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0. Introduction

In order to investigate semi-simple complex Lie algebras and high-weight module category

of algebraic groups, L. Scott[8] introduced the concept of quasi-hereditary algebras. As a gen-

eralization of quasi-hereditary algebras, properly standardly stratified algebras and standardly

stratified algebras were introduced by Cline, Parshall, Scott[9] and Dlab[10]. Since then, many

mathematicians have been interested in researching these algebras. For example, in 1989, Dlab

and Ringel[4] proved that the semiprimary ring with global dimension 2 is a quasi-hereditary

algebra; In 1996, D. Zacharia[3] caculated the Hochschild homological groups of quasi-hereditary

algebras; In 2000, I. Ágoston and D. Happel[5] investigated the relationship between standardly

stratified algebras and tilting modules; In 2001, in order to calculate the glabal dimensions of

GL2- and GL3-algebras, A.E. Parker[2] introduced the concept of ∇−(or 4−)good filtration di-

mension for a quasi-hereditary algebra. Recently, Zhu Bin and S. Caenepeel[1] investigated these

dimensions for standardly stratified algebras and properly stratified algebras. The aim of this

paper is to study the filtration dimensions of a standardly stratified algebra and its polynomial

algebra.

1. Preliminaries

Let R be a commutative Artinian ring and A a basic Artinian algebra over R. We will

consider finitely generated left A-module. The composition of maps f : M1 → M2 and g : M2 →
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M3 will be denoted by gf . The category of left A-modules will be denoted by A-mod. All

subcategories will be considered full and closed under isomorphism.

Given a class θ of A-mod, we denote by F(θ) the full subcategory of all A-modules which

have a θ-filtration, that is, a filtration

0 = Mt ⊆ Mt−1 ⊆ · · · ⊆ M1 ⊆ M0 = M

such that each factor Mi−1/Mi (1 ≤ i ≤ n) is isomorphic to an object of θ for 1 ≤ i ≤ t. The

modules in F(θ) are called θ-good modules and the category F(θ) is called the θ-good module

category.

In the following, (A,≤) will denote the algebra A together with a fixed ordering on a

complete set {e1, · · · , en} of primitive orthogonal idempotents (given by the natural ordering

of indices). For 1 ≤ i ≤ n, let E(i) be the simple A-module which is the simple top of the

indecomposable projective P (i) = Aei. The standard module 4(i) is by definition the maximal

factor module of P (i) without composition factors E(j) with j > i. ∆(i) will be the notation

for proper standard module, which is the maximal factor module of ∆(i) such that condition

[4(i) : E(i)] = 1.

Dually, for 1 ≤ i ≤ n, we have costandard modules ∇(i) and proper costandard modules

∇(i).

Let 4 be the full subcategory consisting of all 4(λ) with λ ∈ Λ and ∆<λ the full subcategory

of all 4(δ) with δ < λ. In a similar way we introduce ∇ and ∇<λ and so on.

The pair (A,≤) is called a standardly stratified algebra if AA ∈ F(4). (A,≤) is called a

proper standardly stratified algebra if AA ∈ F(4) and AA ∈ F(4). Note that these properties

generalize the concept of quasi-hereditary algebras where we require the additional condition

that the standard modules are Schur modules.

Let (A,≤) be a standardly stratified algebra. A full subcategory T of A-mod is called

contravariantly finite in A-mod if for any A-module M there is a module M1 ∈ T and a morphism

f : M1 −→ M such that the restriction of HomA(−, f) to T is surjective. Such a morphism f is

called a right T -approximation of M . A right T -approximation f : M1 −→ M of M is called a

minimal if the restriction of f to any non-zero direct summand of M1 is nonzero. The covariant

finiteness of T and the left T -approximation of M can be defined dually. F(4) and F(∇) are said

to be functorially finite in A-mod, if they are at the same time covariantly and contravariantly

finite in A-mod.

Lemma 1.1
[1] Let (A,≤) be a standardly stratified algebra, then the following statements hold:

(a) F(4) is a functorially finite and resolving subcategory;

(b) F(∇) is a covariantly finite and coresolving subcategory;

(c) F(4) = {X |Ext1(X,F(∇)) = 0};

(d) F(∇) = {Y |Ext1((F(4)), Y ) = 0}.

It follows from Lemma 1.1 that there exists a finite F(4)-resolution

0 −→ Md −→ · · · −→ M0 −→ X −→ 0, (1)
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where Mi ∈ F(4) for all X ∈ A-mod.

Definition 1.1 Let (A,≤) be a standardly stratified algebra, and let 4−gfd(X) be the smallest

number d for which we have an F(4)-resolution (1) with Mi ∈ F(4).

