Decompositions of Complete Graph into（ $2 k-1$ ）－Circles with One Chord

SHAN Xiu－ling，KANG Qing－de
（Dept．of Math．，Hebei Normal University，Shijiazhuang 050016，China ）
（E－mail：xiulingshan＠sina．com）

Abstract

In this paper，we give a unified method to construct G－designs and solve the existence of $C_{2 k-1}^{(r)} G D(v)$ for $v \equiv 1(\bmod 4 k)$ ，where the graph $C_{2 k-1}^{(r)}, 1 \leq r \leq k-2$ ，denotes a circle of length $2 k-1$ with one chord and r is the number of vertices between the ends of the chord．

Key words：graph design；holey graph design；difference．
MSC（2000）：05C15
CLC number：O157．5

1．Introduction

Let K_{v} be the complete graph with v vertices and G be a finite simple graph．A G－design of K_{v} ，denoted by $G-G D(v)$ ，is a pair (X, \mathcal{B}) ，where X is the vertex set of K_{v} and \mathcal{B} is a collection of subgraphs of K_{v} ，called blocks，such that each block is isomorphic to G and any two distinct vertices in K_{v} are jointed in exactly one block of \mathcal{B} ．

Let $D K_{n_{1}, n_{2}, \cdots, n_{h}}$ be the complete partitegraph with vertex set $X=\bigcup_{i=1}^{h} X_{i}$ ，where X_{i} ， $1 \leq i \leq h$ ，are disjoint sets with $\left|X_{i}\right|=n_{i}$ and where two vertices x and y from different sets X_{i} and X_{j} are jointed by exactly one edge $\{x, y\}$ ．A holey G－design，briefly denoted by $G-H D(T)$ ， is a triple $\left(X,\left\{X_{i} ; 1 \leq i \leq h\right\}, \mathcal{A}\right)$ with $X=\bigcup_{i=1}^{h} X_{i}$ ，where $T=n_{1}^{1} n_{2}^{1} \cdots n_{h}^{1}$ is the type of the holey G－design， \mathcal{A} is a collection of edge－disjoint subgraphs of $D K_{n_{1}, n_{2}, \cdots, n_{h}}$ ，called blocks，such that each block is isomorphic to G and each edge of $D K_{n_{1}, n_{2}, \cdots, n_{h}}$ is jointed in exactly one block of \mathcal{A} ．Usually，the type is denoted by exponential form，for example，the type $1^{i} 2^{r} 3^{k} \cdots$ denotes that 1 occurs i times， 2 occurs r times，etc．．

In this paper，the discussed graphs are $C_{2 k-1}^{(r)}$ ，i．e．，one circle of length $2 k-1$ with one chord， where $r, 1 \leq r \leq k-2$ ，is the number of vertices between the ends of the chord．For given graph $C_{m}^{(r)}$ ，it is easy to see that the graph $C_{m}^{(r)}$ is the same graph as $C_{m}^{(m-2-r)}$ ．So，if $r>\left\lfloor\frac{m-2}{2}\right\rfloor$ ， we often use $C_{m}^{(m-2-r)}$ to express the graph．Obviously，there is no subgraph of K_{v} which is isomorphic to $C_{2 k-1}^{(r)}$ when $v<2 k-1$ ．Therefore，we only consider the complete graphs with at least $2 k-1$ vertices．It is easy to see that the following lemmas hold．

Lemma 1．1 ${ }^{[1]}$ The necessary conditions to exist a $G-G D(v)$ are $v(v-1) \equiv 0(\bmod 2 e(G))$ ， $v \geq v(G)$ ，where $e(G)$ and $v(G)$ are the number of the edges and the vertices of G ，respectively．

Received date：2004－02－09
Foundation item：the Natural Science Foundation of Hebei Province（103146）and Doctoral Research Fund for Hebei Higher Learning Institutions

Lemma 1.2 The necessary conditions to exist a $C_{m}^{(r)}-G D(v)$ are $v(v-1) \equiv 0(\bmod m+1)$ and $v \geq m$.

