Vol.25, No.4 Nov., 2005

JOURNAL OF MATHEMATICAL RESEARCH AND EXPOSITION

Article ID: 1000-341X(2005)04-0571-11

Document code: A

Positive Solutions for Singular Boundary Value Problem of Fourth Order

LIU Jia-quan¹, XIONG Ming², ZENG Ping-an¹

- (1. School of Mathematics Science, Peking University, Beijing 100871, China;
- 2. Dept. of Math., Dali University, Yunnan 671000, China)

(E-mail: dalixueyuanmxiong@yahoo.com.cn)

Abstract: Some existence results existence of the positive solutions for singular boundary value problems

$$\begin{cases} u^{(4)}(t) = p(t)f(u(t)), & t \in (0,1) \\ u(0) = u(1) = 0, \\ u'(0) = u'(1) = 0 \end{cases}$$

are given, where the function p(t) may be singular at t = 0, 1.

Key words: singular boundary value problem; positive solution; variational method.

MSC(2000): 34B15 CLC number: 0175.8

1. Introduction

We consider the following problem

$$\begin{cases} u^{(4)}(t) = p(t)f(u(t)), & t \in (0,1) \\ u(0) = u(1) = 0, \\ u'(0) = u'(1) = 0, \end{cases}$$
(1.1)

where $p \in C(0,1)$ and may be singular at t=0 or t=1. We are looking for positive classical solution for (1.1). A function u is called a classical solution of (1.1), if $u \in C[0,1] \cap C^4(0,1)$ and satisfies both the equation and the boundary value condition. The basic assumption on p is

(P)
$$p \ge 0, p \in C(0,1), \exists t \in (0,1), p(t) > 0 \text{ and } \lim_{s \to 0} s^3 \int_s^{1-s} p(t) dt = 0.$$

For the nonlinear function f we assume:

(F) $f \ge 0$ and $f \in C[0, +\infty)$ and we denote

$$f_0^- = \underline{\lim}_{t \to 0} \frac{f(t)}{t}, \quad f_0^+ = \overline{\lim}_{t \to 0} \frac{f(t)}{t},$$

$$f_{\infty}^{-} = \underline{\lim}_{t \to +\infty} \frac{f(t)}{t}, \quad f_{\infty}^{+} = \overline{\lim}_{t \to +\infty} \frac{f(t)}{t}.$$

In the following we will use the weighted L^2 -space

$$L_p^2 = \{u | \int_0^1 p(s)u^2(s)\mathrm{d}s < +\infty\}$$

Received date: 2003-08-20

equipped with the quasi-norm $|u|_p = \{\int_0^1 p(s)u^2(s)ds\}^{\frac{1}{2}}$. We also need the Sobolev space H_0^2 . The norm of H_0^2 is denoted by $\|\cdot\| : \|u\| = \{\int_0^1 |u''(s)|^2 ds\}^{\frac{1}{2}}$, and H_0^2 is the completion of $C_0^{\infty}(0,1)$ with respect to this norm.

Our main results are:

Theorem A Let L_p^2 be the weighted L^2 -space. Then

(1) H_0^2 is continuously embedded into L_p^2 if and only if

$$s^3 \int_s^{1-s} p(t) dt$$
 is bounded as $s \to 0$. (1.2)

(2) H_0^2 is compactly embedded into L_p^2 if and only if

$$\lim_{s \to 0} s^3 \int_{s}^{1-s} p(t) dt = 0.$$
 (1.3)

Let

$$\lambda = \inf_{u \in H_0^2} \frac{\int_0^1 |u''(t)|^2 dt}{\int_0^1 p(t)u^2(t)dt}.$$
 (1.4)

As a consequence of Theorem A, $\lambda > 0$ is achieved if (1.3) holds.

Theorem B Assume that (P) and (F) hold. Assume moreover that either

$$f_0^+ < \lambda < f_\infty^- \le f_\infty^+ \le +\infty \tag{1.5}$$

οr

$$f_{\infty}^+ < \lambda < f_0^- \le f_0^+ < +\infty.$$
 (1.6)

Then Problem (1.1) has a positive classical solution.

In the following the variational method is used. Define f(t) = 0, as $t \le 0$. Let F be the primitive function of f, $F(t) = \int_0^t f(s) ds$. Define a functional I on H_0^2

$$I(u) = \frac{1}{2} \int_0^1 |u''(t)|^2 dt - \int_0^1 p(t) F(u(t)) dt.$$

I is well-defined on H_0^2 and C^1 -continuous. A sequence $\{u_n\} \subset H_0^2$ such that $I(u_n) \to c$ as $n \to \infty$, where c is a constant, and $I'(u_n) \to 0$ in H_0^{-2} will be called a Palais-Smale sequence for the functional I. We say that a sequence $\{u_n\} \subset H_0^2$ satisfies the Palais-Smale condition (P.S condition for short) if it is a Palais-Smale sequence and is relatively compact. Any critical point u of the functional I is a weak solution of equation (1.1)

$$\int_0^1 u''(t)\varphi''(t)\mathrm{d}t - \int_0^1 p(t)f(u(t))\varphi(t)\mathrm{d}t = 0 , \forall \varphi \in H_0^2.$$
 (1.7)

It is easy to prove that such a weak solution is a positive classical solution of (1.1).

