Semicommutative Subrings of Matrix Rings

LIU Zhong－kui
（Department of Mathematics，Northwest Normal University，Lanzhou 730070，China ）
（E－mail：liuzk＠nwnu．edu．cn）

Abstract

A ring R is called semicommutative if for every $a \in R, r_{R}(a)$ is an ideal of R ．It is well－known that the n by n upper triangular matrix ring is not semicommutative for any ring R with identity when $n \geq 2$ ．We show that a special subring of upper triangular matrix ring over a reduced ring is semicommutative．

Key words：semicommutative ring；Armendariz ring；reduced ring．
MSC（2000）：16S50，16U80
CLC number：O153．3

All rings considered here are associative with identity $1(\neq 0)$ ．For a ring R ，the notations $r_{R}(-)$ and $l_{R}(-)$ are used for the right and left，respectively，annihilator over R ．A ring R is called semicommutative if for every $a \in R, r_{R}(a)$ is an ideal of R ．By［1，Lemma 1．2］，a ring R is semicommutative if and only if，for any $a, b \in R, a b=0$ implies $a R b=0$ ，if and only if any right annihilator over R is an ideal of R ，and if and only if any left annihilator over R is an ideal of R ．Properties，examples and counterexamples of semicommutative rings are given in $[2,3]$ ．

Let S be a ring．Define a subring A_{n} of the n－by－n full matrix ring $M_{n}(S)$ over S as follows：

$$
A_{n}=\left\{\left.\left(\begin{array}{ccccc}
a & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a
\end{array}\right) \right\rvert\, a, a_{i j} \in S\right\} .
$$

It was proved in［2，Proposition 1.2 and Example 1．3］that if S is a reduced ring，then the ring A_{3} is semicommutative but A_{n} is not semicommutative for $n \geq 4$ ．Let S be a reduced ring． In this note we will find a semicommutative subring of A_{n} for any positive integer $n \geq 2$ ．Our method will be used to give an Armendariz subring of A_{n} for any positive integer $n \geq 2$ ．

Received date：2004－09－13
Foundation item：the National Natural Science Foundation of China（10171082），TRAPOYT，and NWNU－ KJCXGC212

Let S be a ring and let

$$
R_{n}=\left\{\left.A=\left(\begin{array}{ccccccc}
a_{1} & a_{2} & a_{3} & \cdots & a_{n-2} & a & b \\
& a_{1} & a_{2} & \cdots & a_{n-3} & a_{n-2} & c \\
& & a_{1} & \cdots & a_{n-4} & a_{n-3} & a_{n-2} \\
& & & \ddots & \vdots & \vdots & \vdots \\
& & & & a_{1} & a_{2} & a_{3} \\
& & & & & a_{1} & a_{2} \\
& & & & & & a_{1}
\end{array}\right) \right\rvert\, a_{i}, a, b, c \in S\right\} .
$$

Note that if $a=c$, then the matrix A is called an upper triangular Toeplitz matrix over $S^{[4]}$.
Theorem 1 If S is a reduced ring, then R_{n} is semicommutative.
Proof Suppose that

$$
A=\left(\begin{array}{ccccccc}
a_{1} & a_{2} & a_{3} & \cdots & a_{n-2} & a_{1, n-1} & a_{1 n} \\
& a_{1} & a_{2} & \cdots & a_{n-3} & a_{n-2} & a_{2 n} \\
& & a_{1} & \cdots & a_{n-4} & a_{n-3} & a_{n-2} \\
& & & \ddots & \vdots & \vdots & \vdots \\
& & & & a_{1} & a_{2} & a_{3} \\
& & & & & a_{1} & a_{2} \\
& & & & & & a_{1}
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{ccccccc}
b_{1} & b_{2} & b_{3} & \cdots & b_{n-2} & b_{1, n-1} & b_{1 n} \\
& b_{1} & b_{2} & \cdots & b_{n-3} & b_{n-2} & b_{2 n} \\
& & b_{1} & \cdots & b_{n-4} & b_{n-3} & b_{n-2} \\
& & & \ddots & \vdots & \vdots & \vdots \\
& & & & b_{1} & b_{2} & b_{3} \\
& & & & & b_{1} & b_{2} \\
& & & & & & b_{1}
\end{array}\right)
$$