For $r=\left\lfloor\frac{k-2}{2}\right\rfloor$, the existence of $C_{2 k-1}^{(r)}-G D(v)$, which called theta graphs, has been discussed in [2] and [3]. And the existence of $C_{m}^{(r)}-G D(v)$ for $4 \leq m \leq 8$ has been discussed in [4-7], which can be summarized as follows:

Lemma 1.3 ${ }^{[4-7]}$ For $4 \leq m \leq 8$, the necessary conditions to exist a $C_{m}^{(r)}-G D(v)$ are also sufficient except $(v, m, r)=(5,4,1)$ and $(9,8,3)$.

2. General Structures and overall arrangement

In this section, we will give some unified methods to construct G-designs. The definition of BIBD and GDD can be found in [1].

Lemma 2.1 For given graph G and positive integers h, m, if there exist both a G - $H D\left(h^{m}\right)$ and a $G-G D(h+w)$, then there exists a $G-G D(h m+w)$, where $w=0$ or 1 .

Proof Let (X, \mathcal{B}) be a G - $H D\left(h^{m}\right)$, where $X=\bigcup_{i=1}^{m} X_{i}$ with $\left|X_{i}\right|=h$. Suppose W be a w-set and $X \bigcap W=\emptyset$. For $1 \leq i \leq m,\left(X_{i} \bigcup W, \mathcal{B}_{i}\right)$ is the known G - $G D(h+w)$. Letting $\mathcal{A}=\mathcal{B} \bigcup\left(\bigcup_{i=1}^{m} \mathcal{B}_{i}\right)$, then $(X \bigcup W, \mathcal{A})$ is a $G-G D(h m+w)$.

Lemma 2.2 For given graph G and $w=0$ or 1, if there exists a $B[s, 1 ; t]$, a $G-H D\left(h^{s}\right)$ and a $G-G D(h+w)$, then there exists a $G-G D(h t+w)$.

Proof Let X, H and W be t-set, h-set and w-set respectively, $Y=X \times H$ and $Y \bigcap W=\emptyset$. Denote the known designs by

$$
\begin{aligned}
& B[s, 1 ; t]=(X, \mathcal{B}) \\
& G-H D\left(h^{s}\right)=\left(B \times H,\{\{b\} \times H: b \in B\}, \mathcal{A}_{B}\right), \quad \forall B \in \mathcal{B} \\
& G-G D(h+w)=\left((\{x\} \times H) \bigcup W, \mathcal{C}_{x}\right), \quad \forall x \in X
\end{aligned}
$$

Define $\mathcal{A}=\left\{\mathcal{A}_{B}: B \in \mathcal{B}\right\} \bigcup\left\{\mathcal{C}_{x}: x \in X\right\}$, then $(Y \bigcup W, \mathcal{A})$ is a $G-G D(h t+w)$.
Lemma 2.3 For given graph G and $w=0$ or 1, if there exists a $B[s, 1 ; t+1]$, a G - $H D\left(h^{s}\right)$ and a G-GD $((s-1) h+w)$, then there exists a $G-G D(h t+w)$.

Proof Let X, H and W be $(t+1)$-set, h-set and w-set respectively, $Y=X \times H$ and $Y \bigcap W=\emptyset$. Denote the known designs by

$$
\begin{aligned}
& B[s, 1 ; t+1]=\left(X \bigcup\{\infty\}, \mathcal{B}_{0} \bigcup \mathcal{B}_{1}\right) \\
& G-H D\left(h^{s}\right)=\left(B \times H,\{\{b\} \times H: b \in B\}, \mathcal{A}_{B}\right), \quad \forall B \in \mathcal{B}_{1} \\
& G-G D((s-1) h+w)=\left((B \backslash\{\infty\} \times H) \bigcup W, \mathcal{C}_{B}\right), \quad \forall B \in \mathcal{B}_{0}
\end{aligned}
$$

where \mathcal{B}_{0} is the blocks containing ∞ and \mathcal{B}_{1} is the other blocks. Note that $|W|=0$ or 1 . Define

$$
\mathcal{D}=\left\{\mathcal{A}_{B}: B \in \mathcal{B}_{1}\right\} \bigcup\left\{\mathcal{C}_{B}: B \in \mathcal{B}_{0}\right\}
$$

then $((X \times H) \bigcup W, \mathcal{D})$ is a $G-G D(h t+w)$.

Lemma 2.4 For given graph G, positive integer i and $w=0$ or 1 , if there exists a $B_{i}[s, 1 ; t-i]$, a $G-H D\left(h^{s}\right)$, a $G-H D\left(h^{s+1}\right)$, a $G-G D(h+w)$ and a $G-G D(i h+w)$, then there exists a G $G D(h t+w)$.

