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1. Introduction

We consider the following problem

u®(t) = p(t) f(u(t)), te(0,1)
w(0) = u(1) =0, (1.1)
w'(0) =v'(1) =0,
where p € C(0,1) and may be singular at t = 0 or t = 1. We are looking for positive classical
solution for(1.1). A function u is called a classical solution of (1.1), if u € C[0,1](C*(0,1) and
satisfies both the equation and the boundary value condition. The basic assumption on p is
(P) p>0,peC(0,1),3t € (0,1),p(t) > 0 and lim, o 53 [/ ~° p(t)dt = 0.
For the nonlinear function f we assume:
(F) f>0and f € C[0,+00) and we denote

fy =timo?D, g =TT,
fa=tim D, 1t =T L.

In the following we will use the weighted L2-space

1
Lf, = {ul/(; p(s)u?(s)ds < +oo0}
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equipped with the quasi-norm |ul, = { fol p(s)u%(s)ds}%. We also need the Sobolev space HZ.
The norm of HZ is denoted by || - || : [lul| = {fol |u”(s)|?ds}?, and HZ is the completion of
C$°(0,1) with respect to this norm.

Our main results are:

Theorem A Let L2 be the weighted L*-space. Then
(1) H is continuously embedded into L2 if and only if

1-s
s f p(t)dt is bounded as s — Q. (1.2)
8
(2) HE is compactly embedded into L2 if and only if

1—s
lim s° / p(t)dt = 0. (1.3)
8—0 s

Let L )
"

A= 3 . (1.4)
weH] [ p(t)u(t)dt
As a consequence of Theorem A, A > 0 is achieved if (1.3) holds.
Theorem B Assume that (P) and (F) hold . Assume moreover that either
fE<A<fa<fi<+oo (1.5)
or
<A< fy £ ff < +oo. (1.6)

Then Problem (1.1) has a positive classical solution.
In the following the variational method is used. Define f(t) = 0, as t < 0. Let F be the
primitive function of f, F(t) = fot f(s)ds. Define a functional I on HZ

1 1
Iw)=3 /0 fu"(8) Pt / p(t)F(u(t))dt.

I is well-defined on HZ and C!-continuous. A sequence {un} C HZ such that I(u,) — c as
n — 0o, where c is a constant, and I'(u,) — 0 in Hy 2 will be called a Palais-Smale sequence for
the functional 1. We say that a sequence {u,} C H? satisfies the Palais-Smale condition ( P.S
condition for short ) if it is a Palais-Smale sequence and is relatively compact. Any critical point
u of the functional I is a weak solution of equation (1.1)

1 1
/ W(£) " (£)dt — / () f@(®)p()dt = 0, Vg € B2, (1.7)
0 4]

It is easy to prove that such a weak solution is a positive classical solution of (1.1).
This paper is organized as follows . In Section 2, we prove the embedding Theorem A. In
Section 3, we prove the existence Theorem B under the assumption f¥ < +00. In Section 4, we
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deal with the case ft = +oo0.

2. Proof of Theorem A

In this section we prove the embedding Theorem A. To simplify the presentation, we assume
that p has only a unique singular point ¢t =0, p € C(0,1]. It is easy to see

u/ 2 — ¢ " s 2 ¢ ull 2 s u 2 .

WOF = ([ weps? <t [ Ws)Pds <elul? (2.1)

2 _ ¢ 13 2 ¢ ’ 2 ¢ 1 2

w0 = ([ wens? <t [ wioPas <t [ slulas < 300l (22)
u(t) = t /0 W (68)d0. 23)

By integration by parts, we have
1 1 1 1
/0 P(E)2(E)dt = [~u2(t) /t p(t)ds]} +2 /0 o (E)ut)( /t p(s)ds)dt. (2.4)

From (2.1), (2.2) and 3 f p(s)ds < +00, we have the first term of (2.4) I; < ¢||ul|®>. On the
second term of the (2.4), we have

B [ 1400
<o /01 | f u’i@t)de | Iu't(t) at
Seol [ O gy [* XD gy
<o /0 K /0 (B8 2de a6 /0 g
<e /0 ¥ /0 (0 Poaty Fae /0 ' panyd

< eoflull®.

