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1. Introduction

E∗-unitary inverse semigroups are more complicated than E-unitary inverse semigroups.

As yet, there is no structure theorem for general E∗-unitary inverse semigroups. In [1], Bulman-

Fleming, Fountain and Gould introduced strongly E∗-unitary inverse semigroups, and gave the

structure theorem for strongly E∗-unitary inverse semigroups. But the structure theorem ob-

tained in [1] is unsatisfactory for the reason that corresponding to a strongly E∗-unitary inverse

semigroup, there are many McAlister 0-triples. It is difficult to choose an appropriate McAl-

ister 0-triple. In [5], Kellendonk and Lawson proved that every partial action of a group can

be obtained by restricting a group action. Furthermore, they proved that every partial group

action admits universal globalization and so obtained an interpretation of Munn’s proof of the

P -theorem for inverse semigroups by applying their globalization theorem. The aim of this pa-

per is to study E∗-unitary categorical inverse semigroups, a class of strongly E∗-unitary inverse

semigroups, characterize them by using partial actions of primitive inverse semigroups on sets,

and to generalize Kellendonk and Lawson’s results to inverse semigroups with zero.

The paper is organized as folows. In Section 1, we define a partial action of a primitive

inverse semigroup T on a set Y , a 0-dual-prehomomorphism from T into I(Y ), and the symmetric

inverse semigroup on Y , and discuss the relationship between two concepts. In Section 2, we

consider the globalization of partial actions of primitive inverse semigroups on sets. Then an

exact connection between globalization of partial actions of primitive inverse semigroups and the

theory of E∗-unitary categorical inverse semigroups is presented in Section 3.

Throughout the paper, we use the usual notation and the basic results of inverse semigroup

theory, see [3], [5] or [6]. Especially, for a semigroup S with zero and a subset A of S, let E(A)

denote the set of idempotents of A and let A∗ = A\{0}.
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Let T be a primitive inverse semigroup, and Y be a set with a distinguished element 0. Let

Y ∗ = Y \{0}. A partial function from T × Y to Y is denoted by (t, x) 7→ t · x and we write ∃t · x

to mean that t · x is defined. We say that (t, x) 7→ t · x defines a partial action of T on Y if the

following conditions hold:

(PA1) ∀t ∈ T, ∃t · 0 and t · 0 = 0;

(PA2) ∃t · x implies ∃t−1 · (t · x) and t−1 · (t · x) = x;

(PA3) ∀s, t ∈ T, x ∈ Y, ∃s · (t · x) implies ∃(st) · x and s · (t · x) = (st) · x;

(PA4) ∃0 · x if and only if x = 0;

(PA5) ∀x ∈ Y ∗, ∃t ∈ T ∗ such that ∃t · x.

(PA6) ∀t ∈ T ∗, ∃x ∈ Y ∗ such that ∃t · x.

Corollary 1.1 Let (t, x) 7→ t · x be a partial action of T on Y . Then, the following conclusions

hold.

(1) For each x ∈ Y ∗, there exists uniquely e ∈ E(T ∗) such that e · x = x. We denote the

element e by ex.

(2) If t · x = t · y, then x = y.

Proof (1) By condition (PA5), there exists t ∈ T ∗ such that ∃t · x. By conditions (PA2) and

(PA3), (t−1t) · x = x. Clearly, e = t−1t ∈ E(T ∗) and e · x = x. If there is f ∈ E(T ∗) such that

f · x = x, then by (PA3), ∃(ef) · x. By (PA4), ef 6= 0 and so e = f , as required.

(2) If t · x = t · y, then by (PA2) and (PA3), x = (t−1t) · x = (t−1t) · y = y. 2

A function θ : T → S between inverse semigroups with zero is said to be a 0-dual-

prehomomorphism if the following axioms hold:

(DPH1) θ−1(0) = 0;

(DPH2) θ(t−1) = θ−1(t) for all t ∈ T ;

(DHP3) θ(u)θ(v) ≤ θ(uv) for all u, v ∈ T .

Let Y be a set with a distinguish element 0 . For every α ∈ I(Y ), α : A → B is a bijection

where A and B are subsets of Y . Given such an α we denote its domain A by dom α and its

image B by im α. α ∈ I(Y ) is said to be 0-restricted if both dom(α) and im(α) contain 0 and

α(0) = 0. It is easy to show that the set L(Y ) of all 0-restricted injective partial transformations

on Y is an inverse subsemigroup of I(Y ) and that the unique map with domain and image {0}

is the zero of L(Y ).