This paper is organized as follows . In Section 2, we prove the embedding Theorem A. In Section 3, we prove the existence Theorem B under the assumption $f_{\infty}^+ < +\infty$. In Section 4, we

2. Proof of Theorem A

In this section we prove the embedding Theorem A. To simplify the presentation, we assume that p has only a unique singular point t = 0, $p \in C(0, 1]$. It is easy to see

$$|u'(t)|^2 = \left(\int_0^t u''(s) ds\right)^2 \le t \int_0^t |u''(s)|^2 ds \le t ||u||^2, \tag{2.1}$$

$$u^{2}(t) = \left(\int_{0}^{t} u'(s) ds\right)^{2} \le t \int_{0}^{t} |u'(s)|^{2} ds \le t \int_{0}^{t} s ||u||^{2} ds \le \frac{1}{2} t^{3} ||u||^{2},$$
 (2.2)

$$u(t) = t \int_0^1 u'(\theta t) d\theta.$$
 (2.3)

By integration by parts, we have

$$\int_0^1 p(t)u^2(t)dt = \left[-u^2(t)\int_t^1 p(t)ds\right]_0^1 + 2\int_0^1 u'(t)u(t)\left(\int_t^1 p(s)ds\right)dt. \tag{2.4}$$

From (2.1), (2.2) and $t^3 \int_t^1 p(s) ds < +\infty$, we have the first term of (2.4) $I_1 \le c_1 ||u||^2$. On the second term of the (2.4), we have

$$\begin{split} I_2 &\leq c_2 \int_0^1 |\frac{u(t)}{t^2}||\frac{u'(t)}{t}| \mathrm{d}t \\ &\leq c_2 \int_0^1 |\frac{\int_0^1 u'(\theta t) \mathrm{d}\theta}{t}||\frac{u'(t)}{t}| \mathrm{d}t \\ &\leq c_2 \{\int_0^1 |\frac{\int_0^1 u'(\theta t) \mathrm{d}\theta}{t}||^2 \mathrm{d}t\}^{\frac{1}{2}} \{\int_0^1 |\frac{u'(t)}{t}||^2 \mathrm{d}t\}^{\frac{1}{2}} \\ &\leq c_2 \int_0^1 \{\int_0^1 |u''(\theta t)\theta|^2 \mathrm{d}t\}^{\frac{1}{2}} \mathrm{d}\theta \{\int_0^1 |u''(t)|^2 \mathrm{d}t\}^{\frac{1}{2}} \\ &\leq c_2 \int_0^1 \{\int_0^1 |u''(\theta t)|^2 \theta \mathrm{d}t\}^{\frac{1}{2}} \mathrm{d}\theta \{\int_0^1 |u''(t)|^2 \mathrm{d}t\}^{\frac{1}{2}} \\ &\leq c_2 ||u||^2. \end{split}$$

Here we have used the Hardy inequality

$$\int_0^{+\infty} \left| \frac{u(t)}{t} \right|^p \mathrm{d}t \le \int_0^{+\infty} |u'(t)|^p \mathrm{d}t , \text{ provided } u(0) = 0.$$

Hence we have the continuous embedding $H_0^2 \hookrightarrow L_p^2$, provided the quantity $t^3 \int_t^1 p(s) ds < +\infty$ keeps bounded. Now suppose that $t^3 \int_t^1 p(s) ds \to 0$, as $t \to 0$. We are going to show that this embedding is compact. Let $\{u_n\}$ be a bounded subset of H_0^2 . We can assume that $\{u_n\}$ uniformly converges to a function u in $C^1[0,1]$. We have

$$\int_{0}^{1} p(t)|u_{n}(t) - u(t)|^{2} dt$$

$$= \lim_{t \to 0} |u_{n} - u|^{2} \int_{t}^{1} p(s) ds + 2 \int_{0}^{1} p(t)(u_{n}(t) - u(t))(u'_{n}(t) - u'(t))(\int_{t}^{1} p(s) ds) dt. \quad (2.5)$$

By (2.2) we have that the first term of the right hand of (2.5) is 0. On the other hand, by $\lim_{t\to 0} t^3 \int_t^1 p(s) ds = 0, \forall \varepsilon > 0, \exists \delta > 0$, as $0 < t < \delta, 0 < t^3 \int_t^1 p(s) ds < \varepsilon$. So the second term of the right hand of (2.5) is

$$2|\int_{0}^{1} (u_{n}(t) - u(t))(u'_{n}(t) - u'(t))(\int_{t}^{1} p(s)ds)dt|$$

$$\leq 2(\int_{0}^{\delta} + \int_{\delta}^{1})|u'_{n}(t) - u'(t)||u_{n}(t) - u(t)|(\int_{t}^{1} p(s)ds)dt.$$
(2.6)