Here we have used the Hardy inequality
oo u(t) +o0
/ l_t‘lp dt < / [u'(t)|Pdt, provided u(0) =0.
0 0

Hence we have the continuous embedding H§ — L2, provided the quantity ¢3 f: p(s)ds < +oo
keeps bounded. Now suppose that t3 ftl p(s)ds — 0, as t — 0. We are going to show that
this embedding is compact. Let {u.} be a bounded subset of HZ. We can assume that {u,}
uniformly converges to a function u in C'[0,1]. We have

1
]o p(®)lun(t) — u(t)Pdt
=il =l / i+ / P(B){un(t) — u(t))(un(t) — v (X f pls)ds)dz. (25)

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



574 ¥ o¥ B K 5 F ® 25%

By (2.2) we have that the first term of the right hand of (2.5) is 0. On the other hand, by
lim;_o t3 ftl p(s)ds =0,Ve > 0,36 >0,as0<t <4,0< ¢ ftl p(s)ds < e. So the second term
of the right hand of (2.5) is

21/ un(t) — w(t)) (ad, (£) — o t))(/ 5)ds)dt|

<2 / + /5 Y (8) — o (&) lun(2) — u(®)I( / p(s)ds)dt. (2.6)

It is easy to see that

/]u ) — &/ (®)l[un(t) — ult |(/ 5)ds)dt

= [ @Oy [ g
SE‘/; ‘ n(t ;ul(t)”un(t)t;u(t)mt

<. /“ ,u;(t) — (1)) Jo (4n®) - w00,

o [T gy [ 0 00D

t

<ef / ! (2) — o ()28} 3 { / / "(08) — ' (62))6d0|2dt}
<s{/ il (8) - u” th}z/{/| 1 (64) — " (0)20de} a6

= g|lun — ul|? (2.7)

Since ftl p(s)ds is bounded on [§, 1], say ftl p(s)ds < C¢, so we have
1 1 1
/5 e (£) — (&) [un () — u(B)|( / p(s)ds)dt < C. /5 iy () — (&) un () — u(B)]d
< CE“un - u“C[O,l]”u:z - ulllc[0,1]~ (2'8)

From (2.7) and (2.8) we have

/0 p()lun(t) — u(t)|*dt < p(e) + Cellun — ullqo,ullup — v'llejo,uy- (2:9)

u(e) denotes a small quantity which tends to zero as ¢ — 0 and C. denotes constants
dependent on £ . From (2.9), we have fo t)|un(t) — u(t)|?dt — 0, as n — co. This completes
the sufficient part of Theorem A.

Now suppose that HZ is continuously embedded into Lg. ForO0<e< -12-, define a function
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Uug b
g 242 0<t<E
el Sty
—%(t—6)2+5%, £<t<g,
ue(t) ={ e, e<t<l-—c¢, (2.10)
—Z(t-1+e)?+et, 1-e<t<1-4,
Z(t-1)%, 1-£<t<1.

Then uc(t) € H§ and ||uc||> = 32. Suppose that H§ is continuously embedded into L2, then we
get

¢ /0 1 p()ul(t)dt > / 1_Ep(t)uﬁ(t)dt =¢ /5 o p(t)dt. (2.11)

Suppose now that HZ is compactly embedded into L2. Since the function u, defined by (2.10)
uniformly converges to zero , hence by compactness u. converges to zero in Lf;. And from (2.11)

we have - )
s / p(t)dt < / p(B)u2(t)dt — 0, ase — 0.
£ 0

The proof of Theorem A is completed.
Let G(t, s) be the Green function to (1.1) denoted by

é(l —1)%®[(t—s)+2(1-8)t), 0<s<t <,

G(t,s) =

étz(l C 2 (s—t)+2(1—1)s], 0<t<s<1.

Lemma 2.1 Let L
" t 2dt
A= ing Jo O
weHg [ p(t)u?(t)dt
Jo le"@iPat

There exists a function ¢ € HZ such that ¢ > 0, Vt € (0,1), m A, and @ satisfies
p(t)e

@ () = Ap(t)e () te(0,1),
©(0) = ¢(1) =0, (2.12)
¢'(0) =¢'(1) =0.