Proof Let (X, \mathcal{B}) be a $B_{i}[s, 1 ; t-i]$ with i parallel classes $\mathcal{P}_{1}, \mathcal{P}_{2}, \cdots, \mathcal{P}_{i}$. Suppose a_{1}, \cdots, a_{i} be distinct points that not belong to X. Adding the point a_{j} to each block B in $\mathcal{P}_{j}, 1 \leq j \leq i$, we get a $\{s, s+1\}-P B D(t)=\left(X \bigcup\left\{a_{1}, \cdots, a_{i}\right\}, \mathcal{D}\right)$. Assign a weight h to each point $x \in X$ and denote the obtained h-set by Y_{x}. Similarly, assign a weight h to each point in $\left\{a_{1}, \cdots, a_{i}\right\}$ and denote the obtained $(h i)$-subset by Y^{\prime}. Define $Y=Y^{\prime} \bigcup\left(\bigcup_{x \in X} Y_{x}\right)$, which contains $h t$ elements.

For any block $B \in \mathcal{D}$ with the weight type h^{s+1} (or h^{s}), there exists an ingredient G $H D\left(h^{s+1}\right)$ (or G - $H D\left(h^{s}\right)$) with block set \mathcal{A}_{B}. Suppose W be a w-set and $W \bigcap Y=\emptyset$. For every point $x \in X$, there exists an ingredient $G-G D(h+w)=\left(Y_{x} \cup W, \mathcal{A}_{x}\right)$. Similarly, for the set $\left\{a_{1}, \cdots, a_{i}\right\}$, there exists an ingredient $G-G D(i h+w)=\left(Y^{\prime} \cup W, \mathcal{A}^{\prime}\right)$. Let

$$
\mathcal{A}=\mathcal{A}^{\prime} \bigcup\left\{\mathcal{A}_{B}: B \in \mathcal{D}\right\} \bigcup\left\{\mathcal{A}_{x}: x \in X\right\}
$$

Then $(Y \bigcup W, \mathcal{A})$ is a $G-G D(h t+w)$.
Now, we will give some results of the holey designs.
Lemma 2.5 ${ }^{[7]}$ For integers k, t and $r, t \geq 1, k \geq 3$ and $1 \leq r \leq k-2$, there exists a $C_{2 k-1}^{(r)}$ $H D\left((2 k)^{2 t+1}\right)$ and a $C_{2 k-1}^{(r)}-H D\left((4 k)^{2 t+1}\right)$.

Lemma 2.6 There exists a $C_{2 k-1}^{(r)}-H D\left((4 k)^{u}\right)$ for integer $u \equiv 0,1(\bmod 3)$ and $u \geq 3$, where $k \geq 3$ and $1 \leq r \leq k-2$.

Proof By [1], there exists a $\{3\}-G D D\left(2^{u}\right)$ for $u \equiv 0,1(\bmod 3), u \geq 3$. Suppose $(X, \mathcal{G}, \mathcal{B})$ be a $\{3\}-G D D\left(2^{u}\right)$, where $X=\bigcup_{i=1}^{u} X_{i}$ and $\mathcal{G}=\left\{X_{i}: 1 \leq i \leq u\right\},\left|X_{i}\right|=2$. Assign a weight $2 k$ to each point $x \in X_{i}, 1 \leq i \leq u$ and denote the obtained $4 k$-set by Y_{i}. Let $Y=\bigcup_{i=1}^{u} Y_{i}$, which contains $4 k u$ elements. For each weighted block $B \in \mathcal{B}$, there exists an ingredient $C_{2 k-1}^{(r)}$ $H D\left((2 k)^{3}\right)$ with block set \mathcal{A}_{B} by Lemma 2.5. Define

$$
\mathcal{A}=\left\{\mathcal{A}_{B}: B \in \mathcal{B}\right\} \text { and } \mathcal{G}^{\prime}=\left\{Y_{i}: 1 \leq i \leq u\right\}
$$

Then $\left(Y, \mathcal{G}^{\prime}, \mathcal{A}\right)$ is a $C_{2 k-1}^{(r)}-H D\left((4 k)^{u}\right)$.
Lemma 2.7 ${ }^{[1]}$ (1) There exists a $B[3,1 ; v]$ if and only if $v \equiv 1,3(\bmod 6)$ and $v \geq 3$.
(2) For $v \equiv 3(\bmod 6)$, there exist $B_{i}[3,1 ; v]$ with i parallel classes, where $1 \leq i \leq \frac{v-1}{2}$.