It is easy to show the following proposition.

Proposition 1.2 The partial actions of a primitive inverse semigroup T on a set Y with a

distinguished element are equivalent to 0-dual-prehomomor-phisms θ from T to L(Y ) such that

Y = ∪t∈T domθ(t).

2. Globalization

Let T be a primitive inverse semigroup, X be a set with a distinguished element 0. Let

X∗ = X\{0}. A partial function T × X → X, (t, x) 7→ t · x is a global action, if the following
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conditions hold:

(GA1) ∀t ∈ T, ∃t · 0 and t · 0 = 0;

(GA2) ∃t · x implies ∃t−1 · (t · x) and t−1 · (t · x) = x;

(GA3) ∀s, t ∈ T, x ∈ X, ∃s · (t · x) if and only if ∃(st) · x, in which case s · (t · x) = (st) · x;

(GA4) ∃0 · x if and only if x = 0;

(GA5) ∀x ∈ X, ∃t ∈ T ∗ such that ∃t · x;

(GA6) ∀t ∈ T ∗, ∃x ∈ X∗ such that ∃t · x.

A function θ : T → S between inverse semigroups with zero is called 0-restricted if θ−1(0) =

0.

It is routine to verify the following proposition:

Proposition 2.1 The global actions of a primitive inverse semigroup T on a set X with a

distinguished element are equivalent to 0-restricted homomorphisms θ from T to L(X) such that

X = ∪t∈T domθ(t).

Let θ : T → L(Y ) be a partial action of the primitive inverse semigroup T on the set Y

with a distinguished element 0. A globalization of θ is a pair (ι, ϕ) consisting of an injection

ι : Y → X and a 0-restricted homomorphism ϕ : T → L(X) such that θ(t) = ι−1ϕ(t)ι for every

t ∈ T . (Note that we regard ι as a partial bijection from Y to X .) In the following, we shall

prove that every partial action of primitive inverse semigroups can be globalized in a universal

way.

Let θ : T → L(Y ) be a partial action of the primitive inverse semigroup T on the set Y with

a distinguished element 0. If θ(t)(x) is defined, then we write θ(t)(x) = t · x. Define the relation

∼ on the set T ∗ × Y by (t, x) ∼ (t′, x′) if and only if either (t, x) = (t′, x′) or there exists s ∈ T

such that t = t′s and s · x = x′. It is direct (or see [5]) to show that ∼ is an equivalence relation

on T ∗ × Y . Denote the ∼-equivalence class containing the element (t, x) by [t, x]. Let

YT = {[t, x] : (t, x) ∈ T ∗ × Y } ∪ {∅}.

Define a partial function δ from T × YT to YT by δ(s, ∅) = ∅ and δ(s, [t, x]) = [st, x] if st 6= 0. It

is routine to show that δ is a well-defined global action.

Define ι : Y → YT by ι(0) = ∅ and ι(x) = [ex, x] if x 6= 0.

Lemma 2.2 The function ι is injective.

Proof It suffices to show that for all x, y ∈ Y ∗, if ι(x) = ι(y), then x = y. Suppose that

ι(x) = ι(y). That is [ex, x] = [ey, y]. By definition, there exists t ∈ T ∗ such that ex = eyt and

t · x = y. Hence t = eyt = ex and so y = t · x = ex · x = x, by Corollary 1.1. 2

Denote by ϕ the 0-restricted homomorphism from T to L(YT ) corresponding to the global

action. Then we have

Theorem 2.3 (1) The global action of T on YT is a globalization of the partial action of T on

Y .
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(2) Let X = T · ι(Y ). Then δ can be viewed as a partial function from T ×X to X and so

we obtain a global action of T on X . Moreover, the global action of T on X is also a globalisation

of the partial action of T on Y .

Proof (1) Let x ∈ Y ∗, and suppose that t · x = x′ is defined. By definition, ex = t−1t and

t · ι(x) = t · [ex, x] = [t, x]. Since ∃t−1 · x′, ex′ = tt−1 and so ι(x′) = [ex′ , x′] = [tt−1, t · x] = [t, x].

Thus θ(t) ⊆ ι−1ϕ(t)ι. Conversely, suppose t · [ex, x] ∈ ι(Y ). Then tex 6= 0 and t · [ex, x] = [t, x] =

[ey, y] for some y ∈ Y . Thus there exists s ∈ T such that t = eys and s · x = y. Hence t = s and

so t · x = y. Thus ι−1ϕ(t)ι ⊆ θ(t). Hence ι−1ϕ(t)ι = θ(t) for every t ∈ T .