Proof The existence of a minimizer ¢ is a consequence of Theorem A (2) , and ¢ satisfies the
weak form of (2.12)

/0 1 ()W)t = A /0 1 p(t)p(t)v(t)dt, Yve HE. (2.13)

By the regularity theory (2.12) follows from (2.13). It is obviously ¢ is also the solution of the
integral equation

1
o) = [ Glt,9p(s)els)ds.
0
Let w be the solution of the following equation

w®(t) = Ap@t)le(t)], te€(0,1),
w(0) = w(l) =0, (2.14)

w’'(0) =w'(1) =0.
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Then we have

w) =2 [ "G, NeleNas 2 [ 6t Ip(o)ele)as] = oo

L) 24
On the other hand, let 4 = inf Jo 1" @Fdt . By Theorem A, there exists u € HZ, which

weHZ [ p(H)(u+)2(t)dt
satisfies

/1 () (t)dt = ,u/l p(t)ut(t)v(t)dt , Vv € HE. (2.15)
i) 0

1t is obvious that fol p(t)(ut)?(t)dt # 0 and p > A. Similarly, we have
1
u(t) = / G(t,s)p(s)ut(s)ds
0

> %(1 —t)3t /Ot s2p(s)ut(s)ds + %t2/ s(1 - 5)3p(s)u™t(s)ds > 0. (2.16)

t

We can prove u = A. In fact we have
1

u /0  p(tultyw(td < p /0 pe)ut (Hw(t)dt = /0 o (ty” ()t
= [ putelewiae < [ st

So we have u < A, and g = A. This means that the existence X is achieved at a nonnegative
function . In turn (2.16) implies that ¢ > 0, V¢ € (0,1).

3. Proof of Theorem B for the case f} < +oo

In this section, we will prove Theorem B in the case f} < -+oo by variational method,
especially the Mountain Pass Lemma. Firstly, we verify the P.S condition.

Lemma 3.1 Suppose (P), (F) hold and ft < +oo , fi < +oo. I is well-defined on HE and
C'-continuous. The Fréchet derivative of I has a form

<I'(u),p>= /0 u(t)e" (t)dt ~ /0 p(t)f(ut))p(t)dt , Vo € HS. (3.1)

Proof Since ff < +o0o0 and fi < +oo, we have a constant ¢ such that 0 < f(t) < c|t|,
0 < F(t) < ct?. By theorem A , I is well-defined on HZ. For ¢ € HZ, we have

I+ @) — I(u) - /0 Wt + /0 p(t)F(u(t))p(t)et]

IA

1
0

loll? + | / p(t)f(w)epdt — / p(&)(Fu + ¢) — F(w)df

IA

N DN = N = N =

loll? + /0 p(8)|f(u + 6g) — f()|pldt

IA

llell® + 1f (w+ 8) — £ (w)lplel

llell* + el f(u + 89) ~ F (W) pllell, (3-2)

IA
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1
where 0 < 6(t) < 1. Since |f(u + 8¢)| < c(|u| + |¢}) and / p(t)(Ju] + |¢])|¢ldt < +oo, by the

0
Lebesque dominant theorem | f(u+68¢p) — f(u), tends to zero as ||| — 0. So Lemma 3.1 is true.

Lemma 3.2 Suppose (P), (F) hold and either fif <A< fo < ft <+ooorff <A< fy <
fif < +o0, then I satisfies the P.S condition.

Proof Let {u,} be a P.S sequence, then

1 1
< P(up),p >= /0 wlgdt /0 p(t) f(un)odt = o(llgl) , Voo € BZ. (3.3)

If |uf|, is bounded, where u* = max(u,0), then taking ¢ = u, in (3.3) and noticing that
|f(un)| < cuf, we have a bound of ||u,[. Let u, — u in HZ. By the embedding theorem A, we
can assume that u, — u in L2, hence f(u,) — f(u) in L2. It follows from (3.3) that u, — u in
HZ.

