued mapping. Then,
T is said to be open valued if the set T'(z) is open in X for each z € X. T is said to have
open lower sections if 7! is open valued, i.e., the set T~}(y) = {z € X : y € T(z)} is open
in X for each y € Y. T is said to be compactly open valued if the set T'(z) is compactly open
in X for each z € X, and T is said to have compactly open lower sections if 7! is compactly
open valued. Clearly, each open-valued ( respectively, closed-valued) mapping T : X — 2¥
is compactly open-valued (respectively, compactly closed-valued)?33h40l. T is said to be upper
semicontinuous if, for any zo € X and for each open set U in Y containing T'(zo), there is a
nerghborhood V of zg in X such that T(z) C U, for all z € V; T is said to be closed, if the set
{(z,y) e X xY :yeT(x)}isclosedin X x Y.

Lemma 2.2007) Let X and Y be topological spaces. If T : X — 2Y be an upper semicontinuous
set-valued mapping with closed values, then T is closed.

Lemma 2.311% Let X and Y be topological spaces and T : X — 2¥ be an upper semicontinuous
set-valued mapping with compact values. Suppose {z,} is a net in X such that o — 9. If
Ya € T(zq) for each o, then there is a yo € T(zo) and a subset {yg} of {y} such that yg — yo.

Lemma 2.4118] Let X and Y be two topological spaces. Suppose T : X — 2¥ is a set-valued
mapping having open lower sections, then the set-valued mapping F : X — 2¥ defined by, for
each z € X, F(z) = CoT'(z) has open lower sections.

Definition 2.2(%9 Let E be a topological space and X be a subset of X, such that X = | oo, Xn
where {Xp,}32, is an increasing ( in the sense that X, C Xn41 ) sequence of nonempty compact
sets. A sequence {x,}32, in X is said to be an escaping sequence from X (relative to {X,}3;)
iff for eachn = 1,2,---,3m > 0, such that z; ¢ Xk, Vk 2> m.

Lemma 2.5[%1 Let X be a subset of a topological vector space E such that {Xn}32.,, where
{Xn}%, is an increasing sequence of nonempty compact sets of X. Assume that the set-valued
mapping S : X — 2X satisfies the following conditions:

(i) Foreachz € X, S }(z)N X, is open in X, for alln =1,2,---;

(ii} For eachz € X, z ¢ CoS(z);

(iii) For each sequence {z,}52, in X with z, € X,, for all n = 1,2,---, which is escaping
from X relative to {X,}32,, there exist n € N and yn € X, such that yn € S(zn) N Xn.
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Then there exists & € X such that S(Z) = 0.

3. Existence results

In this section, we present some existence results of the (GVQVLIP) without any monotone
conditions in a noncompact topological space setting.

Theorem 3.1 Let E be a real locally convex Hausdorff topological vector space, let X be a
subset of E such that X = U2, X,, where {X,}32, is an increasing sequence of nonempty,
compact and convex subset of X, let Y be a real Hausdorff topological vector space, and let
L(E,Y) be equipped with the o-topology. Let D : X — 2X be a set-valued mapping with
nonempty convex values and compactly open lower sections, the set W = {z € X : ¢ € D(z)} be
closed, C: X — 2Y be a set-valued mapping such that C(z) is a closed pointed and convex cone
with intC(z) # 0 for each x € X, and the set-valued mapping M = Y\(~intC) : X — 2Y be
upper semicontinuous on X. Let T : X — 2L(E:Y) be upper semicontinous on X with compact
values and 1 : X x X — E be continuous with respect to the second argument, such that T
satisfles the generalized L-n-condition. Suppose that

(A1) for each sequence {zn}2., in X with z,, € X,, for alln =1,2,3,---, which is escaping
from X relative to {X,}32,, 3m € N, and 32z, € D(zm) N Xy, such that, Vs, € T(z,), we
have

(8ms N(2m; Tm)) € —IntC(Trm).

Then, the (GVQVLIP) has a solution ¥ € X.

Proof Define a set-valued mapping P : X — 2X by

P(z) = {y € X : (T(z),n(y, z)) € —intC(z)}
={y € X :<v,n(y,z) >€ —~intC(z),Yv € T(z)}, Vz € X.

