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Throughout this paper, rings are always associative with identity and modules are unitary.
We freely use the terminology and notation of [1].

A ring R is called a right QF-1 ring in case every faithful right R-module is balanced, that is,
there is a canonical ring isomorphism from R to Biend(Mpg) for every faithful right R-module M.
Many properties of QF-1 rings were presented by Thrall?l and Camillol®. R is a right PF-ring
in case every faithful right R-module is a generator. According to Faith(4, each generator is
balanced, thus a right PF-ring is always a right QF-1 ring. The converse is not true when R is
non-commutative. But whether a commutative QF-1 ring is PF is still open. Dickson&Fuller!5!
and Camillol®l proved that a commutative artinian QF-1 ring is QF, respectively. Ringel® and
Storrerl”] generalized it to the commutative Noetherian case.

In this paper, we prove that a Noetherian duo right QF-1 ring is QF, which generalizes
Ringel’s result/®). At the same time, we investigate linearly compact duo QF-1 rings and duo
self-injective QF-1 rings.

We denote rg(X) the right annihilator of X in R, and J the Jacobson radical of R. Let
Soc(M) be the socle of module M, E(M) the injective hull of M and Rad(M) the Jacobson
radical of M.

A ring R is called duo in case each one-side ideal is two-sided. Obviously, Ra = aR for each
a in a duo ring R.

Lemma 1 Let R be a duo Noetherian ring with simple essential socle. Then lg(SocR) is
nilpotent.

Proof Since SocR is simple, Ir(SocR) is a maximal ideal of R. Let N = Ig(SocR), N 2
N2 2 N3D ..., then rp(N) C rr(N?) C rr(N3) C ---, and there is an n such that rp(N") =
rr(N™*1) since R is Noetherian. If N"+! #£ 0, let K = {a € N|N™a # 0}, K # 0, then
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{rr(a)la € K} has a maximal element. Suppose rg(a) is the maximal element. For each
nonzero b € N,rg(b) is an essential ideal, so rg(b) NaR # 0. There is an 9 € R such that
arg # 0 and bary = 0, that is, ro & rr(a) but o € rr(ba). We have ba € N and rr(a) C rr(ba).
By the maximality of rz(a), we get N"ba = 0. Since b is an arbitrary element in N, N**+1g = 0.
But a € rg(N™*1) = rp(N"™), that is, N"a = 0, a contradiction. Thus N*+1 = 0.

Lemma 2 Let R be a duo Noetherian ring with simple essential socle. Then R is a local
QF-ring.

Proof By Lemma 1 and [1, Corollary 15.10], the maximal ideal Ig(SocR) C J, hence J =
Ir(SocR) and R is local. By Lemma 1 and [1, Theorem 15.20] again, R is semiprimary, so R is
an Artinian ring. Now by [1, Corollary 31.8] R is a QF-ring.

The following two lemmas are very important in this paper. The idea of their proofs, given
below for completion, comes from [6, Lemmas 3 and 4].

Lemma 3 Let R be a local duo right QF-1 ring. If J is finitely generated, then R has non-zero
socle.

Proof Suppose SocR = 0, we have rg(J) = 0, then J is faithful. Since J is finitely generated,
let JR = zyR + 2R + -+ + zxR. Then R-homomorphism ¢ : R — R¥ defined by r
(z17, 227, -+, Zx7) is a monomorphism. And Imyp C J*¥ = Rad(RF). Set M; = R,M, =
M{‘,gol =@: M — M; and My = ,’:,tpn = <pf,_1 : M, — M,+;. Then all ¢,’s are monic
and Imyp, C Rad(M,+1). Let M be the direct limit of the diagram

M; 25 My 225 My 2 ...

Since all ¢,,’s are monic, we may assume that each M, C M and ¢, is the inclusion map. So
M = U M, and the socle of M is zero since the socle of each M, is zero. Assume X is a
maximal submodule of M. Then M, € X for some n. If m € M\ X, then (X N\ Mp41)+mR =
M1 N (X +mR) = Mpt1 N M = Mpq1. Since m = p,(m) € Rad(Mn41), mR is superfluous
in Mp41. Then X N My yy = Myuyq, M, € Mp4y C X, a contradiction. So M has no maximal
submodules. But M is faithful, according to {3, Lemma 2], this contradicts to the QF-1 ring
assumption of R.

Lemma 4 Let R be a local duo right QF-1 ring with non-zero socle. Then SocR is simple and
essential.

Proof Let S be a minimal ideal of R. We show that each nonzero ideal contains S.
Assume A is a proper ideal of R such that SN A =0. Take 0 # s € Sand 0 # a € A.
We consider the module Mr = R?/(s,a)R. Since R? is projective, for every v € End(M), the
following diagram
R2 _'_7, R2
7l lm
ML M
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commutes and 7 is lifted by v, consequently 7 takes (s,a)R into (s,a)R, where 7 : RZ — M is
the natural epimorphism. And the operation of ¥ on R? is just that of some matrix

T r
1 12 s Tij €R.
T21 T22

So (s,a) ( :;i :;z ) = (sr11 + ara1, sT12 + arg2) = (rs,ra) for some r € R. We note that
Ra = aR for each a in a duo ring R, then arg, = rs—sry;; € RaNRs = 0. So ro; is not invertible,
but R is local, 9y € J. Similarly, sr12 = ra — ares € Ra N Rs = 0 implies that ry2 € J. Define
an additive homomorphism f of R? into itself by (r1,72) — (0,sr2). Since s € § C SocR and
(s,a)R C J?, f maps (s,a)R into 0 and therefore induces an additive endomorphism f of M. Let

Nz € End(MR) =T and (7‘1,7‘2) € M. Then 8raro1 = 0 = sryri2 since T12,T21 € J.