Lemma 1.2
[1] 4− gfd(X) = d if and only if Exti

R(X,∇(λ)) = 0 for all i ≥ d and all λ ∈ Λ,

but there exists λ ∈ Λ such that Extd
R(X,∇(λ)) 6= 0.

We can introduce the definition of ∇− gfd(X) by duality.

Definition 1.3 Let (A,≤) be a standardly stratified algebra.

4− gfd(A) = sup{4− gfd(X)|X ∈ A-mod}

is called the 4-good filtration dimension of A.

∇− gfd(A) = sup{∇− gfd(X)|X ∈ A-mod}

is called the ∇-good filtration dimension of A.

2. On 4-gfd(A)

Firstly, we have the following lemmas which are easy to prove.

Lemma 2.1 Let (A,≤) be a standardly stratified algebra, the following statements hold:

(1) C ∈ F(4) if and only if 4− gfd(C) = 0;

(2) C ∈ F(∇) if and only if ∇− gfd(C) = 0.

Lemma 2.2 Let (A,≤) be a standardly stratified algebra and X, Y, Z be A-modules. If 0 →

X → Y → Z → 0 is exact and Y ∈ F(4), then

Extn(X,∇(i)) ∼= Extn+1(Z,∇(i)) (n ≥ 1).

Proof We have Extn(Y,∇(i)) = 0 for n ≥ 1, since Y ∈ F(4). Thus we know the lemma holds

from the following exact sequence

0 −→ Extn(X,∇(i)) −→ Extn+1(Z,∇(i)) −→ 0.

Theorem 2.1 Let (A,≤) be a standardly stratified algebra and X, P, Y, X ′, P ′ be A-modules.

If

0 −→ X
η

−→ P
π

−→ Y −→ 0

0 −→ X ′ η′

−→ P ′ π′

−→ Y −→ 0

are exact sequence and π′ is a right F(4)-approximation and P ∈ F(4), then there is an exact

sequence

0 −→ X
σ

−→ P ⊕ X ′ τ
−→ Y −→ 0. (*)
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Proof Since π′ is a right F(4)-approximation, we can define f and g such that the folowing

diagram is commutative

0 −→ X
η

−→ P
π

−→ Y −→ 0

g ↓ f ↓ Iy ↓

0 −→ X ′ −→ P ′ −→ Y −→ 0

Define σ : X → P ⊕X ′, x → (−η(x), g(x)) and τ : P ⊕X ′ → P
′

, (p, x′) → f(p) + η′(x′). It

is routine to check that the sequence (∗) is exact. 2

Lemma 2.3
[2] Let (A,≤) be a standardly stratified algebra and X, Y, Z belong to A-mod. If

0 → X → Y → Z → 0

is an exact sequence, then the following statements hold:

(1) If 4− gfd(Y ) > 4− gfd(X), then 4− gfd(Z) = 4− gfd(Y );

(2) If 4− gfd(Y ) < 4− gfd(X), then 4− gfd(Z) = 4− gfd(X) + 1;

(3) If 4− gfd(Y ) = 4− gfd(X), then 4− gfd(Z) ≤ 4− gfd(X) + 1.

Lemma 2.4 4− gfd(∪(λ∈Λ)Xλ) = sup(λ∈Λ){4− gfd(Xλ)}.

Proof The conclusion follows from the following isomorphisms and formulae

Extn(
⊔

Xλ,∇(i)) '
∏

Extn(Xλ,∇(i))

Extn(
⊔

Xλ,∇(i)) = 0 ⇐⇒ Extn(Xλ,∇(i)) = 0 (∀i, ∀λ)

4− gfd(
⊔

(λ∈Λ)

Xλ) = sup
(λ∈Λ)

{4− gfd(Xλ)}

By duality we have

Lemma 2.5 ∇− gfd(
∏

(λ∈Λ) Xλ) = sup(λ∈Λ){∇− gfd(Xλ)}.

Theorem 2.2 Suppose (A,≤) is a standardly stratified algebra and for any A-module M there

exists the following resolution

0 −→ Mr −→ · · · −→ M0 −→ M −→ 0 (2)

such that Mi−1/Mi
∼= E(i) where E(i) is some simple module, then we have that 4− gfd(A) =

sup{4− gfd(E(i))| i = 1, 2, · · · , t}.