Lemma 2.8 For given graph G and $w=0$ or 1 , if there exists a $G-H D\left(h^{3}\right)$, a $G-H D\left(h^{4}\right)$, a $G-G D(i h+w)$ with $i=1,2,5$, then there exists a $G-G D(h t+w)$ for any $t \geq 1$.

Proof We consider the existence of $G-G D(h t+w)$ from the following cases.
(1) For $t \equiv 1,3(\bmod 6)$, there exists a $B[3,1 ; t]$ by Lemma 2.7 . Thus, there exists a $G-G D(h t+w)$ by the known $G-H D\left(h^{3}\right), G-G D(h+w)$ and Lemma 2.2.
(2) For $t \equiv 0,2(\bmod 6)$, there exists a $B[3,1 ; t+1]$ by Lemma 2.7. Thus, there exits a $G-G D(h t+w)$ by the known $G-H D\left(h^{3}\right), G-G D(2 h+w)$ and Lemma 2.3.
(3) For $t \equiv 3+i(\bmod 6), i=1,2$, there exists a $B_{i}[3,1 ; t-i]$ by Lemma 2.7. So, letting $t-i=6 u+3$, the $R B[3,1 ; t-i]$ is just a $B_{3 u+1}[3,1 ; t-i]$. By Lemma 2.4, there exits a G $G D(h t+w)$ if $3 u+1 \geq 1$ (for $i=1$) or $3 u+1 \geq 2$ (for $i=2$) except for the case $(i, u)=(2,0)$, i.e., $t=3+2=5$. But, $G-G D(5 h+w)$ is known.

Theorem 2.9 For $w=0$ and $1, k \geq 5$, if there exists a $C_{2 k-1}^{(r)}-G D(4 k+w)$ and a $C_{2 k-1}^{(r)}$ $G D(8 k+w)$, then there exists a $C_{2 k-1}^{(r)}-G D(v)$ for $v \equiv 0,1(\bmod 4 k)$.

Proof By Lemmas 2.5 and 2.6, there exist $C_{2 k-1}^{(r)}-H D\left((4 k)^{u}\right)$ for $u=3,4,5$ and $1 \leq r \leq k-2$. So, there exist $C_{2 k-1}^{(r)}-G D(5 \cdot 4 k+w)$ for $w=0$ or 1 by Lemma 2.1. Then, there exists a $C_{2 k-1}^{(r)}-G D(v)$ by Lemma 2.8.

3. The construction of $C_{2 k-1}^{(r)}-G D(v)$

In this section, we will give a unified method to construct $C_{2 k-1}^{(r)}-G D(v)$ for $k \geq 5$. In the construction of $C_{2 k-1}^{(r)}-G D(v)$ on the set X, we will give the base blocks D. Denote the blocks in $\operatorname{dev}(D)$ as $\left(a_{0}, a_{1}, \cdots, a_{2 k-2}\right)$. Then, the chord is denoted by $(r, d)=\left\{a_{i}, a_{i+r+1}\right\}$, where a_{i} and a_{i+r+1} are the ends of the chord and the difference $d=\left|a_{i+r+1}-a_{i}\right|$. For integer $i \leq j, A[i, j]$ denotes $\left(i,-(i+1), \cdots,(-1)^{j-i} j\right)$ and $A[i, j]^{-1}$ denotes $\left(j,-(j-1), \cdots,(-1)^{j-i} i\right)$.
Lemma 3.1 There exists a $C_{2 k-1}^{(r)}-G D(4 k+1)$ for $1 \leq r \leq k-2$.
Construction Let $X=Z_{4 k+1}$. Considering the number of the block set, we only need to construct one base block.