21 722
Hence
—ry T —(rn T
[f(ry,72)] ( 7,; 7,: ) = (0, sr2) ( 7‘; T;Z ) = (srora1, sraraez) = (0, 571712 + sr2T22)

= f(riris + rara1, Tiriz + rorez) = f [(7‘1, r2) ( :;1 :;z >] .
That is, f € End(rM) = Biend(Mg). Next we show M is faithful. If Mr = 0 then (1,1)r €
(s,a)R,r € sSRNaR =0. Thus r = 0 and M is faithful. Since R is right QF-1, Mg is balanced.
There is an 7o € R such that f(m) = mro for each m € M. Since £(0,1) = (0, s) # 0,70 # 0.
And 0 = f(1,0) = ro(1,0) = (r0,0), hence (ro,0) € (s,a)R. Let r¢ = r1s and 0 = rya. Since R

is local,r; € J, then rg = 7158 = 0, a contradiction.

Theorem 5 Let R be a duo Noetherian ring. If R is a right QF-1 ring, then R is QF.

Proof From the proof of 6, Lemma 2], we note that a duo Noetherian ring also has the property
of no non-zero maps between the injective hulls of two non-isomorphic simple R-modules. By [3,
Theorem 7}, we may assume R is local. Now by Lemmas 3, 4 and 2, R is QF.

Now we investigate linearly compact rings. A module M is called linearly compact (8,
Section 3] in case any finitely solvable congruence m = m;(mod M;) is solvable, where M;’s are
submodules of M and m; € M. A ring R is right (left) linearly compact if the regular module
Rp (rR) is linearly compact. Since each one-sided ideal in a duo ring is an ideal, a duo ring is
right linearly compact iff it is left linearly compact , so we simply speak of a linearly compact
duo ring. We recall that a ring R is right PF if Rp is an injective cogenerator.

Theorem 6 Let R be a linearly compact duo right QF-1 ring. If J is finitely generated, then
R is a PF-ring.

Proof Since a linearly compact ring is semiperfect and each idempotent lies in the center of a
duo ring, a linearly compact duo ring is a finite product of local linearly compact duo rings. We
suppose R is a local ring. Using Lemma 3, R has a nontrivial socle. And SocR is simple and
essential by Lemma 4. Now by [9, Lemma 3.2] R is a (two-sided) PF-ring.
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Theorem 7 Let R be a linearly compact duo right QF-1 ring. If N3, J™ is finitely generated,
then R is a QF-ring.

Proof Let R be local. Since R is linearly compact, J/J? is finitely generated semisimple.
Assume J =30 z;R+ J?, then

m m
P=J-O mR+J)CY mR+J3,

i=1 i=1

m m m
J=) mR+JCY mR+J2CY mR+J =1
i=1 i=1 i=1
We have J = 31", z;R + J3. By the similar method, J = =, ;R + J" for each n. By [8,
Corollary 3.9],
o0 m m o0
J=O_ =R+ =Y mR+[)JI™
n=1 i=1 i=1 n=1
J is finitely generated since NS, J™ is finitely generated. Thus R is a PF-ring by Theorem 6.
And now it follows from [8, Corollary 17.5 and Lemma 17.1] that N2, J™ =0 and hence R is a
Noetherian ring. Hence R is QF.

Recall that a ring R is right (FPF)PF if every (finitely generated) faithful right R-module
is a generator. We now discuss right duo right self-injective right QF-1 rings. XIN Lin'? shows
that a left self-injective left duo and left QF-1 ring is a left PF-ring, if J is nil and J/J? is finite
generated. Here we give another condition for this result. From [10] a right self-injective ring is
duo iff it is right duo. We simply assume R is a duo right self-injective ring.

Lemma 8 If R is duo right self-injective, then R is a right F'PF-ring.

Proof Let M = miR+maR+---+ m,R be a finitely generated faithful right R-module. Then

0= rR(imiR) = ﬁr}z(miR) C ﬁr}g(m.-).

If N2, rr(m;) # 0, then N, 7r(m;) is a non-zero two-sided ideal since R is a duo ring. We have

n n n
M- ﬂ rR(mi) = Z(m,R . n rR(m.-)) = 0.
i=1 i=1 i=1
But M is faithful, a contradiction. Therefore N2 ;7r(m;) = 0 . Define ¢ : R — M™,r s
(mar,mar,- - ,mur), @ is monic. Since R is right self-injective, M™ = R® X. Then M is a
generator, so R is right FPF.

Lemma 9 Let R be a local duo right self-injective ring. If E(R/J) is finitely generated as right
R-module, then R is a right PF-ring.

Proof Since R is local, E(R/J) is a minimal (injective) cogenerator, which is a faithful right
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R-module. By Lemma 8 E(R/J) is a generator. Since Rp is finitely generated projective,
E(R/J) — Rr — 0 spilts for some n. That is, Rp is a direct summand of E(R/J)", which is
finitely cogenerated. Hence Rp is finitely cogenerated. Now by [11, Proposition 24.32(d)], R is
a right PF-ring.

Corollary 10 Let R be a local duo right self-injective ring. If there is a finitely generated
cogenerator as right R-module, then R is a right PF-ring.

Proposition 11 Let R be a duo right self-injective and right QF-1 ring. If there is a finitely
generated cogenerator as right R-module, then R is a right PF-ring.

Proof By [12, Lemma 3] and [3, Theorem 7], we may assume R is local. By Corollary 10, R is
a right PF-ring.
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