It is easy to see that

$$\int_{0}^{\delta} |u'_{n}(t) - u'(t)| |u_{n}(t) - u(t)| \left(\int_{t}^{1} p(s) ds\right) dt \\
= \int_{0}^{\delta} \left|\frac{u'_{n}(t) - u'(t)}{t}\right| \left|\frac{u_{n}(t) - u(t)}{t^{2}}\right| \left(t^{3} \int_{t}^{1} p(s) ds\right) dt \\
\leq \varepsilon \int_{0}^{\delta} \left|\frac{u'_{n}(t) - u'(t)}{t}\right| \left|\frac{u_{n}(t) - u(t)}{t^{2}}\right| dt \\
\leq \varepsilon \int_{0}^{\delta} \left|\frac{u'_{n}(t) - u'(t)}{t}\right| \left|\frac{\int_{0}^{1} (u'_{n}(\theta t) - u'(\theta t)) d\theta}{t}\right| dt \\
\leq \varepsilon \left\{\int_{0}^{\delta} \left|\frac{u'_{n}(t) - u'(t)}{t}\right|^{2} dt\right\}^{\frac{1}{2}} \left\{\int_{0}^{\delta} \left|\frac{\int_{0}^{1} (u'_{n}(\theta t) - u'(\theta t)) d\theta}{t}\right|^{2} dt\right\}^{\frac{1}{2}} \\
\leq \varepsilon \left\{\int_{0}^{\delta} |u''_{n}(t) - u''(t)|^{2} dt\right\}^{\frac{1}{2}} \left\{\int_{0}^{\delta} \left|\int_{0}^{1} (u''_{n}(\theta t) - u''(\theta t)) \theta d\theta\right|^{2} dt\right\}^{\frac{1}{2}} \\
\leq \varepsilon \left\{\int_{0}^{\delta} |u''_{n}(t) - u''(t)|^{2} dt\right\}^{\frac{1}{2}} \left\{\int_{0}^{\delta} \left|\int_{0}^{1} |(u''_{n}(\theta t) - u''(\theta t))^{2} \theta dt\right\}^{\frac{1}{2}} d\theta \\
= \varepsilon ||u_{n} - u||^{2}. \tag{2.7}$$

Since $\int_t^1 p(s) ds$ is bounded on $[\delta, 1]$, say $\int_t^1 p(s) ds < C_{\varepsilon}$, so we have

$$\int_{\delta}^{1} |u'_{n}(t) - u'(t)| |u_{n}(t) - u(t)| \left(\int_{t}^{1} p(s) ds \right) dt \le C_{\varepsilon} \int_{\delta}^{1} |u'_{n}(t) - u'(t)| |u_{n}(t) - u(t)| dt
\le C_{\varepsilon} ||u_{n} - u||_{c[0,1]} ||u'_{n} - u'||_{c[0,1]}.$$
(2.8)

From (2.7) and (2.8) we have

$$\int_{0}^{1} p(t)|u_{n}(t) - u(t)|^{2} dt \le \mu(\varepsilon) + C_{\varepsilon} ||u_{n} - u||_{c[0,1]} ||u'_{n} - u'||_{c[0,1]}.$$
(2.9)

 $\mu(\varepsilon)$ denotes a small quantity which tends to zero as $\varepsilon \to 0$ and C_{ε} denotes constants dependent on ε . From (2.9), we have $\int_0^1 p(t)|u_n(t)-u(t)|^2 dt \to 0$, as $n \to \infty$. This completes the sufficient part of Theorem A.

Now suppose that H_0^2 is continuously embedded into L_p^2 . For $0 < \varepsilon < \frac{1}{2}$, define a function

 u_{ε} by

$$u_{\varepsilon}(t) = \begin{cases} \frac{2}{\sqrt{\varepsilon}} t^{2}, & 0 \leq t \leq \frac{\varepsilon}{2}, \\ -\frac{2}{\sqrt{\varepsilon}} (t - \varepsilon)^{2} + \varepsilon^{\frac{3}{2}}, & \frac{\varepsilon}{2} \leq t \leq \varepsilon, \\ \varepsilon^{\frac{3}{2}}, & \varepsilon \leq t \leq 1 - \varepsilon, \\ -\frac{2}{\sqrt{\varepsilon}} (t - 1 + \varepsilon)^{2} + \varepsilon^{\frac{3}{2}}, & 1 - \varepsilon \leq t \leq 1 - \frac{\varepsilon}{2}, \\ \frac{2}{\sqrt{\varepsilon}} (t - 1)^{2}, & 1 - \frac{\varepsilon}{2} \leq t \leq 1. \end{cases}$$

$$(2.10)$$

Then $u_{\varepsilon}(t) \in H_0^2$ and $||u_{\varepsilon}||^2 = 32$. Suppose that H_0^2 is continuously embedded into L_p^2 , then we get

$$c \ge \int_0^1 p(t)u_{\varepsilon}^2(t)dt \ge \int_{\varepsilon}^{1-\varepsilon} p(t)u_{\varepsilon}^2(t)dt = \varepsilon^3 \int_{\varepsilon}^{1-\varepsilon} p(t)dt. \tag{2.11}$$

Suppose now that H_0^2 is compactly embedded into L_p^2 . Since the function u_{ε} defined by (2.10) uniformly converges to zero, hence by compactness u_{ε} converges to zero in L_p^2 . And from (2.11) we have

$$arepsilon^3 \int_{arepsilon}^{1-arepsilon} p(t) \mathrm{d}t \leq \int_0^1 p(t) u_{arepsilon}^2(t) \mathrm{d}t o 0 \; , \; ext{as } arepsilon o 0.$$

The proof of Theorem A is completed.