Case $1(k$ even $)$ Let $D=(A([1,2 k] \backslash\{d, k\}), k)$. Choose the chord in the blocks as

$$
(r, d)= \begin{cases}(4 i+1,2 i+2)=\left\{a_{0}, a_{4 i+2}\right\}, & 0 \leq i \leq \frac{k-4}{2} \\ (4 i+2,2 i+2)=\left\{a_{0}, a_{4 i+3}\right\}, & 0 \leq i \leq\left\lfloor\frac{k-6}{4}\right\rfloor \\ (4 i+3,2 i+2)=\left\{a_{2 i+2}, a_{6 i+6}\right\}, & 0 \leq i \leq\left\lfloor\frac{k-4}{4}\right\rfloor\end{cases}
$$

Case 2 (k odd)

$$
\text { Let } D= \begin{cases}(A([1,2 k] \backslash\{2 i+1, k-1\}), k-1), & 0 \leq i \leq \frac{k-3}{2} \\ (A([2,2 k-2] \backslash\{2 i+2, k\}), 2 k-1,1,-k, 2 k), & 0 \leq i \leq \frac{k-5}{2}\end{cases}
$$

Choose the chord in the blocks as $(r, d)=\left\{\begin{array}{l}(4 i+1,2 i+1)=\left\{a_{0}, a_{4 i+2}\right\}, 0 \leq i \leq \frac{k-3}{2} \\ (4 i+3,2 i+2)=\left\{a_{0}, a_{4 i+4}\right\}, 0 \leq i \leq \frac{k-5}{2}\end{array}\right.$.
Proof Obviously, each difference in $Z_{4 k+1}$ appears exactly once in D or as the chord difference. In order to show that the range of r is filled full indeed, we present the following table.

D	r	range of r
Case 1	$4 i+1\left(0 \leq i \leq \frac{k-4}{2}\right)$	$[1, k-3]_{4} \cup[4, k-4]_{4}$ $(k \equiv 0(\bmod 4))$ $[1, k-5]_{4} \cup[4, k-2]_{4}$ $(k \equiv 2(\bmod 4))$
	$4 i+2\left(0 \leq i \leq\left\lfloor\frac{k-6}{4}\right\rfloor\right)$	$\begin{array}{ll} {[2, k-6]_{4}} & (k \equiv 0(\bmod 4)) \\ {[2, k-4]_{4}} & (k \equiv 2(\bmod 4)) \\ \hline \end{array}$
	$4 i+3\left(0 \leq i \leq\left\lfloor\frac{k-4}{4}\right\rfloor\right)$	$\begin{gathered} {[3, k-5]_{4} \cup\{k-2\} \quad(k \equiv 0(\bmod 4))} \\ {[3, k-3]_{4} \quad(k \equiv 2(\bmod 4))} \\ \hline \end{gathered}$
Case 2	$4 i+1\left(0 \leq i \leq \frac{k-3}{2}\right)$	$[1, k-4]_{4} \cup[2, k-3]_{4}$ $(k \equiv 1(\bmod 4))$ $[1, k-2]_{4} \cup[2, k-5]_{4}$ $(k \equiv 3(\bmod 4))$
	$4 i+3\left(0 \leq i \leq \frac{k-5}{2}\right)$	$[3, k-2]_{4} \cup[4, k-5]_{4}$ $(k \equiv 1(\bmod 4))$ $[3, k-4]_{4} \cup[4, k-3]_{4}$ $(k \equiv 3(\bmod 4))$

Table 1

Below, what we need to do is to verify that all vertices in \widetilde{D}_{0} are distinct, which implies that D is a $C D C$.

In Case 1, the vertex set of \widetilde{D}_{0} is $[-k, k] \backslash\left\{-(i+1), \frac{k}{2}\right\}$.
In Case 2, the vertex set of \widetilde{D}_{0} is

$$
\left\{\begin{array}{l}
{[-k, k] \backslash\left\{-\left(\frac{k-1}{2}\right), i+1\right\} \quad\left(\text { for } 0 \leq i \leq \frac{k-3}{2}\right)} \\
{[-(k-3), 0] \cup\left([2, k+1] \backslash\left\{i+2, \frac{k+3}{2}\right\}\right) \cup\{-k,-(k+1),-2 k\} \quad\left(\text { for } 0 \leq i \leq \frac{k-5}{2}\right) .}
\end{array}\right.
$$

Lemma 3.2 There exists a $C_{2 k-1}^{(r)}-G D(8 k+1)$ for $1 \leq r \leq k-2$.
Construction Let $X=Z_{8 k+1}$. Considering the number of the block set, we only need to construct two base blocks.