We first prove that z ¢ CoP(x) for all x € X. To see this, suppose, by way of contradiction,
that there exists some point £ € X such that € CoP(Z). Then there exist finite points
Y1,¥2, ¥ in X, and a; > 0 with 37, o; = 1 such that Z = }°7_, ;y; and y; € P(%) for
all j =1,2,---,n. That is, (v,n(y;,%) >€ —intC(Z), Vv € T(z) and j = 1,2,---,n. Since
intC(%) is convex, we obtain ’

n
(v, Y asn(y;, &) € —intC(E), Yo € T(z),
j=1
which contradicts the fact that T satisfies the generalized L-1-condition. Therefore, 2 ¢ CoP(z)
for all z € X.
We also define a set-valued mapping G : X — 2X by

D(z) N CoP(z) if W,
G<-”)={DE§§ @ if 2§X\W.
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Then for each € X, G(z) is convex. Suppose that there exists £ € X such that Z € G(z). If
z € W, then % € D(z) N CoP(x), which contradicts z ¢ CoP(z) for all z € X. If z ¢ W, then
G(Z) = D(%) which implies that £ € G(Z), a contradiction. Hence for all z € X, z ¢ G(z) =
CoG(z), the condition (ii) of Lemma 2.5 is satisfied.

Now we prove that the set

PN (y) = {z € X :< T(z),n(y,z) >C —intC(z)}
={z € X : (v,n(y,z)) € —intC(z), Vv e T(z)}

is open for each y € X. That is, P has open lower sections in X. Consider the set-valued
mapping S : X — 2¥ defined by

S(y) ={z € X : (T(z),n(y,z)) ¢ —intC(z)}
={r e X:3veT(z) such that (v,7(y,z)) ¢ —intC(z)}.

We only need to prove that S(y) is closed for all y € X. In fact, consider a net z: € S(y) such
that z; — z € X. Since z; € S(y), there exists s; € T'(z;) such that (s¢,n(y,z:)) ¢ —intC(z:).
From the upper semicontinuity and compact values of T and Lemma 2.3, it suffices to find a
subset {s;,} which converges to some s € T(z). By Lemma 2.1, we know that (-) is continuous,
and hence
(8¢ n(ys 21,)) — (8,n(y, 2))-

By Lemma 2.2 and upper semicontinuity of M, we have (s,y — z) ¢ —intC(z), and hence
z € S(y), S(y) is closed. Therefore, P has open lower sections in X.

By Lemma 2.4, CoP~(y) is also open for each y € X. Since D~!(y) is compactly open
for each y € X,

Gl y)={zr€ X :yeGz)}
={reW:ye[DE)NnCoP(z)j]}u{ze X\W:ye€ D(z)}
= (WnD7@)nCoP~'(y)) U [(X \W) N D(5)]
= [(W nD-Y(y)n CoP'l(y)) u(x\ W)] n [(W nD(y)N coP-l(y)) U D-l(y)]
= {X n [(D-l(y) n CoP"l(y)) ux\ W)] } n [(W u D“l(y)) n (D-l(y))]
=[(p7 @) nCoP ) u (X \W)| N D)
= (D7) N (CoP~ (@) U (X \ W) N (D7 (v))-
Therefore, G1(y) also has compactly open values in X for all y € Y, the condition (i) of Lemma
2.5 is satisfied. Condition (A1) implies condition (iii) of Lemma 2.5. Therefore, by Lemma 2.5,
there exists Z € X such that G(£) = 0. Since for each z € X, D(z) is nonempty, we have
% € D(%) such that D(%) NCoP(Z) = 0, which implies that Z € D(Z) such that D(Z)NP(z) = 0,

that is, Z € D(Z), and Vy € D(z), Jv € T(Z) satisfying (v,n(y,%)) ¢ —intC(Z). That is, the
(GVQVLIP) has a solution Z € X.
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By Theorem 3.1 and Remark 2.1, we have

Corollary 3.2 Let E be a locally convex Hausdorff topological vector space , X be a subset
of E such that X = U, X, where {X,}32, is an increasing sequence of nonempty, compact
and convex subset of X, Y be a Hausdorff topological vector space, and L(E,Y) be equipped
with the o-topology. Let D : X — 2% be a set-valued mapping with nonempty convex values
and compact open lower sections, the set W = {z € X : z € D(z)} be closed, C : X — 2Y be a
set-valued mapping such that C(x) is a closed pointed and convex cone with intC(z) # 0 for each
z € X, and the set-valued mapping M = Y\(—intC) : X — 2Y be upper semicontinuous on X.
Let T : X — 2L(EY) be upper semicontinous on X with compact values andn: X x X — E
be continuous with respect to the second argument and affine with respect to the first argument
such that Vz € X, 3v € T'(z), satisfying

(@,n(z,z)) ¢ —intC(z).

Suppose that
(A1) for each sequence {zn}32, in X with zn, € X, foralln =1,2,3,--., which is escaping
from X relative to {Xp,}32,, 3m € N, and 3z, € D(xy,) N Xy such that, Vs, € T(zn), we
have
(8m> M(Zm» Tm)) € —intC(z,,)-

Then, the (GVQVLIP) has a solution z € X.