Proof Assume that sup{4 − gfd(E(i))|i = 1, 2, · · · t} = n. Let l(M) = r where l(M) is the

composition length of M , then M has a resolution (2). We assume r = 1, then M is a simple

module. Thus, 4 − gfd(M) ≤ n. If r > 1, then X = M/M0. So, X is a simple module and
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l(X) = 1 , l(M0) = r − 1. By induction hypothesis, 4− gfd(M0) ≤ n, we have 4− gfd(X) ≤ n

and the following exact sequence

0 → M0 → M → X → 0.

From Lemma 2.3, we have 4− gfd(M) ≤ n. Therefore, 4− gfd(A) = sup{4 − gfd(E(i))| i =

1, 2, · · · , t}. 2

3. On R[x]-modules

Let R be an algebra, A be a R-module, and x be a letter. We call the following form

a(x) = a0 + a1x + · · · + amxm, (ai ∈ A, am 6= 0)

a polynomial of degree m over R. A nonzero element a0 6= 0 in A is a polynomial of degree 0,

while the zero elment 0 in A is the zero-polynomial, but it is of non-degree. We define a(x) = b(x)

if and only if they have the same degree and the corresponding coefficients are the same, and the

sum of a(x) and b(x) is defined canonically (i.e. amalgamation of the same terms). Thus, the

set of all polynomials over A forms an additive group(commutative), denoted by A[x]. If

β(x) = β0 + β1x + · · · + βnxn, (βi ∈ R, βn 6= 0)

and a(x) ∈ A[x], we define

β(x)a(x) = b0 + b1(x) + b2x + · · · ,

where

bs =
∑

i+j=s

βiaj .

Then R[x] is an algebra and is called a polynomial algebra of one variable. A[x] is an R[x]-

module. Clearly, we define xnxm = xn+m. Hence, xn can be understood as the n-th power of x,

which is subject to the index law.

Let β(x) = β0 + β1x + · · · + βnxn, where βi ∈ A. Let β′ ∈ R, then we have

β(x)β′ = β0β
′ + β1β

′x + · · · + βnβ′xn.

Thus, R[x] is a right R-module (of course, it is also a left R-module).

One can define a formal power series algebra R[[x]] and a formal power series module A[[x]]

where X is a letter. R[[x]] is a right R-modulle (of course, it is also a left R-module).

Lemms 3.1
[7] (1) As a right R-module, the polynomial algebra R[x] is flat;

(2) A[x] ∼= R[x] ⊗R A.

Similarly, we have

Lemma 3.2 Let R be a perfect and coherent commutative algebra, then
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(1) As R-modules, the formal power series algebra R[[x]] is flat;

(2) A[[x]] ∼= R[[x]] ⊗R A.

Lemma 3.3 Let R be a perfect and coherent commutative algebra, R[[x]] be a formal power

series algebra where x is a letter, and M be an R[[x]]-module, then we have:

(a) If M is an injective R[[x]]-module, then M is an injective R-module ;

(b) If M is a flat R-module, then R[[x]] ⊗R M is a flat R[[x]]-module ;

(c) If M is a flat R[[x]]-module, then M is a flat R-module;

(d) Assume that M is an R[[x]]-module and that M is an injective R-module, then

HomR(R[[x]], M) is an injective R[[x]]-module.

Lemma 3.4 Let R be a commutative algebra, R[x] be a polynomial algebra where x is a letter,

and M be an R[x]-module. We have:

(a) If M is an injective R[x]-module, then M is an injective R-module;

(b) If M is a flat R-module, then R[x] ⊗R M is a flat R-module;

(c) If M is a flat R[x]-module, then M is a flat R-module;

(d) Assume that M is R[x]-module and that M is an injective R-module, then HomR(R[x], M)

is an injective R[x]-module.

Lemma 3.5
A[x]
B[x] = A

B
[x].

Proof We define a homomorphism f from A[x]
B[x] to A

B
[x] as follows.

f : anxn + an−1xn−1 + · · · + a1x + a0 7−→ anxn + an−1x
n−1 + · · · + a1x + a0.

It is easy to show that f is well-defined and is an isomorphism. 2

Similarly, one can have the following

Lemma 3.6
A[[x]]
B[[x]] = A

B
[[x]].

Lemma 3.7 Let (R,≤) be a standardly stratified algebra. We define

(1) 4(i)[x] = R[x] ⊗R 4(i);

(2) 4(i)[x] = R[x] ⊗R 4(i);

(3) ∇(i)[x] = R[x] ⊗R ∇(i);

(4) ∇(i)[x] = R[x] ⊗R ∇(i),

then the following conditions hold:

(a) If M ∈ FR(4), then M [x] ∈ FR[x](4[x]);

(b) If M ∈ FR(4), then M [x] ∈ FR[x](4[x]);

(c) If M ∈ FR(∇), then M [x] ∈ FR[x](∇[x]);

(d) If M ∈ FR(∇) then M [x] ∈ FR[x](∇[x]).