in R_{n} are such that $A B=0$. Then

$$
\begin{align*}
& a_{1} b_{1}=0 \tag{1}\\
& a_{1} b_{2}+a_{2} b_{1}=0 \tag{2}\\
& a_{1} b_{3}+a_{2} b_{2}+a_{3} b_{1}=0 \tag{3}\\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \tag{n-2}\\
& a_{1} b_{n-2}+a_{2} b_{n-3}+\cdots+a_{n-2} b_{1}=0 \tag{n-1}\\
& a_{1} b_{1, n-1}+a_{2} b_{n-2}+\cdots+a_{n-2} b_{2}+a_{1, n-1} b_{1}=0 \tag{n}\\
& a_{1} b_{1 n}+a_{2} b_{2 n}+a_{3} b_{n-2}+\cdots+a_{n-2} b_{3}+a_{1, n-1} b_{2}+a_{1 n} b_{1}=0 \tag{n+1}\\
& a_{1} b_{2 n}+a_{2} b_{n-2}+\cdots+a_{n-2} b_{2}+a_{2 n} b_{1}=0
\end{align*}
$$

From (1), we see that $b_{1} a_{1}=0$ since S is reduced. If we multiply (2) on the right side by a_{1}, then $a_{1} b_{2} a_{1}+a_{2} b_{1} a_{1}=0$. Thus $a_{1} b_{2} a_{1}=0$ and hence $a_{1} b_{2}=0$. From (2) it follows that $a_{2} b_{1}=0$.

Continuing in this manner, we can show that $a_{i} b_{j}=0$ when $i+j=2, \cdots, n-1$. Hence $b_{j} a_{i}=0$. Multiplying (n-1) on the right side by a_{1}, we obtain $0=a_{1} b_{1, n-1} a_{1}+a_{2} b_{n-2} a_{1}+\cdots+a_{n-2} b_{2} a_{1}+$ $a_{1, n-1} b_{1} a_{1}=a_{1} b_{1, n-1} a_{1}$. Thus $a_{1} b_{1, n-1}=0$. Hence

$$
\begin{equation*}
a_{2} b_{n-2}+\cdots+a_{n-2} b_{2}+a_{1, n-1} b_{1}=0 . \tag{*}
\end{equation*}
$$

Multiplying $\left(^{*}\right)$ on the right side by a_{2}, we obtain $0=a_{2} b_{n-2} a_{2}+\cdots+a_{n-2} b_{2} a_{2}+a_{1, n-1} b_{1} a_{2}=$ $a_{2} b_{n-2} a_{2}$. Thus $a_{2} b_{n-2}=0$. Continuing in this manner, we can show that $a_{i} b_{j}=0$ when $i+j=n$ and $a_{1} b_{1, n-1}=0, a_{1, n-1} b_{1}=0$. Similarly, from (n+1), it follows that $a_{1} b_{2 n}=0$ and $a_{2 n} b_{1}=0$. Now multiplying (n) on the right side by a_{1}, we have $0=a_{1} b_{1 n} a_{1}+a_{2} b_{2 n} a_{1}+$ $a_{3} b_{n-2} a_{1}+\cdots+a_{n-2} b_{3} a_{1}+a_{1, n-1} b_{2} a_{1}+a_{1 n} b_{1} a_{1}=a_{1} b_{1 n} a_{1}$. Thus $a_{1} b_{1 n}=0$. Hence

$$
\begin{equation*}
a_{2} b_{2 n}+a_{3} b_{n-2}+\cdots+a_{n-2} b_{3}+a_{1, n-1} b_{2}+a_{1 n} b_{1}=0 . \tag{**}
\end{equation*}
$$

If we multiply $\left({ }^{* *}\right)$ on the right side by a_{2}, then $0=a_{2} b_{2 n} a_{2}+a_{3} b_{n-2} a_{2}+\cdots+a_{n-2} b_{3} a_{2}+$ $a_{1, n-1} b_{2} a_{2}+a_{1 n} b_{1} a_{2}=a_{2} b_{2 n} a_{2}$. Thus $a_{2} b_{2 n}=0$. Continuing in this manner, we can show that $a_{i} b_{j}=0$ when $i+j=n+1, a_{1, n-1} b_{2}=0$ and $a_{1 n} b_{1}=0$. Since S is a reduced ring, it is semicommutative. So for any $a, b \in S, a b=0$ implies that $a S b=0$. Now for every

$$
C=\left(\begin{array}{ccccccc}
r_{1} & r_{2} & r_{3} & \cdots & r_{n-2} & r_{1, n-1} & r_{1 n} \\
& r_{1} & r_{2} & \cdots & r_{n-3} & r_{n-2} & r_{2 n} \\
& & r_{1} & \cdots & r_{n-4} & r_{n-3} & r_{n-2} \\
& & & \ddots & \vdots & \vdots & \vdots \\
& & & & r_{1} & r_{2} & r_{3} \\
& & & & & r_{1} & r_{2} \\
& & & & & r_{1}
\end{array}\right) \in R_{n},
$$