(2) Let t · [ex, x] ∈ X . Then tex 6= 0 and t · [ex, x] = [t, x]. For every s ∈ T , if δ(s, [t, x])

exists, then st 6= 0 and so stex 6= 0. It follows that

δ(s, [t, x]) = [st, x] = st · [ex, x] ∈ X.

Thus δ is a partial function from T × X to X . By the same argument as in (1), we can prove

that the global action of T on X is also a globalisation of the partial action of T on Y . 2

3. The P -theorem

In this section, we shall give the structure of E∗-unitary categorical inverse semigroups.

To do this, we shall need to consider a special class of partial action of primitive inverse semi-

groups, namely, partial actions of primitive inverse semigroups on semilattices, together with

their globalizations. We begin by recalling some definitions and results[1].

Let X be a partially ordered set containing a least element 0. A partial (order)-automorphism

of X is an order-isomorphism α : A → B where A and B are subsets of X . Given such an α

we denote its domain A by dom α and its image B by im α. A partial automorphism α is

0-restricted if dom α and im α both contain 0, and α(0) = 0. Denote by L(X ) the set of all

0-restricted partial automorphisms of X whose domain and image are order ideals of X . Then

L(X ) is an inverse subsemigroup of the symmetric inverse semigroup on X . Note that the unique

map with domain and image {0} is the zero of L(X ).

We say that a primitive inverse semigroup T globally acts (partially acts) on X means that

a 0-restricted homomorphism (0-dual-prehomomorphism) ϕ : T → L(X ). A partial action ϕ of

T on X is effective, if X =
⋃

t∈T domϕ(t). When T partially acts on X we write t∗A for ϕ(t)(A).

For any subset A of X , we denote the set A\{0} by A∗. Let ϕ : T → L(X) be an action of

T on X and let Y be a subset of X . The triple (T,X ,Y) is a Primitive triple if conditions (P1)

to (P4) are satisfied:

(P1) Y is a subsemilattice and order ideal of X ;

(P2) For all e ∈ E(T ∗) and all P, Q ∈ dom(ϕ(e)) ∩ Y∗, we have P ∧ Q 6= 0;

(P3) T ∗ Y = X ;

(P4) (t ∗ Y∗) ∩ Y∗ 6= ∅ for all t ∈ T ∗.

Now let

M = M(T,X ,Y) = {(P, t) ∈ Y∗ × T ∗ : t−1 ∗ P ∈ Y∗} ∪ {0̄},
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where (T,X ,Y) is a Primitive triple. We define a multiplication on M by the rule that

(P, u)(Q, v) =

{

(P ∧ u ∗ Q, uv), uv 6= 0
0̄ uv = 0

and

(P, u)0̄ = 0̄(P, u) = 0̄0̄ = 0̄.

The main result of this paper is the following theorem.

Theorem 3.1 Let M = M(T,X ,Y) be defined as above, then M is an E∗-unitary categorical in-

verse semigroup. Conversely, every E∗-unitary categorical inverse semigroup can be constructed

in this way.

The proof of the direct part of Theorem 3.1 is straightforward. In the following, we shall

give the proof of the converse part of Theorem 3.1 by using the theory developed in this paper.

Let (Y,∧) be a meet semilattice with least element 0 and let L(Y ) denote the inverse

semigroup with zero consisting of all order isomorphisms between order ideals of Y . Note that

the zero of L(Y ) is the map whose domain and image are {0}. Let θ : T → L(Y ) be an

effective partial action of T on Y and ϕ : T → L(YT ) be the globalisation of θ constructed in

Section 2. Then, for each t ∈ T ∗, ϕ(t) is a partial injection on YT defined by ϕ(t)(∅) = ∅, and

ϕ(t)([s, x]) = [ts, x] if ts 6= 0. In the following, θ(t)(x) and ϕ(t)([s, x]) will be abbreviated to t ·x

and t ∗ [s, x], respectively.

It is easy to show the following Lemma with the above notations:

Lemma 3.2 (1) Define the relation ≤ on YT by ∅ ≤ [u, x] and [u, x] ≤ [v, y] if and only if there

exist (v′, y′) ∈ [v, y] and x′ ≤ y′ such that (v′, x′) ∈ [u, x]. Then ≤ is a partial order on YT .

(2) The semilattice Y is order-isomorphic with the partially ordered set ι(Y ) with the

order ≤ induced from YT .