Proof (a) If M ∈ FR(4), then there exists a filtration chain

0 = Mn ⊆ Mn−1 ⊆ · · · ⊆ M1 ⊆ M0 = M
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such that Mi

Mi+1

∼= 4(j) for some j in {1, 2, · · · , n}.

Since R[x] is a flat R-module, we have

0 = R[x] ⊗R Mn ⊆ R[x] ⊗R Mn−1 ⊆ · · ·R[x] ⊗R M0 = R[x] ⊗R M,

i.e.

0 = Mn[x] ⊆ Mn−1[x] ⊆ · · · ⊆ M1[x] ⊆ M0[x] = M [x]

as required. By Lemma 3.5, we have Mi[x]
Mi+1[x]

∼= Mi

Mi+1
[x] ∼= 4(j)[x] for some j ∈ {1, 2, · · · , n} �

(i = 1, 2, · · · , n). So, M [x] ∈ FR[x](4[x]). The proofs of (b), (c) and (d) are similar to the proof

of (a). 2

Lemma 3.8 Let R be a perfect and coherent commutative algebra and (R,≤) be a standardly

stratified algebra. Define

(1) 4(i)[[x]] = R[[x]] ⊗R 4(i); (2) 4(i)[[x]] = R[[x]] ⊗R 4(i);

(3) ∇(i)[[x]] = R[[x]] ⊗R ∇(i); (4) ∇(i)[[x]] = R[[x]] ⊗R ∇(i),

then we have

(a) If M ∈ FR(4), then M [[x]] ∈ FR[[x]](4[[x]]);

(b) If M ∈ FR(4), then M [[x]] ∈ FR[[x]](4[[x]]);

(c) If M ∈ FR(∇), then M [[x]] ∈ FR[[x]](∇[[x]]);

(d) If M ∈ FR(∇), then M [[x]] ∈ FR[[x]](∇[[x]]).

The proof is similar to that of Lemma 3.7.

Lemma 3.9 If B[x] ∈ FR[x](4[x]), then B ∈ FR(4).

Proof If B[x] ∈ FR[x](4[x]), then B[x] ∈ FR(4). Since F(4) is closed under direct summands,

we have B ∈ FR(4). 2

Lemma 3.10 FR[x](4[x]) is contravariantly finite in the subcategory consisting of modules

which are of the form of A[x].

Proof Since FR(4) is contravariantly finite, there exists a morphism f : C −→ A such that it

is a right FR(4)−approximation of A for all R-module A. Thus, there is an exact sequence

HomR(B, C) -Hom( ,f)
HomR(B, A) - 0 ,

for all B ∈ FR(4). In the following we prove that 1R[x] ⊗ f : R[x]⊗R C ' C[x] −→ R[x]⊗R A '

A[x] is a right FR[x](4[x])− approximation of A[x], that is to say, we need to prove that there

exists an exact sequence

HomR[x](B[x], C[x]) -HomR[x]( ,1R[x]⊗f)
HomR[x](B[x], A[x]) - 0 ,

for all B[x] ∈ FR[x](4[x]). Since we have

HomR[x](B[x], A[x]) ' HomR[x](R[x] ⊗R B, A[x])
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' HomR(B, HomR[x](R[x], A[x]))

' HomR(B, A[x]),

and HomR[x](B[x], C[x]) ' HomR(B, C[x]), we only need to prove that

HomR(B, C[x]) -HomR( ,1R[x]⊗f)
HomR(B, A[x]) - 0

i.e., for all R-module morphism ξ : B −→ A[x], we need to prove that there exists an R-module

morphism η : B −→ C[x] such that the following diagram

B�
�

��
ξ

@
@

@I
C[x] - A[x]

1R[x] ⊗ f

η

is commutative. As we have

C[x] ' R[x] ⊗R C '
∞⊔

i=0

R ⊗R C '
∞⊔

i=0

C

and

A[x] ' R[x] ⊗R C '

∞⊔

i=0

R ⊗R A '

∞⊔

i=0

A,

the R-module morphism 1R[x] ⊗ f : R[x] ⊗R C −→ R[x] ⊗R C can be regarded as R-module

morphism
⊔

f :
⊔

C −→
⊔

A. Taking an injection g : C −→
⊔

C and a projection h :
⊔

A −→ A,

we have h(
⊔

f)g = f . Since f : C −→ A is a right FR(4)-approximation of A and B ∈ FR(4),

there is a morphism τ such that the following diagram is commutative.