Case 1 (k odd)
Subcase $1.1(r \equiv 1,2(\bmod 4))$
(1) Let $D_{1}^{1}=(k-3, A([3, k-4] \backslash\{d\}), A([k-2,2 k-1] \backslash\{k, k+1\}), 3 k,-2 k,-(3 k+1),-1,2)$ and choose the chord as $(r, d)=(4 i+2, k-4-2 i)=\left\{a_{0}, a_{4 i+3}\right\}, 0 \leq i \leq \frac{k-7}{2}$;

$$
D_{1}^{2}=(k-3, A([4,2 k-1] \backslash\{k-3, k, k+1\}), 3 k,-2 k,-(3 k+1),-2,3)
$$

with the chords $(r, d)=(4 i+2,1)=\left\{a_{0}, a_{4 i+3}\right\}, i=\frac{k-5}{2}, \frac{k-3}{2}$.
(2) Let $D_{2}=(3 k-1, A([2 k+1,3 k-2] \backslash\{d\}), A[3 k+2,4 k],-k,-(k+1))$ with the chords $(r, d)=(4 i+2,2 k+2 i+1)=\left\{a_{0}, a_{4 i+3}\right\}, 0 \leq i \leq \frac{k-3}{2}$.

Subcase $1.2(r \equiv 0,3(\bmod 4))$
(1) Let $D_{1}=(k+2,-1,3,-A[5, k-1],-A([k+3,2 k-2] \backslash\{d\})$,

$$
-(2 k+3),-(k+1),-(2 k+1), 2 k+4,-k, 2 k+2)
$$

with the chords $(r, d)=\left\{\begin{array}{l}(r, d)=(4 i+4, k+5+2 i)=\left\{a_{0}, a_{4 i+5}\right\}, 0 \leq i \leq \frac{k-7}{2} \\ (r, d)=(4 i+4, k+5)=\left\{a_{0}, a_{4 i+5}\right\}, i=\frac{k-5}{2}\end{array}\right.$.
(2) Let $D_{2}=\left(3 k,-2,4, A([2 k+5,4 k] \backslash\{3 k-1, d\})^{-1},-2 k,-(2 k-1)\right)$
with the chords $(r, d)=(4 i+4,3 k+3+2 i)=\left\{a_{0}, a_{4 i+5}\right\}, 0 \leq i \leq \frac{k-5}{2}$.
Case 2 (k even)
Subcase $2.1(r \equiv 2,3(\bmod 4))$
(1) Let $D_{1}=\left(k+1,2 k+2,-(2 k+1), A([k+2,2 k-2] \backslash\{d\})^{-1}, A[2, k-2]^{-1},-k,-(k-1)\right)$ with the chords $(r, d)=(4 i+2, k+2+2 i)=\left\{a_{0}, a_{4 i+3}\right\}, 0 \leq i \leq \frac{k}{2}-2$.
(2) Let $D_{2}=\left(3 k+1, A([2 k+3,4 k] \backslash\{3 k+1, d\})^{-1},-2 k,-(2 k-1)\right)$ with the chords $(r, d)=(4 i+2,3 k+1+2 i)=\left\{a_{0}, a_{4 i+3}\right\}, 0 \leq i \leq \frac{k}{2}-2$.
Subcase $2.2(r \equiv 0,1(\bmod 4))$
(1) Let $D_{1}^{1}=(k-2,-4 k, 4 k-2, A([3,2 k-3] \backslash\{d, k-2, k+1, k+2\}),-2 k,-1,2,2-2 k, 2 k-1)$
with the chords $(r, d)=(4 i+4, k-5-2 i)=\left\{a_{0}, a_{4 i+5}\right\}, 0 \leq i \leq \frac{k}{2}-4$;

$$
D_{1}^{2}=(k-2,-4 k, 4 k-2, A([4,2 k-3] \backslash\{k-2, k+1, k+2\})-2 k,-2,3,-(2 k-2), 2 k-1)
$$

with the chords $(r, d)=(4 i+4,1)=\left\{a_{0}, a_{4 i+5}\right\} i=\frac{k}{2}-3, \frac{k}{2}-2$.
(2) Let $D_{2}=(A([2 k+1,4 k-4] \backslash\{d, 3 k+2\}),-(k+1),-(k+2))$ with the chords $(r, d)=$ $(4 i+4,3 k-2 i-1)=\left\{a_{0}, a_{4 i+5}\right\}, 0 \leq i \leq \frac{k}{2}-2$.