Let G(t, s) be the Green function to (1.1) denoted by

$$G(t,s) = \begin{cases} \frac{1}{6}(1-t)^2 s^2 [(t-s) + 2(1-s)t], & 0 \le s \le t \le 1, \\ \frac{1}{6}t^2 (1-s)^2 [(s-t) + 2(1-t)s], & 0 \le t \le s \le 1. \end{cases}$$

Lemma 2.1 Let

$$\lambda = \inf_{u \in H_0^2} \frac{\int_0^1 |u''(t)|^2 dt}{\int_0^1 p(t)u^2(t)dt}.$$

There exists a function $\varphi \in H_0^2$ such that $\varphi > 0$, $\forall t \in (0,1)$, $\frac{\int_0^1 |\varphi''(t)|^2 dt}{\int_0^1 p(t)\varphi^2(t)dt} = \lambda$, and φ satisfies

$$\begin{cases} \varphi^{(4)}(t) = \lambda p(t)\varphi(t), & t \in (0,1), \\ \varphi(0) = \varphi(1) = 0, \\ \varphi'(0) = \varphi'(1) = 0. \end{cases}$$
 (2.12)

Proof The existence of a minimizer φ is a consequence of Theorem A (2), and φ satisfies the weak form of (2.12)

$$\int_0^1 \varphi''(t)v''t)dt = \lambda \int_0^1 p(t)\varphi(t)v(t)dt, \quad \forall v \in H_0^2.$$
(2.13)

By the regularity theory (2.12) follows from (2.13). It is obviously φ is also the solution of the integral equation

$$\varphi(t) = \lambda \int_0^1 G(t, s) p(s) \varphi(s) ds.$$

Let w be the solution of the following equation

$$\begin{cases} w^{(4)}(t) = \lambda p(t)|\varphi(t)|, & t \in (0,1), \\ w(0) = w(1) = 0, \\ w'(0) = w'(1) = 0. \end{cases}$$
(2.14)

Then we have

$$w(t) = \lambda \int_0^1 G(t,s) p(s) |arphi(s)| \mathrm{d} s \geq |\lambda \int_0^1 G(t,s) p(s) arphi(s) \mathrm{d} s| = |arphi(t)|.$$

On the other hand, let $\mu = \inf_{u \in H_0^2} \frac{\int_0^1 |u''(t)|^2 dt}{\int_0^1 p(t)(u^+)^2(t) dt}$. By Theorem A, there exists $u \in H_0^2$, which satisfies

$$\int_0^1 u''(t)v''(t)dt = \mu \int_0^1 p(t)u^+(t)v(t)dt , \forall v \in H_0^2.$$
 (2.15)

It is obvious that $\int_0^1 p(t)(u^+)^2(t)dt \neq 0$ and $\mu \geq \lambda$. Similarly, we have

$$u(t) = \int_0^1 G(t,s)p(s)u^+(s)ds$$

$$\geq \frac{1}{3}(1-t)^3t \int_0^t s^2p(s)u^+(s)ds + \frac{1}{3}t^2 \int_t^1 s(1-s)^3p(s)u^+(s)ds > 0.$$
 (2.16)

We can prove $\mu = \lambda$. In fact we have

$$\mu \int_0^1 p(t)u(t)w(t)dt \le \mu \int_0^1 p(t)u^+(t)w(t)dt = \int_0^1 u''(t)w''(t)dt$$
$$= \lambda \int_0^1 p(t)u(t)|\varphi(t)|dt \le \lambda \int_0^1 p(t)u(t)w(t)dt.$$

So we have $\mu \leq \lambda$, and $\mu = \lambda$. This means that the existence λ is achieved at a nonnegative function φ . In turn (2.16) implies that $\varphi > 0, \forall t \in (0,1)$.

3. Proof of Theorem B for the case $f_{\infty}^+ < +\infty$

In this section, we will prove Theorem B in the case $f_{\infty}^+ < +\infty$ by variational method, especially the Mountain Pass Lemma. Firstly, we verify the P.S condition.

Lemma 3.1 Suppose (P), (F) hold and $f_{\infty}^+ < +\infty$, $f_0^+ < +\infty$. I is well-defined on H_0^2 and C^1 -continuous. The Fréchet derivative of I has a form

$$\langle I'(u), \varphi \rangle = \int_0^1 u''(t)\varphi''(t)dt - \int_0^1 p(t)f(u(t))\varphi(t)dt, \ \forall \varphi \in H_0^2.$$
 (3.1)