it is easy to see that $A C B=0$. Hence R_{n} is semicommutative.
Corollary 2 (Proposition 1.2$)^{[2]}$ Let S be a reduced ring. Then

$$
R_{3}=\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
0 & a & d \\
0 & 0 & a
\end{array}\right) \right\rvert\, a, b, c, d \in S\right\}
$$

is a semicommutative ring.
According to [5], a ring R is called an Armendariz ring if whenever polynomials $f(x)=$ $a_{0}+a_{1} x+\cdots+a_{m} x^{m}, g(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in R[x]$ satisfy $f(x) g(x)=0$, then $a_{i} b_{j}=0$ for each i, j. (The converse is always true.) The name "Armendariz ring" was chosen because E. Armendariz [6, Lemma 1] had noted that a reduced ring satisfies this condition. Properties, examples and counterexamples of Armendariz rings are given in E.Armendariz ${ }^{[6]}$, M.B.Rege and S.Chhawchharia ${ }^{[5]}$, D.D.Anderson and V.Camillo ${ }^{[7]}$, C.Huh, Y.Lee and A.Smoktunowicz ${ }^{[3]}$, N.K.Kim and Y.Lee ${ }^{[8]}$, and T.K.Lee and T.L.Wong ${ }^{[9]}$. Generalizations of Armendariz rings have been investigated in [9-12].

Note that from [8, Proposition 2 and Example 3], R_{3} is an Armendariz ring when S is a reduced ring and R_{n} is not Armendariz for any ring S when $n \geq 4$. By analogy with the proof of

Theorem 1 we have the following result on Armendariz rings. Note that this result also follows from [13, Theorem 1.4].

Corollary 3 If S is a reduced ring, then R_{n} is an Armendariz ring.
Proof Let $f(x)=\sum_{i=0}^{p} A_{i} x^{i}, g(x)=\sum_{j=0}^{q} B_{j} x^{j} \in R_{n}[x]$ be such that $f(x) g(x)=0$. Suppose that

$$
\begin{aligned}
& A_{i}=\left(\begin{array}{ccccccc}
a_{1}^{i} & a_{2}^{i} & a_{3}^{i} & \cdots & a_{n-2}^{i} & a_{1, n-1}^{i} & a_{1 n}^{i} \\
& a_{1}^{i} & a_{2}^{i} & \cdots & a_{n-3}^{i} & a_{n-2}^{n} & a_{2 n}^{i} \\
& & a_{1}^{i} & \cdots & a_{n-4}^{i} & a_{n-3}^{i} & a_{n-2}^{i} \\
& & & \ddots & \vdots & \vdots & \vdots \\
& & & & a_{1}^{i} & a_{2}^{i} & a_{3}^{i} \\
& & & & & a_{1}^{i} & a_{2}^{i} \\
a_{1}^{i}
\end{array}\right), \quad i=0,1, \cdots, p, \\
& B_{j}=\left(\begin{array}{ccccccc}
b_{1}^{j} & b_{2}^{j} & b_{3}^{j} & \cdots & b_{n-2}^{j} & b_{1, n-1}^{j} & b_{1 n}^{j} \\
& b_{1}^{j} & b_{j}^{j} & \cdots & b_{n}^{j} \\
& & b_{1}^{j} & \cdots & b_{n-4}^{j} & b_{n-2}^{j} & b_{n-3}^{j} \\
& & & \ddots & \vdots & \vdots & b_{n-2}^{j} \\
& & & & b_{1}^{j} & b_{2}^{j} & b_{3}^{j} \\
& & & & & b_{1}^{j} & b_{2}^{j} \\
& & & & & b_{1}^{j}
\end{array}\right), \quad j=0,1, \cdots, q .
\end{aligned}
$$