Now we prove that any P.S sequence {u,} is bound in L2 by a contradiction argument.
Otherwise suppose |ut|, — +o00. Set v, = + |v}|p = 1. Taking ¢ = u, in (3.3), we have
that ||v,|| is bounded. Assume that v, — v m HO, vy — v in C[0,1] and in L2, |vt|, = 1. From

(3.3) we have
1 1
0 0 luzt|p [uzt |

We firstly consider the case fi < A < fo < fE < +00. Let € > 0 and f3 —¢e > A, and choose
a constant M > 0 such that f(t) > (fo —€)t, Vt > M. Let ¢ € HZ and ¢ > 0. From (3.4), we

have / s = / 20 f(lu Funlovn) oy 4 o(1)

l Alp

+
[t [pon<M Iun lp [ud poa>M lun|p

2 / p(t )f(lu 1 loUn) wdt + (foo — €) p(t)vFdt +o(1)
luglpvn<M |un |P |ut|pva>M
> (fz-o) [ slepitedt—c [ ple ot + o). )
0 <|'u. lpon <M

Let n — o0, we have
1
/ "o"dt > ( —e)/ vtodt, Vo e HZ , ¢ > 0. (3.6)
0
In particular, let ¢ be the minimizer in Lemma 2.1, then we have
1 1 1 1
/\/ p(t)vtpdt > )\/ p(t)vedt —_:/ v dt > (f5 —6)/ p(t)vtpdt, (3.7
0 0 0 0

which implies that pvt = 0. Hence |v*|, = 0, a contradiction.
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Suppose now that ff < A < f5” < fo < +oo. Let € > 0 and fE +¢& < A. Similar to (3.5),

we have
1 1
/ vpy'dt < (f; +¢) / p(t)vn pdt +c / p(t)vy pdt + o(1),
0 0
0<|ut |pvn <M

and as n — oo we have

1 1
/ v'p"dt < (fL + 8)/ p(t)vTedt, Vo € HE , ¢ > 0. (3.8)
0 0

Taking ¢ = vt in (3.8) , by the definition of A we have

1 1 1
+32 +y/72 + +32
/\/0 p(t)(v )dtS/O I(v™) Idts(fmﬂ)/0 p(E)(v™)"dt.

Since fo (t)(v*)2dt = 1, we arrive at a contradiction. Hence I satisfies the P.S condition.

Proof of Theorem B The case f < A < f5 < f& < +0o. We prove that in this case
the functional I is coercive, that is I(u) — oo as ||u|| — co. We use a contradiction argument.
Suppose that there is a sequence {u,} C HZ such that ||up| — o0, but I(u,) < ¢ < +00. Set
Up = ﬁin:’ then we have |vj|, = 1 and

> I(un) = / ! Pdt — /0 P(&)F(un(t))dt.

Dividing by |u;f|2, this gives

/ (t) (un(t)) — G > 0(1) +=

uit 13

Let & > 0 and f +¢€ < A, and choose a constant M > 0 such that F(t) < 1(ff +¢)t2, vt > M.
Hence we have

[ o e < Sz o) [ oty [ POt

0<]ut v <M

Assuming v, — v in Lg, we have A < ff + ¢, a contradiction.

I is bounded from below and satisfies the P.S condition, hence I has a minimizer u. We
need only to show that the trivial solution u = 0 is not a local minimizer, then ug is a nontrivial
classical positive solution. Let ¢ be the eigenfunction in Lemma 2.1, fol l”|?dt = X fol ppldt
For ¢ > 0 very small, we have

Iow) = 30* [ o' Pat~ [ pP(ap)ar

Let € > 0 and fg —e > A, and choose a constant o > 0 such that F(t) > 3(fy —e)t}, V0 < t < o.
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Therefore, we have

1 1
How) < 50° [ 1oae= 5005 —elo [ pte)ear
= 0%l - 5= ~ )o?lel”
= 2o%lel? - 25 <o

Proof of Theorem B fi < A < f < f¥ < +c0. In this case we use the mountain pass
lemma. We need to verify the following:

(a) There are constants @, p > 0 such that I(u) > «, Vu, |u|| = p.