No. 1 SHAN Xiu-ling, et al: Decompositions of complete graph into $(2 k-1)$-circles with one chord 61

Proof In the Case 1, the construction requests $k \geq 7$. The construction for $k=5$, i.e., $C_{9}^{(r)}$ $G D(41), r=1,2,3$, will be given in the following examples. Obviously, each difference in $Z_{8 k+1}$ appears exactly once in $D_{1} \cup D_{2}$ or as one of the chord differences. The following table will show that all vertices in each number-tuple are distinct.

D		
case 1.1	D_{1}^{1}	$[-2, k-3] \cup\left(\left[k, \frac{3 k-7}{2}\right] \backslash\left\{\frac{3 k-7}{2}-i\right\}\right) \cup\left[\frac{3 k+3}{2}, 2 k\right] \cup\left\{\frac{3 k-3}{2}, 3 k,-(3 k+1)\right\}$
	D_{1}^{2}	$[-1, k-3] \cup\left[k+1, \frac{3 k-7}{2}\right] \cup\left[\frac{3 k+3}{2}, 2 k\right] \cup\left\{\frac{3 k-3}{2}, 3 k,-(3 k+1),-3\right\}$
	D_{2}	$\left(\left[-(3 k+1),-\frac{5 k+5}{2}\right] \backslash\{-(3 k-i+1)\}\right) \cup[2 k+1,3 k-1] \cup\left[-\frac{5 k-3}{2},-2 k\right] \cup\{0, k+1\}$
case 1.2	D_{1}	$\left(\left[0, \frac{k-3}{2}\right] \backslash\left\{\frac{k-5-2 i}{2}\right\}\right) \cup\left(\left[\frac{k+5}{2}, 2 k-1\right] \backslash\{k\}\right) \cup\{-(3 k+6),-(2 k+2),-(k+5),-(k+2),-4\}$
	D_{2}	$[3 k, 4 k-1] \cup\left(\left[-\frac{3 k-3}{2}, 1-k\right] \backslash\left\{-\frac{3 k-2 i-5}{2}\right\}\right) \cup\left[3-2 k,-\frac{3 k+1}{2}\right] \cup\{0,2 k-1,3 k-2\}$
	D_{1}	D_{2}

Table 2

In order to show that the range of r is filled full indeed, we present the following table.

D		r	range of r
case 1.1	D_{1}^{1}	$4 i+2\left(0 \leq i \leq \frac{k-7}{2}\right)$	$[2,2 k-4]_{4}=$
	D_{1}^{2}	$4 i+2\left(i=\frac{k-5}{2}, \frac{k-3}{2}\right)$	$[1, k-4]_{4} \cup[2, k-3]_{4}(k \equiv 1(\bmod 4))$
	D_{2}	$4 i+2\left(0 \leq i \leq \frac{k-3}{2}\right)$	$[1, k-2]_{4} \cup[2, k-5]_{4}(k \equiv 3(\bmod 4))$
case 1.2	D_{1}	$4 i+4\left(0 \leq i \leq \frac{k-5}{2}\right)$	$[4,2 k-6]_{4}=$
			$[3, k-2]_{4} \cup[4, k-5]_{4}(k \equiv 1(\bmod 4))$
	D_{2}	$4 i+3(0 \leq i \leq t-1)$	$[3, k-4]_{4} \cup[4, k-3]_{4}(k \equiv 3(\bmod 4))$
case 2.1	D_{1}	$4 i+2\left(0 \leq i \leq \frac{k-4}{2}\right)$	$[2,2 k-6]_{4}=$
			$[2, k-2]_{4} \cup[3, k-5]_{4}(k \equiv 0(\bmod 4))$
	D_{2}	$4 i+3(0 \leq i \leq t-1)$	$[2, k-4]_{4} \cup[3, k-3]_{4}(k \equiv 2(\bmod 4))$
case 2.2	D_{1}^{1}	$4 i+4\left(0 \leq i \leq \frac{k-8}{2}\right)$	$[2,2 k-4]_{4}=$
	D_{1}^{2}	$4 i+4\left(i=\frac{k-6}{2}, \frac{k-4}{2}\right)$	$[1, k-3]_{4} \cup[4, k-4]_{4}(k \equiv 0(\bmod 4))$
	D_{2}	$4 i+4\left(0 \leq i \leq \frac{k-4}{2}\right)$	$[1, k-5]_{4} \cup[4, k-2]_{4}(k \equiv 2(\bmod 4))$