Corollary 3.3 If [u, x] ≤ [v, y], then for every (w, c) ∈ [v, y], there exists d ≤ c such that

(w, d) ∈ [u, x].

Lemma 3.4 (1) ϕ(t) is order-preserving.

(2) Both domϕ(t) and imϕ(t) are order ideals of YT . Hence ϕ is a 0-restricted homomor-

phism from T to L(YT ).

Proof (1) Suppose [u, a], [v, b] ∈domϕ(t) and [u, a] ≤ [v, b]. By Corollary 3.3, there exists d ≤ b

such that (v, d) ∈ [u, a]. Thus

t ∗ ([u, a]) = t ∗ ([v, d]) = [tv, d] ≤ [tv, b] = t ∗ ([v, b]),

and so ϕ(t) is order-preserving.

(2) Clearly, domϕ(t) = {[s, x] ∈ YT : ts 6= 0} ∪ {∅}, Imϕ(t)=domϕ(t−1). Suppose [u, y] ≤

[s, x] ∈ domϕ(t). Then by Corollary 3.3, there exists k ∈ Y such that k ≤ x and (s, k) ∈ [u, y].

It follows that there exists v ∈ T ∗ such that s = uv and y = v · k. Since ts 6= 0, tu 6= 0 and so
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[u, y] ∈ domϕ(t). Hence domϕ(t) is an order ideal of YT . Similarly, domϕ(t−1) is an order ideal

of YT . Hence imϕ(t) is also an order ideal of YT . 2

Let X = T ∗ ι(Y ). Then ϕ can be viewed as a 0-restricted homomorphism from T to L(X).

Furthermore, we have

Theorem 3.5 Suppose that for each e ∈ T ∗ and x, y ∈ domθ(e)∩ Y ∗, we have x∧ y 6= 0. Then

(T, X, ι(Y )) is a Primitive triple.

Proof (1) Clearly, X = {[t, x] ∈ YT : x ∈ Y ∗, ex = t−1t} ∪ {∅}. We claim that ι(Y ) is an order

ideal of X . Since [t, x] ∈ X and [t, x] ≤ [ey, y] ∈ ι(Y ). Then by Corollary 3.3, there exists y′ ≤ y

such that (ey, y′) ∈ [t, x]. Thus [t, x] = [ey, y′]. Since y ∈ domθ(ey) and domθ(ey) is an order

ideal of Y , y′ ∈ domθ(ey) and so ∃ey ·y′. Since x 6= 0 and [t, x] = [ey, y
′], y′ 6= 0. Hence ey′ exists.

Thus

ey · y′ = (eyey) · y
′ = e−1

y · (ey · y′) = y′ = ey′ · y′.

By Corollary 1.1, ey = ey′ . Hence [t, x] = [ey, y′] = [ey′ , y′] ∈ ι(Y ). Thus ι(Y ) is an order ideal

of X .

(2) For all e ∈ E(T ∗) and [s, x], [t, y] ∈ dom(ϕ(e))∩ ι(Y ∗), we have es 6= 0, et 6= 0 and there

exist [ea, a], [eb, b] ∈ ι(Y ) such that [s, x] = [ea, a], [t, y] = [eb, b]. Thus e = ea = eb. From ∃ea · a

and ∃eb · b, we have that a, b ∈ domθ(e). By the assumption, a ∧ b ∈ dom(θ(e)) ∩ Y ∗. Thus

∃e ·(a∧b) and so [e, a∧b] ∈ ι(Y ∗). Clearly, [e, a∧b] ≤ [ea, a] = [s, x] and [e, a∧b] ≤ [eb, b] = [t, y].

Thus [s, x] ∧ [t, y] 6= ∅.

(3) X = T ∗ ι(Y ) is clear.

(4) For each t ∈ T ∗, by (PA6) there exists y ∈ Y ∗ such that t · y exists and so ∃(t−1t) · y.

Hence ι(y) = [t−1t, y]. Clearly, t∗ (ι(y)) = t∗ [t−1t, y] = [t, y] = [tt−1, t ·y]. Since ∃t−1 · (t ·y) and

∃t · (t−1 · (t · y)), tt−1 = et·y. Thus [tt−1, t · y] = ι(t · y). It follows that t ∗ ι(Y ∗) ∩ ι(Y ∗) 6= ∅. 2

The proof of the converse part of Theorem 3.1 Let S be an E∗-unitary categorical inverse

semigroup. Put T = S/β and Y = E(S), where β is the least 0-restricted primitive congruence

on S. Define a function θ : T → L(Y ) as follows: For each t ∈ T , let

domθ(t) = {a−1a : β(a) = t} ∪ {0}

and define θ(t)(0) = 0 and θ(t)(a−1a) = aa−1. Then we can prove that θ is a 0-dual-prehomomorphism

and Y = ∪t∈T domθ(t). Thus we obtain an effective partial action of T on Y . For each

y ∈ Y ∗, ey = β(y). Clearly, θ satisfies the assumption of Theorem 3.5. By Theorem 3.5,

(T, T ∗ ι(Y ), ι(Y )) is a primitive triple.