Proof Since $f_{\infty}^+ < +\infty$ and $f_0^+ < +\infty$, we have a constant c such that $0 \le f(t) \le c|t|$, $0 \le F(t) \le ct^2$. By theorem A, I is well-defined on H_0^2 . For $\varphi \in H_0^2$, we have

$$|I(u + \varphi) - I(u) - \int_{0}^{1} u'' \varphi'' dt + \int_{0}^{1} p(t) f(u(t)) \varphi(t) dt|$$

$$\leq \frac{1}{2} ||\varphi||^{2} + |\int_{0}^{1} p(t) f(u) \varphi dt - \int_{0}^{1} p(t) (F(u + \varphi) - F(u)) dt|$$

$$\leq \frac{1}{2} ||\varphi||^{2} + \int_{0}^{1} p(t) |f(u + \theta \varphi) - f(u)||\varphi| dt$$

$$\leq \frac{1}{2} ||\varphi||^{2} + |f(u + \theta \varphi) - f(u)|_{p} ||\varphi||_{p}$$

$$\leq \frac{1}{2} ||\varphi||^{2} + c|f(u + \theta \varphi) - f(u)|_{p} ||\varphi||_{p},$$
(3.2)

where $0 < \theta(t) < 1$. Since $|f(u + \theta\varphi)| \le c(|u| + |\varphi|)$ and $\int_0^1 p(t)(|u| + |\varphi|)|\varphi| dt < +\infty$, by the Lebesque dominant theorem $|f(u + \theta\varphi) - f(u)|_p$ tends to zero as $||\varphi|| \to 0$. So Lemma 3.1 is true.

Lemma 3.2 Suppose (P), (F) hold and either $f_0^+ < \lambda < f_\infty^- \le f_\infty^+ < +\infty$ or $f_\infty^+ < \lambda < f_0^- \le f_0^+ < +\infty$, then I satisfies the P.S condition.

Proof Let $\{u_n\}$ be a P.S sequence, then

$$\langle I'(u_n), \varphi \rangle = \int_0^1 u_n'' \varphi'' dt - \int_0^1 p(t) f(u_n) \varphi dt = o(\|\varphi\|), \ \forall \varphi \in H_0^2.$$
 (3.3)

If $|u_n^+|_p$ is bounded, where $u^+ = \max(u,0)$, then taking $\varphi = u_n$ in (3.3) and noticing that $|f(u_n)| \le cu_n^+$, we have a bound of $||u_n||$. Let $u_n \to u$ in H_0^2 . By the embedding theorem A, we can assume that $u_n \to u$ in L_p^2 , hence $f(u_n) \to f(u)$ in L_p^2 . It follows from (3.3) that $u_n \to u$ in H_0^2 .

Now we prove that any P.S sequence $\{u_n\}$ is bound in L_p^2 by a contradiction argument. Otherwise suppose $|u_n^+|_p \to +\infty$. Set $v_n = \frac{u_n}{|u_n^+|_p}$, $|v_n^+|_p = 1$. Taking $\varphi = u_n$ in (3.3), we have that $||v_n||$ is bounded. Assume that $v_n \to v$ in H_0^2 , $V_n \to v$ in

$$\int_0^1 v_n'' \varphi'' dt = \int_0^1 p(t) \frac{f(u_n)}{|u_n^+|_p} \varphi dt + \frac{o(\|\varphi\|)}{|u_n^+|_p}.$$
 (3.4)

We firstly consider the case $f_0^+ < \lambda < f_\infty^- \le f_\infty^+ < +\infty$. Let $\varepsilon > 0$ and $f_\infty^- - \varepsilon > \lambda$, and choose a constant M > 0 such that $f(t) \ge (f_\infty^- - \varepsilon)t$, $\forall t > M$. Let $\varphi \in H_0^2$ and $\varphi \ge 0$. From (3.4), we have

$$\int_{0}^{1} v_{n}'' \varphi'' dt = \int_{0}^{1} p(t) \frac{f(|u_{n}^{+}|_{p}v_{n})}{|u_{n}^{+}|_{p}} \varphi dt + o(1)$$

$$= \int_{|u_{n}^{+}|_{p}v_{n} < M} p(t) \frac{f(|u_{n}^{+}|_{p}v_{n})}{|u_{n}^{+}|_{p}} \varphi dt + \int_{|u_{n}^{+}|_{p}v_{n} \ge M} p(t) \frac{f(|u_{n}^{+}|_{p}v_{n})}{|u_{n}^{+}|_{p}} \varphi dt + o(1)$$

$$\ge \int_{|u_{n}^{+}|_{p}v_{n} < M} p(t) \frac{f(|u_{n}^{+}|_{p}v_{n})}{|u_{n}^{+}|_{p}} \varphi dt + (f_{\infty}^{-} - \varepsilon) \int_{|u_{n}^{+}|_{p}v_{n} \ge M} p(t) v_{n}^{+} \varphi dt + o(1)$$

$$\ge (f_{\infty}^{-} - \varepsilon) \int_{0}^{1} p(t) v_{n}^{+} \varphi dt - c \int_{0 \le |u_{n}^{+}|_{p}v_{n} \le M} p(t) v_{n}^{+} \varphi dt + o(1). \tag{3.5}$$

Let $n \to \infty$, we have

$$\int_0^1 v'' \varphi'' dt \ge (f_\infty^- - \varepsilon) \int_0^1 p(t) v^+ \varphi dt , \ \forall \varphi \in H_0^2 , \ \varphi \ge 0.$$
 (3.6)

In particular, let φ be the minimizer in Lemma 2.1, then we have

$$\lambda \int_0^1 p(t)v^+ \varphi dt \ge \lambda \int_0^1 p(t)v\varphi dt = \int_0^1 v'' \varphi'' dt \ge (f_\infty^- - \varepsilon) \int_0^1 p(t)v^+ \varphi dt, \tag{3.7}$$

which implies that $pv^+ \equiv 0$. Hence $|v^+|_p = 0$, a contradiction.