Remark 3.1 If D(z) = X for all z € X, then by Corollary 3.2, we recover Theorem 2 in [12].
Hence, both Theorem 3.1 and Corollary 3.2 are generalizations of Theorem 1 and Theorem 2 in
12].

Theorem 3.3 Let E be a locally convex Hausdorff topological vector space , X be a subset
of E such that X = U2, X,, where {X,}32, is an increasing sequence of nonempty, compact
and convex subset of X, Y be a Hausdorff topological vector space, and L(E,Y) be equipped
with the o-topology. Let D : X — 2% be a set-valued mapping with nonempty convex values
and compact open lower sections, the set W = {z € X : z € D(x)} be closed, C : X — 2Y be
a set-valued mapping such that C(z) is a closed pointed and convex cone with intC(z) # @ for
eachz € X, and the set-valued mapping M = Y\(—intC) : X — 2¥ be upper semicontinuous on
X. Let T : X — 2L(EY) be upper semicontinous on X with compact valuesandn: X x X — E
be continuous with respect to the second argument. Suppose that there exists a mapping h :
X x X —Y, such that:
(i) Vz,y € X, 3v € T(z), such that

h(z,y) — {(v,1(y, 7)) € —intC(z);

(ii) For any finite set {y1,y2,-,yn} C X and % = 3°7_, a;y; witha; > 0 and Y @ =1,

there is a j € {1,2,---,n}, such that h(Z,y;) ¢ —intC(%).
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(iii) For each sequence {2}, in X with z,, € X, for alln = 1,2,3,---, which is escaping
from X relative to {X,}52,, 3m € N, and 3zm € D(Tm) N Xm such that, Vs, € T(zm), we
have

(8ms(Zms Tm)) € —IntC(Zy,).

Then, the (GVQVLIP) has a solution 7 € X.
Proof Define two set-valued mappings P: X — 2%, P, : X — 2X by
P(z)={y e X: (v,n(y,z)) € —intC(z), Vv € T(x)},vVz € X.

Pi(z) ={y € X : h(z,y) € —intC(z)}, Vre X.

We first prove that z ¢ Co(P;(z)) for all z € X. To see this, suppose, by way of contradic-
tion, that there exists some point Z € X such that Z € Co(P;(Z)). Then there exist finite points
Y1,Y2, -+, ¥n in X, and ; > 0 with Z?=1 a; = 1such that Z = Z;;x a;y; and y; € Py(Z) for all
Jj=1,2,---,n. That is, h(Z,y;) € —intC(Z), j = 1,2,---,n. This contradicts to the condition
(ii). Therefore z ¢ Co(Py(x)) forallz € X.

The Condition (i) implies that Py(z) 2 P(z) for all z € X. Hence, z ¢ Co(P(z)), Vz € X.

The remainder of the proof is the same as that in the proof of Theorem 3.1.

Corollary 3.4 Let E be a locally convex Hausdorff topological vector space , X be a subset
of E such that X = U32,X,, where {X,}32, is an increasing sequence of nonempty, compact
and convex subset of X, Y be a Hausdorff topological vector space, and L(E,Y) be equipped
with the o-topology. Let D : X — 2X be a set-valued mapping with nonempty convex values
and compact open lower sections, the set W = {z € X : z € D(x)} be closed, C : X — 2Y¥ be
a set-valued mapping such that C(z) is a closed pointed and convex cone with intC(z) # @ for
each r € X, and the set-valued mapping M = Y'\(—intC) : X — 2¥ be upper semicontinuous
on X. Let T : X — 2L(EY) pe upper semicontinous on X with compact values andn: X x X —
E be continuous with respect to the second argument. Suppose that there exists a mapping
h: X x X —Y, such that:

(i) Vz,y € X, h(=z,y) — (T(z),n(y, 7)) € —intC(z);

(ii) The set {y € X : h(z,y) € —intC(z)} is convex for all x € X ;

(iii) h(z,z) ¢ —intC(z),Vz € X;

(iv) For each sequence {z,}3>, in X with z,, € X, for alln =1,2,3,---, which is escaping
from X relative to {Xn}32,, 3m € N, and 3z, € D(xm) N X, such that, Vs, € T(zm), we
have

(SmsN(2zm, Tm)) € —IntC(zm).

Then, the (GVQVLIP) has a solution T € X.

Proof From the proof of Corollary 3 in [10], we know that the Conditions (ii) and (iii) imply
the Condition (ii) of Theorem 3.3. Then, by Theorem 3.3, we know the conclusion holds.

Remark 3.2 Theorem 3.1, Corollary 3.2, Theorem 3.3 and Corollary 3.4, respectively, generalize
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the main results in [10] from the cases of generalized set-valued variational-like inequalities to
the cases of generalized set-valued quasi-variational-like inequalities.
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