Let $f_{1}=\sum_{i=0}^{p} a_{1}^{i} x^{i}, f_{2}=\sum_{i=0}^{p} a_{2}^{i} x^{i}, \cdots, f_{n-2}=\sum_{i=0}^{p} a_{n-2}^{i} x^{i}, f_{1, n-1}=\sum_{i=0}^{p} a_{1, n-1}^{i} x^{i}, f_{1 n}=$ $\sum_{i=0}^{p} a_{1 n}^{i} x^{i}, f_{2 n}=\sum_{i=0}^{p} a_{2 n}^{i} x^{i}, g_{1}=\sum_{j=0}^{q} b_{1}^{j} x^{j}, g_{2}=\sum_{j=0}^{q} b_{2}^{j} x^{j}, \cdots, g_{n-2}=\sum_{j=0}^{q} b_{n-2}^{j} x^{j}$, $g_{1, n-1}=\sum_{j=0}^{q} b_{1, n-1}^{j} x^{j}, g_{1 n}=\sum_{j=0}^{q} b_{1 n}^{j} x^{j}, g_{2 n}=\sum_{j=0}^{q} b_{2 n}^{j} x^{j}$. Note that $S[x]$ is a reduced ring since S is reduced. So as in the proof of Theorem 1, we obtain that $f_{i} g_{j}=0$ when $i+j=2,3, \cdots, n+1$ and $f_{1} g_{1, n-1}=0, f_{1, n-1} g_{1}=0, f_{1} g_{2 n}=0, f_{2 n} g_{1}=0, f_{1} g_{1 n}=0$, $f_{2} g_{2 n}=0, f_{1, n-1} g_{2}=0, f_{1 n} g_{1}=0$. Since reduced rings are Armendariz, it follows that each coefficient of f_{i} annihilates each coefficient of $g_{j}, i+j=2,3, \cdots, n+1$, each coefficient of f_{1} annihilates each coefficient of $g_{1, n-1}$, etc. Now it is easy to see that $A_{i} B_{j}=0$. Thus R_{n} is an Armendariz ring.

Note that every subring of an Armendariz ring is Armendariz. Thus the ring consisting of all upper triangular Toeplitz matrix over S is Armendariz when S is reduced.

Corollary 4 (Theorem 5) ${ }^{[7]}$ If R is a reduced ring, then $R[x] /\left(x^{n}\right)$ is an Armendariz ring, where $\left(x^{n}\right)$ is the ideal generated by x^{n}.

Proof It follows from the fact that the ring $R[x] /\left(x^{n}\right)$ is isomorphic to the ring of all upper triangular Toeplitz matrix over R.

References:

[1] SHIN G. Prime ideal and sheaf representation of a pseudo symmetric rings [J]. Trans. Amer. Math. Soc., 1973, 184: 43-60.
［2］KIM N K，LEE Y．Extensions of reversible rings［J］．J．Pure Appl．Algebra，2003，185：207－223．
［3］HUH C，LEE Y，SMOKTUNOWICZ A．Armendariz rings and semicommutative rings［J］．Comm Algebra， 2002，30：751－761．
［4］PATRICIO P，PUYSTJENS R．About the von Neumann regularity of triangular block matrices［J］．Linear Algebra Appl．，2001，332／334：485－502．
［5］REGE M B，CHHAWCHHARIA S．Armendariz rings［J］．Proc．Japan Acad．Ser．A Math．Sci．，1997，73： 14－17．
［6］ARMENDARIZ E P．A note on extensions of Baer and p．p．－rings［J］．J．Austral．Math．Soc．，1974，18： 470－473．
［7］ANDERSON D D，CAMILLO V．Armendariz rings and Gaussian rings［J］．Comm．Algebra，1998，26：2265－ 2272.
［8］KIM N K，LEE Y．Armendariz rings and reduced rings［J］．J．Algebra，2000，223：477－488．
［9］LEE T K，WONG T L．On Armendariz rings［J］．Houston J．Math．，2003，29：583－593．
［10］HONG C Y，KIM N K，KWAK T K．On skew Armendariz rings［J］．Comm．Algebra，2003，31： $103-122$.
［11］LIU Zhong－kui．Armendariz rings relative to a monoid［J］．Comm．Algebra，2005，33：649－661．
［12］HIRANO Y．On annihilator ideals of a polynomial ring over a noncommutative ring［J］．J．Pure Appl．Algebra， 2002，168：45－52．
［13］LEE T K，ZHOU Y Q．Armendariz and reduced rings［J］．Comm．Algebra，2004，32：2287－2299．

矩阵环的半交换子环

刘仲奎
（西北师范大学数学系，甘肃 兰州 730070）
摘要：称环 R 是半交换的，如果对任意 $a \in R, r_{R}(a)$ 是 R 的理想．若 $n \geq 2$ ，则任意具有单位元的环 R 上的 n 阶上三角矩阵环不是半交换环。我们证明了 reduced 环上的上三角矩阵环的一类特殊子环是半交换环。

关键词：半交换环；Armendariz 环；reduced 环．