Suppose now that $f_{\infty}^+ < \lambda < f_0^- \le f_0^+ < +\infty$. Let $\varepsilon > 0$ and $f_{\infty}^+ + \varepsilon < \lambda$. Similar to (3.5), we have

$$\int_0^1 v_n'' \varphi'' dt \leq (f_\infty^+ + \varepsilon) \int_0^1 p(t) v_n^+ \varphi dt + c \int_{0 \leq |u_n^+|_p v_n \leq M} p(t) v_n^+ \varphi dt + o(1),$$

and as $n \to \infty$ we have

$$\int_0^1 v'' \varphi'' dt \le (f_\infty^+ + \varepsilon) \int_0^1 p(t) v^+ \varphi dt , \forall \varphi \in H_0^2 , \varphi \ge 0.$$
 (3.8)

Taking $\varphi = v^+$ in (3.8), by the definition of λ we have

$$\lambda \int_0^1 p(t)(v^+)^2 dt \le \int_0^1 |(v^+)''|^2 dt \le (f_\infty^+ + \varepsilon) \int_0^1 p(t)(v^+)^2 dt.$$

Since $\int_0^1 p(t)(v^+)^2 dt = 1$, we arrive at a contradiction. Hence I satisfies the P.S condition.

Proof of Theorem B The case $f_{\infty}^+ < \lambda < f_0^- \le f_0^+ < +\infty$. We prove that in this case the functional I is coercive, that is $I(u) \to \infty$ as $||u|| \to \infty$. We use a contradiction argument. Suppose that there is a sequence $\{u_n\} \subset H_0^2$ such that $||u_n|| \to \infty$, but $I(u_n) \le c < +\infty$. Set $v_n = \frac{u_n}{|u_n^+|_n}$, then we have $|v_n^+|_p = 1$ and

$$c \geq I(u_n) = rac{1}{2} \int_0^1 |u_n''|^2 \mathrm{d}t - \int_0^1 p(t) F(u_n(t)) \mathrm{d}t.$$

Dividing by $|u_n^+|_p^2$, this gives

$$\int_0^1 p(t) \frac{F(u_n(t))}{|u_n^+|_p^2} dt \ge o(1) + \frac{1}{2}\lambda.$$

Let $\varepsilon > 0$ and $f_{\infty}^+ + \varepsilon < \lambda$, and choose a constant M > 0 such that $F(t) \leq \frac{1}{2}(f_{\infty}^+ + \varepsilon)t^2$, $\forall t > M$. Hence we have

$$\int_0^1 p(t) \frac{F(u_n(t))}{|u_n^+|_p^2} dt \le \frac{1}{2} (f_\infty^+ + \varepsilon) \int_0^1 p(t) (v_n^+)^2 dt + c \int_{0 \le |u_n^+|_p v_n \le M} p(t) (v_n^+)^2 dt.$$

Assuming $v_n \to v$ in L_p^2 , we have $\lambda \leq f_{\infty}^+ + \varepsilon$, a contradiction.

I is bounded from below and satisfies the P.S condition, hence I has a minimizer u. We need only to show that the trivial solution $u \equiv 0$ is not a local minimizer, then u_0 is a nontrivial classical positive solution. Let φ be the eigenfunction in Lemma 2.1, $\int_0^1 |\varphi''|^2 dt = \lambda \int_0^1 p \varphi^2 dt$. For $\sigma > 0$ very small, we have

$$I(\sigma\varphi) = \frac{1}{2}\sigma^2 \int_0^1 |\varphi''|^2 \mathrm{d}t - \int_0^1 pF(\sigma\varphi) \mathrm{d}t.$$

Let $\varepsilon > 0$ and $f_0^- - \varepsilon > \lambda$, and choose a constant $\sigma > 0$ such that $F(t) \ge \frac{1}{2}(f_0^- - \varepsilon)t^2$, $\forall 0 < t < \sigma$.

Therefore, we have

$$\begin{split} I(\sigma\varphi) &\leq \frac{1}{2}\sigma^2 \int_0^1 |\varphi''|^2 \mathrm{d}t - \frac{1}{2}(f_0^- - \varepsilon)\sigma^2 \int_0^1 p(t)\varphi^2 \mathrm{d}t \\ &= \frac{1}{2}\sigma^2 \|\varphi\|^2 - \frac{1}{2\lambda}(f_0^- - \varepsilon)\sigma^2 \|\varphi\|^2 \\ &= \frac{1}{2}\sigma^2 \|\varphi\|^2 (1 - \frac{f_0^- - \varepsilon}{\lambda}) < 0. \end{split}$$

Proof of Theorem B $f_0^+ < \lambda < f_\infty^- \le f_\infty^+ < +\infty$. In this case we use the mountain pass lemma. We need to verify the following:

- (a) There are constants α , $\rho > 0$ such that $I(u) \ge \alpha$, $\forall u$, $||u|| = \rho$.
- (b) There is an element e such that $I(e) \leq 0$ and $||e|| > \rho$.