(b) There is an element e such that I(e) < 0 and [le| > p.
Takee >0, ff +e< A For p< 1, |Jul| = p, we have

/(u” )2dt — / p(t)F(u)dt

> % /0 (u")?dt ~ f0 +€) / (tyude

On the other hand, let ¢ be the eigenfunction in Lemma 2.1. Let ¢ > 0 and fj —¢ > A,
F(t) > %(fo‘<> —€)t? — C, Vt > 0, then we have

1 1
17) =57 [ (0"2a- [ poFToat
1-6
<ir / (¢")2dt — ] p()F(T)dt
I Lo [ pewaro [

We can choose § such that ||| — (f& — z-:) 5 ~0 p(t)p2dt < 0, and T large enogh such that

LT2{llpll? — (f5 —€) f3~* p(t)gPdt] + C [~ p(t)dt < 0.
Now by the mountain pass lemma , we define

¢ = inf sup I{v(?)),
Inf sup. (v(®))

where
T = {ly € C([0, 1], H3),¥(0) = 8,¥(1) = Tp},

¢ > o is a critical value of I, and I has a critical point u with I(u) = ¢. u is a classical positive

solution of our problem (1.1).
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4. Proof of Theorem B for the case fJ = +oco

In this section we deal with the case fi < A < f < f¥ = co. For § > 0. Define

¢ o lw@)Pat

AJ = 1 i
weh? [17° p(tyu?(t)dt

then A\s — X as § — 0. There is a function ¢s € HZ such that ¢s(t) > 0,t € (0,1),As =
INZACIRG

A9 and [y Y0 (t)dt = s . =% p(t)ps(t)v(t)dt, v € HE. The existence of such As
s PDe3(e)de

and ¢; is obvious. To show that As — A, let ¢ be the eigenfunction in Lemma 2.2. We have
f; e @t fy e (@)t _
. =0 p(t)p2(t)dt fo p(t)p?(E)dt

as 6 — 0. Choose § so small that A\s < f3 and 3t € [§,1 — 4}, p(t) # 0. Choose M, A such that
As <A< fo. f(t) > At when t > §%(1 — §)M. We define a function

AGR—M)+ f(M), t=>M,
g(t)={f((t), )+ 10 t< M.

A< <

It is easy to see g(t) > At ast > §%2(1 —8)M. For this truncated function, by the result in Section
3 we have a solution u satisfing

ul(t) = p(t)g(u(t)), t € (0,1),
u(0) = u(l) =0, (4.1)

v (0)=2d'(1) =
or the weak form

| woe o= [ s, voe a2
0 0

We prove that the solution u of (4.1) satisfies 0 < u < M and hence is a solution of (1.1).
Suppose that this is not true, then {|lul|¢jo,1) > M. By the following Lemma 4.1, we have that
u(t) > 62M for t € [§,1 — 4] and g(u(t)) > Au(t), for t € [,1 — 8]. Now for every v € HZ, v > 0
we have

1 1—-6 1-6
/ W) (t)dt > / p®)g(u(®))v(t)dt > A / pE)u(t)u(t)dt. (4.2)
0 ) )

In particular, take v = s, the minimizer for the eigenvalue As, then
1-6
[ plepestia= [ ez A / plt)u(t)is(t)dt,
o

which implies that |, 61 ¢ p(t)u(t)ps(t)dt = 0 and p(t)u(t)ws(t) =0in [6,1 — ). A contradiction.
We have proved that maxu < M and u is the desired solution for our original problem.

Lemma 4.1 Suppose u € C?[0,1](1C*(0,1) and u™)(t) > 0. Then u(t) > 6||ullcjo) for
tels,1-14].
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Proof Let u(a) = M = |lul{co,1), then u'(a) = 0 . For simplicity we assume that § <a < 1-34.
The other case could be treated in the same way.
Let ¢ be the solution of the equation

{ (p(4)(t) =0, t€ (0)1)1
¢(0) = ¢’(0) = 0,(a) = M, ¢'(a) = 0.

The explicit form of ¢ is
M,
p(t) = agt (3a — 2t).
Let w(t) = u(t) — ¢(t), then

{ w®(t) >0, te(0,1),
w(0) = w'(0) = 0,w(a) = w'(a) = 0.

By the Maximum Principle (or the form for the Green function) we have w > 0 in [0,a]. In
particular
u(t) > p(t) > 6°M, for §<t<a.

Similary, u(t) > 62M ,fora <t <1-4.
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