Define a map δ from S to M = M(T, T∗ι(Y ), ι(Y )) by δ(0) = 0̄ and δ(s) = ([β(ss−1), ss−1], β(s))

if s 6= 0. Then δ is well-defined.

First, let us prove that δ is injective. Assume δ(a) = δ(b) for some a, b ∈ S∗. Then

β(a) = β(b) and [β(aa−1), aa−1] = [β(bb−1), bb−1]. It follows that (a, b) ∈ β and aa−1 = bb−1.

By the Proposition 14 in page 91 of [5], a = b and so δ is injective.
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Next, we shall prove that δ is surjective. Let ([ey, y], t) ∈ M such that t−1 ∗ [ey, y] ∈ ι(Y ∗).

Then ey = tt−1 and [t−1, y] = [ez, z] ∈ ι(Y ∗). It follows that there exists u ∈ T such that

t−1 = ezu and u ·y = z. By the definition of θ, there is b ∈ S∗ such that β(b) = u = t−1, y = b−1b

and z = bb−1. Let s = b−1. Then t = β(s), ey = β(ss−1) and y = ss−1. Thus ([ey, y], t) = δ(a)

and so δ is surjective.

Finally, let us show that δ is a homomorphism. It suffices to prove that δ(ab) = δ(a)δ(b) for

all a, b ∈ S∗. If ab = 0, then β(a)β(b) = 0 and so δ(a)δ(b) = 0̄ = δ(0) = δ(ab).

If ab 6= 0, then β(a)β(b) 6= 0 and so

δ(a)δ(b) = ([β(aa−1), aa−1] ∧ [β(abb−1), bb−1], β(ab)).

It remains to show that

[β(aa−1), aa−1] ∧ [β(abb−1), bb−1] = [β(abb−1a−1), ab(ab)−1].

Since β(abb−1a−1) = β(aa−1) and ab(ab)−1 ≤ aa−1, [β(abb−1a−1), ab(ab)−1] ≤ [β(aa−1), aa−1].

Let y = a−1abb−1. Then y ≤ bb−1. Since (abb−1)−1abb−1 = y and β(a) = β(abb−1), y ∈

domθ(β(a)) and so β(a)·y = abb−1(abb−1)−1 = ab(ab)−1. Thus [β(a), y] = [β(abb−1a−1), ab(ab)−1].

Hence

[β(abb−1a−1), ab(ab)−1] = [β(a), y] = [β(abb−1), y] ≤ [β(abb−1), bb−1].

It follows that

[β(abb−1a−1), ab(ab)−1] ≤ [β(aa−1), aa−1] ∧ [β(abb−1), bb−1].

Conversely, suppose that

[u, v] ≤ [β(aa−1), aa−1] and [u, v] ≤ [β(abb−1), bb−1].

Then by Corollary 3.3, there exist x, y ∈ Y such that x ≤ aa−1, y ≤ bb−1 and [β(aa−1), x] =

[u, v] = [β(abb−1), y]. It follows that there exists w ∈ T such that β(abb−1) = β(aa−1)w and

x = w · y. Thus w = β(a) and y ∈ domθ(β(a)). By the definition of θ, there exists c ∈ S

such that β(c) = β(a), y = c−1c and x = cc−1. Since x ≤ aa−1 and y ≤ bb−1, we have

c = cbb−1 = aa−1c. Thus

x = cc−1 = aa−1c(cbb−1)−1 = aa−1cbb−1c−1.

But β(c) = β(a), so that a−1c ∈ E(S). It follows that

x = a(a−1c)(bb−1)c−1 = abb−1a−1cc−1 = ab(ab)−1x.

Thus x ≤ ab(ab)−1 and so

[u, v] = [β(aa−1), x] = [β(abb−1a−1), x] ≤ [β(abb−1a−1), ab(ab)−1].

It follows that

[β(aa−1), aa−1] ∧ [β(abb−1), bb−1] = [β(abb−1a−1), ab(ab)−1],
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as required. 2
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