Take $\varepsilon > 0,\, f_0^+ + \varepsilon < \lambda.$ For $\rho \ll 1$, $\|u\| = \rho$, we have

$$I(u) = \frac{1}{2} \int_0^1 (u'')^2 dt - \int_0^1 p(t) F(u) dt$$

$$\geq \frac{1}{2} \int_0^1 (u'')^2 dt - \frac{1}{2} (f_0^+ + \varepsilon) \int_0^1 p(t) u^2 dt$$

$$\geq \frac{1}{2} (1 - \frac{f_0^+ + \varepsilon}{\lambda}) \int_0^1 (u'')^2 dt$$

$$= \frac{1}{2} (1 - \frac{f_0^+ + \varepsilon}{\lambda}) \rho^2 = \alpha > 0.$$

On the other hand, let φ be the eigenfunction in Lemma 2.1. Let $\varepsilon > 0$ and $f_{\infty}^- - \varepsilon > \lambda$, $F(t) \geq \frac{1}{2}(f_{\infty}^- - \varepsilon)t^2 - C$, $\forall t > 0$, then we have

$$\begin{split} I(T\varphi) &= \frac{1}{2}T^2 \int_0^1 (\varphi'')^2 \mathrm{d}t - \int_0^1 p(t)F(T\varphi) \mathrm{d}t \\ &\leq \frac{1}{2}T^2 \int_0^1 (\varphi'')^2 \mathrm{d}t - \int_\delta^{1-\delta} p(t)F(T\varphi) \mathrm{d}t \\ &\leq \frac{1}{2}T^2 \|\varphi\|^2 - \frac{1}{2}T^2 (f_\infty^- - \varepsilon) \int_\delta^{1-\delta} p(t)\varphi^2 \mathrm{d}t + C \int_\delta^{1-\delta} p(t) \mathrm{d}t. \end{split}$$

We can choose δ such that $\|\varphi\|^2 - (f_{\infty}^- - \varepsilon) \int_{\delta}^{1-\delta} p(t) \varphi^2 dt < 0$, and T large enogh such that $\frac{1}{2} T^2 [\|\varphi\|^p - (f_{\infty}^- - \varepsilon) \int_{\delta}^{1-\delta} p(t) \varphi^p dt] + C \int_{\delta}^{1-\delta} p(t) dt < 0$.

Now by the mountain pass lemma, we define

$$c = \inf_{\gamma \in \Gamma} \sup_{t \in [0,1]} I(\gamma(t)),$$

where

$$\Gamma = \{\gamma | \gamma \in C([0,1], H_0^2), \gamma(0) = \theta, \gamma(1) = T\varphi\},$$

 $c \ge \alpha$ is a critical value of I, and I has a critical point u with I(u) = c. u is a classical positive solution of our problem (1.1).

4. Proof of Theorem B for the case $f_{\infty}^+ = +\infty$

In this section we deal with the case $f_0^+ < \lambda < f_\infty^- \le f_\infty^+ = \infty$. For $\delta > 0$. Define

$$\lambda_{\delta} = \inf_{\mathbf{u} \in H_0^2} \frac{\int_0^1 |u''(t)|^2 \mathrm{d}t}{\int_{\delta}^{1-\delta} p(t) u^2(t) \mathrm{d}t},$$

then $\lambda_{\delta} \to \lambda$ as $\delta \to 0$. There is a function $\varphi_{\delta} \in H_0^2$ such that $\varphi_{\delta}(t) > 0, t \in (0,1), \lambda_{\delta} = \frac{\int_0^1 |\varphi_{\delta}''(t)|^2 \mathrm{d}t}{\int_{\delta}^{1-\delta} p(t)\varphi_{\delta}^2(t) \mathrm{d}t}$ and $\int_0^1 \varphi_{\delta}''(t)v''(t) \mathrm{d}t = \lambda_{\delta} \int_{\delta}^{1-\delta} p(t)\varphi_{\delta}(t)v(t) \mathrm{d}t, v \in H_0^2$. The existence of such λ_{δ} and φ_{δ} is obvious. To show that $\lambda_{\delta} \to \lambda$, let φ be the eigenfunction in Lemma 2.2. We have

$$\lambda \le \lambda_{\delta} \le \frac{\int_{0}^{1} |\varphi''(t)|^{2} dt}{\int_{\delta}^{1-\delta} p(t)\varphi^{2}(t) dt} \to \frac{\int_{0}^{1} |\varphi''(t)|^{2} dt}{\int_{0}^{1} p(t)\varphi^{2}(t) dt} = \lambda$$

as $\delta \to 0$. Choose δ so small that $\lambda_{\delta} < f_{\infty}^-$ and $\exists t \in [\delta, 1 - \delta], \ p(t) \neq 0$. Choose M, Λ such that $\lambda_{\delta} < \Lambda < f_{\infty}^-$. $f(t) \geq \Lambda t$ when $t \geq \delta^2 (1 - \delta) M$. We define a function

$$g(t) = \begin{cases} \Lambda(t-M) + f(M), & t \ge M, \\ f(t), & t \le M. \end{cases}$$