Table 3
Example $C_{9}^{(r)}-G D(41)$ with $r=1,2,3$.
Construction Let $X=Z_{41}$. We should construct two base blocks D_{1} and D_{2}.

$$
\begin{gathered}
D_{1}^{1}=(17,-18,2,3,-7,8,-10,-4,9) \\
D_{1}^{2}=(-17,18,1,2,3,7,8,9,10) \\
D_{2}=(14, A([11,13] \backslash\{d\}), 15,-16,19,-20,-5,-6)
\end{gathered}
$$

Choose the chords $(r, d)=(1,1)=\left\{a_{0}, a_{2}\right\}$ in the blocks of $\operatorname{dev}\left(D_{1}^{1}\right)$ and $(r, d)=(1,11)=$ $\left\{a_{0}, a_{7}\right\}$ in the blocks of $\operatorname{dev}\left(D_{2}\right)$.

Choose the chords $(r, d)=(2,1)=\left\{a_{0}, a_{3}\right\}$ in the blocks of $\operatorname{dev}\left(D_{1}^{1}\right)$ and $(r, d)=(2,13)=$ $\left\{a_{0}, a_{3}\right\}$ in the blocks of $\operatorname{dev}\left(D_{2}\right)$.

Choose the chords $(r, d)=(3,4)=\left\{a_{0}, a_{4}\right\}$ in the blocks of $\operatorname{dev}\left(D_{1}^{2}\right)$ and $(r, d)=(3,13)=$ $\left\{a_{0}, a_{4}\right\}$ in the blocks of $\operatorname{dev}\left(D_{2}\right)$ ．

Theorem 3．3 For $v \equiv 1(\bmod 4 k)$ and $1 \leq r \leq k-2$ ，the necessary conditions to exist a $C_{2 k-1}^{(r)}-G D(v)$ are also sufficient．

Proof By Lemmas 3.1 and 3．2，there exists a $C_{2 k-1}^{(r)}-G D(4 k+1)$ ，a $C_{2 k-1}^{(r)}-G D(8 k+1)$ ，respec－ tively．Then，we obtain the conclusion by Theorem 2．9．

References：

［1］COLBOURN C J，DINITZ J H．The CRC Handbook of Combinatorial Designs［M］，CRC Press Series on Discrete Mathematics and its Applications．CRC Press，Boca Raton，FL， 1996.
［2］BLINCO A．On diagonal cycle system［J］．Australasian J．Combin．，2001，24：221－230．
［3］BLINCO A．Decompositions of complete graphs into theta graphs with fewer than ten edges［J］．Util．Math．， 2003，64：197－212．
［4］BERMOND J C，HUANG C，ROSA A．et al．Decomposition of complete graphs into isomorphic subgraphs with five vertices［J］．Ars Combin．，1980，10：211－254．
［5］BERMOND J C，SCHÖNHEIM J．G－decomposition of K_{n} ，where G has four vertices or less［J］．Discrete Math．，1977，19：113－120．
［6］MARTINOVA M．An isomorphic decomposition of K_{24}［J］．ARS Combin．，1999，52：251－252．
［7］KANG Qing－de，ZHANG Yan－fang，ZUO Hui－juan．λ－packings and λ－coverings by k－circles with one chord ［J］．Discrete Math．，2004，279：287－315．

完备图分拆为带一条弦的 $(2 k-1)$－长圈

单秀玲，康庆德
（河北师范大学数学与信息科学学院，河北 石家庄 050016）

摘要：本文给出了构造 G－设计的一个统一方法及当 $v \equiv 1(\bmod 4 k)$ 时的 $C_{2 k-1}^{(r)}-G D(v)$ 的存在性，其中 $C_{10}^{(r)}, 1 \leq r \leq k-2$ 表示带一条弦的 $2 k-1$ 长圈，r 表示弦两个端点间的顶点个数。

关键词：图设计；带洞图设计；差．

