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1. A Lemma and an Abstract Form of Godel’s Theorem
In what follows N denotes the set of positive integers.

Lemma 1 Let {S;}i>1 be an infinite sequence of sets, each containing enumerably infinite
distinct elements, i.e. S; = {z;1,%s2,Ti3,--},4 € N. If we let W = U2, S;, then we can draw
two conclusions:
(i) There can be constructed an enumerable set S from {S;} that differs from every S;.
(ii) There exists a set of positive integers I and an injection ¢ : I — N such that

S = U{xw(i)}»

i€l
where S is the compliment of S with respect to W and Tigi) € Si.

Proof Let us choose an enumeration 7 : N — W of W. Define the subset T C N by
T = {k|r(k) € Sk} = {k|7(k) = zx1, for somel € N}.

Then
T =N\T = {k|r(k) & Sk}

Let
X =71(T), X=1(T).

We claim that X # S; for any i € N. If X = S;, for some ip € N, then

io €T = 7(ip) € X = S,
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which is false by the definition of T. On the other hand, if i ¢ T, i.e., i € T, then
T(i;) ¢ X = Si,

and this implies that ip € T', a contradiction. Hence, it must be the case X #S; for any i € N.
Let S = X. Then S satisfies condition (i) of the lemma. It remains to show that S = X satisfies
condition (ii).

Observe that

Tij € RN Tij = T(‘L)

and so for each i € T, S contains precisely one element z;; of S; in accordance with the definition
X = 7(T), i.e., j = o(i). Hence the lemma is proved. ]

In order to connect Lemma 1 with Gédel’s theorem, we recall a few basic concepts related
to Turing machines (cf. Arbibl!, 1st edition: p.19-20; 2nd edition: p.136-141).

Definition 1 By an effective procedure on a sequence of symbols we mean a computation
process that can be executed by a Turing machine.

Definition 2 An integer-set is “recursive” if there exists an effective procedure for deciding
whether or not every n € N belongs to it. [This concept has various equivalent statements.]

Definition 3 An integer-set is “recursively enumerable” if there exists an effective procedure
for generating its elements, one after another.

It is easily shown that the following proposition holds (cf. Arbibll), 1st edition: Th. 1.6.2;
Martin{?, Thms. 10.5-10.7).

Poposition 1 An integer-set S is recursive if and only if both S and its compliment 5(= N\S)
are recursively enumerable.

We also know that the collection of all Turing machines is effectively enumerable, and
consequently the collection of all recursively enumerable sets of positive integers is also effectively
enumerable. Starting with these basic facts we may now deduce an abstract form of Godel’s
Incompleteness Theorem as a consequence of Lemma 1.

Theorem 1 (Abstract form of Gdel’s Theorem) There exists a recursively enumerable set of
positive integers which is not recursive.

Proof It suffices to show the existence of a recursively enumerable set X whose complement X
is not recursively enumerable.

All recursively enumerable sets are enumerable so that they may be displayed as Sy, Sz, 53, - - -
Thus by Lemma 1 there can be construced a set § = X from {S;}, which differs from every S;,
so that S is not recursively enumerable. However, S = X consists of a single element from each
S;, where i ranges over some subset of N. Therefore, § = X is recursively enumerable and the
theorem is proved. o

It may be worth mentioning that the deduction of Gédel’s Incompleteness Theorem, that
“every consistent adequate arithmetic logic is incomplete”, from the above “abstract form” only
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requires a third of a printed page to sketch (cf. Arbibl!), 2nd edition: p.166). Of course, all the
technical terms involved in the theorem are assumed to be known.

2. A few remarks and consequences

Remark 1 Apparently the conclusion of Lemma 1 simply asserts that, starting with W = U, S;
and by suitably deleting some single element from each Ss, where i ranges over some subset of
N, the remaining set, say S, will be different from every S;(i € N). More precisely, S may be
expressed in a set-theoretical subtraction form

o0
S= s\ U{zjen}- *
i=1  jeJ
where o : J — N is a certain injection. The key point of Lemma 1 is to show the existence of
the integer set J as required. The technique used in the proof is a form of “diagonal argument”,

a common technique in discrete mathematics.

Remark 2 If in the proof of Lemma 1 we use a diagonal process to define the enumeration
7: N — W of W, then it is easily seen that T induces a partial ordering on the elements z;; of
W. Let the ordering relation be denoted by <. Then for j < k,

zij =7(p) <z =7(q) = p< g

T =7(r) <z =7(s) > r < s.

In this way we see that the natural ordering of 7 is consistent with every ordered set S; o f W.
This leads us to state following.

Proposition 2 Using a diagonal process as an enumeration 7 : N — W of W, the enumerable
set S as asserted by (i) of Lemma 1 could be an ordered set whose ordering is induced by 7, and
which is consistent with the ordering of the elements of each set S;.

Sometimes the construction of the required set S as asserted in Lemma 1 may be conve-
niently achieved by omitting from each of given sets a fixed subset of the union of the given sets.

More precisely, we have:

Proposition 3 Suppose that we are given an infinite sequence of sets {S;}i>0, each containing

enumerably infinite distinct elements, i.e.
S; = {zi1, T2, Ti3, -}, 12> 0.

Let W = UR, S; and assume that Sy C W. Let {S!}i>1 be defined by S; = S;\Sp,i > 1. Then
(i) There can be constructed an enumberable set S from Sy U {S;} that differs from every
S;.
(ii) There exists a set of positive integers I and an injection o : I — N such that

? = U{xia(i)}’

i€l
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where S is the compliment of S with respect to W and z;,(;) € S;.

Proof Let W’ = UX,S!. Hence, W = So UW'’. By using Lemma 1 applied to {S}} in such a
way that S’ differs from every S; and 5§’ = W'\ S’ satisfies the condition
5 = U{-’%(i)}
i€l
for some set of positive integers I and some injection o : I — N. Observe that each ;) € S; C
S;. Let § = So U S’ and observe that

S=W\S=(SoUW)\(SoUS)=W\s'=75.

Hence, the S satisfies condition (i) since §’ does and S satisfies condition (i) since S’ does. O
Finally, it may be worth noticing that Lemma 1 can even be reformulated as a metamath-
ematical proposition that may have applications from the methodological viewpoint.
Let P denote a certain property that applies to a sequence or an ordered set of enumerably
infinite distince elements, say, S = {z1, 22, %3, --}. This is to say, all the z-elements of S have
the P-property. In this case, S is called a P-set. Then, as a consequence of Lemma 1, we have:

Proposition 4 Suppose that we are given a definite property P. If all the P-sets {S;},i > 1,
of distince z-elements are enumerably infinite, i.e.

Si = {zilvxi2axi37 c '}’ i€ N3

then, according to the set-theoretical subtraction form (x), there can be constructed a set S of
z-elements from {S;} that differs from every S;, so that S is not a P-set.

Apparently, the abstract form of Gédel’s theorem may be regarded as a consequence of the
last Proposition. It is hoped that this proposition may have other applications in those parts of
discrete mathematicas that deal with infinitely many objects.
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