It is easy to see $g(t) \ge \Lambda t$ as $t \ge \delta^2 (1 - \delta) M$. For this truncated function, by the result in Section 3 we have a solution u satisfing

$$\begin{cases} u^{(4)}(t) = p(t)g(u(t)), & t \in (0,1), \\ u(0) = u(1) = 0, \\ u'(0) = u'(1) = 0, \end{cases}$$
(4.1)

or the weak form

$$\int_0^1 u''(t)\varphi''(t)\mathrm{d}t = \int_0^1 p(t)g(u(t))\varphi(t)\mathrm{d}t , \ \forall \varphi \in H_0^2.$$

We prove that the solution u of (4.1) satisfies $0 \le u \le M$ and hence is a solution of (1.1). Suppose that this is not true, then $\|u\|_{C[0,1]} > M$. By the following Lemma 4.1, we have that $u(t) \ge \delta^2 M$ for $t \in [\delta, 1-\delta]$ and $g(u(t)) \ge \Lambda u(t)$, for $t \in [\delta, 1-\delta]$. Now for every $v \in H_0^2$, $v \ge 0$ we have

$$\int_0^1 u''(t)v''(t)dt \ge \int_\delta^{1-\delta} p(t)g(u(t))v(t)dt \ge \Lambda \int_\delta^{1-\delta} p(t)u(t)v(t)dt. \tag{4.2}$$

In particular, take $v = \varphi_{\delta}$, the minimizer for the eigenvalue λ_{δ} , then

$$\lambda_\delta \int_\delta^{1-\delta} p(t) u(t) arphi_\delta(t) \mathrm{d}t = \int_0^1 u''(t) arphi_\delta''(t) \mathrm{d}t \geq \Lambda \int_\delta^{1-\delta} p(t) u(t) arphi_\delta(t) \mathrm{d}t,$$

which implies that $\int_{\delta}^{1-\delta} p(t)u(t)\varphi_{\delta}(t)dt = 0$ and $p(t)u(t)\varphi_{\delta}(t) \equiv 0$ in $[\delta, 1-\delta]$. A contradiction. We have proved that $\max u \leq M$ and u is the desired solution for our original problem.

Lemma 4.1 Suppose $u \in C^2[0,1] \cap C^4(0,1)$ and $u^{(4)}(t) \geq 0$. Then $u(t) \geq \delta^2 ||u||_{C[0,1]}$ for $t \in [\delta, 1-\delta]$.

Proof Let $u(a) = M = ||u||_{C[0,1]}$, then u'(a) = 0. For simplicity we assume that $\delta < a < 1 - \delta$. The other case could be treated in the same way.

Let φ be the solution of the equation

$$\begin{cases} \varphi^{(4)}(t) = 0, & t \in (0,1), \\ \varphi(0) = \varphi'(0) = 0, \varphi(a) = M, \varphi'(a) = 0. \end{cases}$$

The explicit form of φ is

$$\varphi(t) = \frac{M}{a^3}t^2(3a - 2t).$$

Let $w(t) = u(t) - \varphi(t)$, then

$$\left\{ \begin{array}{l} w^{(4)}(t) \geq 0, \ t \in (0,1), \\ w(0) = w'(0) = 0, w(a) = w'(a) = 0. \end{array} \right.$$

By the Maximum Principle (or the form for the Green function) we have $w \ge 0$ in [0,a]. In particular

$$u(t) \ge \varphi(t) \ge \delta^2 M$$
, for $\delta \le t \le a$.

Similary, $u(t) \ge \delta^2 M$, for $a \le t \le 1 - \delta$.

References:

- [1] ZHAO Zeng-qin. Positive solutions of boundary value problems for nonlinear singular differential equations [J]. Acta Math. Sinica, 2000, 43: 179–188. (in Chinese)
- [2] LIU Jia-quan. Positive solutions for singular second-order boundary value problems [J]. Qufu Shifan Daxue Xuebao Ziran Kexue Ban, 2002, 28: 1-7. (in Chinese)
- [3] CHONG K C. Infinite Dimensional Theory and Multiple Solution Problems [M]. Birkhäuser Boston, 1993.
- [4] HARDY G H, LITTLEWOOD J E, PÓLYA G. Inequalities [M]. 2d ed. Cambridge, at the University Press, 1952.

一类四阶奇异边值问题的正解

刘嘉荃 ¹, 熊明 ², 曾平安 ¹ (1. 北京大学数学学院, 北京 100871; 2. 大理学院数学系, 云南 大理 671000)

梅要: 本文讨论了如下四阶奇异边值问题正解的存在性

$$\left\{ \begin{array}{l} u^{(4)} = p(t)f(u(t)), & t \in (0,1), \\ u(0) = u(1) = 0, \\ u'(0) = u'(1) = 0, \end{array} \right.$$

其中 p 可能在 t=0,1 都有奇点.

关键词: 奇异边值问题; 正解; 变分法.