C -g ⊔
C

⊔
f-⊔

A - A

ξτ

h

������*

HHHHHHY

B

So, it is enough to take η = gτ . Therefore, 1R[x]⊗f : R[x]⊗R C ' C[x] −→ R[x]⊗R A = A[x] is a

right FR[[x]](4[x])-approximation of A[x]. FR[x](4[x]) is contravariantly finite in the subcategory

consisting of modules which have the form of A[x]. 2

Similarly, we have

Lemma 3.11 FR[[x]](∇[[x]]) is covariantly finite in the subcategory consisting of modules which

are of the form of A[[x]].

4. On 4[x] − gfd of R[x]

For all A[x], it follows from Lemma 3.10 that there is a finite FR[x](4[x])-resolution

0 −→ Md[x] −→ · · · −→ M0[x] −→ A[x] −→ 0, (3)
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with Mi[x] ∈ FR[x](4[x]) for all A[x].

Definition 4.1 4[x] − gfd(A[x]) is the smallest number d for which we have FR[x](4[x])-

resolution in (3) with Mi[x] ∈ FR[x](4[x]).

4[x] − gfd(R[x]) = −sup{4[x]− gfd(A[x])|A ∈ modR}.

Similarly, we can introduce the notions ∇[[x]] − gfd(A[[x]]) and ∇[[x]] − gfd(R[[x]]).

Theorem 4.1 Let A be an R-module, then 4− gfd(A) = 4[x] − gfd(A[x]).

Proof Since A has a finite FR(4)-resolution

· · · −→ Mn −→ Mn−1 · · · −→ M1 −→ M0 −→ A −→ 0,

A[x] has an FR[x](4[x])-resolution as follows

· · · −→ R[x]⊗R Mn −→ R[x]⊗R Mn−1 · · · −→ R[x]⊗R M1 −→ R[x]⊗R M0 −→ R[x]⊗R A −→ 0.

Thus, 4[x]−gfd(A[x]) ≤ 4−gfd(A). Suppose 4[x]−gfd(A[x]) = n, then A[x] has an FR[x](4[x])-

resolution as follows

0 −→ Qn −→ Qn−1 · · · −→ Q1 −→ Q0 −→ A[x] −→ 0,

where Qi ∈ FR[x](4[x]) (i = 1, 2, · · · , n). As an R-module, Qi ∈ FR(4). Since A[x] is

isomorphic to a direct sum of countably many A and 4 − gfd(
⊔

A) = 4[x] = n, we have

4− gfd(A) ≤ n = 4[x] − gfd(A[x]). Therefore, 4− gfd(A) = 4[x] − gfd(A[x]). 2

Similarly, we have

Theorem 4.2 Let R be a perfect and coherent commutative algebra and (R,≤) be a standardly

stratified algebra. If A is an R-module, then ∇[[x]] − gfd(A[[x]]) = ∇− gfd(A).

Theorem 4.3 4[x] − gfd(A[x]) = d if and only if Exti
R[x](A[x],∇(λ)[x]) = 0 for all i ≥ d and

all λ ∈ Λ, but there exists λ ∈ Λ such that Extd
R[x](A[x],∇(λ)[x]) 6= 0.

Proof As an R-module, ∇(λ)[x] '
⊔∞

i=0 ∇(λ). So, we have that 4[x] − gfd(A[x]) = d ⇐⇒

4−gfd(A) = d ⇐⇒ Exti
R(A,∇(λ)) = 0 for all i ≥ d and λ ∈ Λ, but there exists λ ∈ Λ such that

Extd
R(A,∇(λ)) 6= 0. ⇐⇒ Exti

R(A,
⊔

∇(λ)) = 0 for all i ≥ d and λ ∈ Λ, but there exists λ ∈ Λ

such that Extd
R(A,

⊔
∇(λ)) 6= 0. Since

Exti
R[x](R[x]R ⊗ A,∇(λ)[x]) ' Exti

R(A, HomR[x](R[x],∇(λ)[x]))

' Exti
R(A,∇(λ)[x]) ' Exti

R(A,
⊔

∇(λ)) '
⊔

Exti
R(A,∇(λ))

4[x] − gfd(A[x]) = d if and only if Exti
R[x](A[x],∇(λ)[x]) = 0 for all i ≥ d and λ ∈ Λ, but there

exists λ ∈ Λ such that Extd
R[x](A[x],∇(λ)[x]) 6= 0. 2
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Similarly, we can obtain

Theorem 4.4 Let R be a perfect and coherent commutive algebra and (R,≤) be a stan-

dardly stratified algebra. If A is an R-module, then ∇[[x]] − gfd(A[[x]]) = d if and only if

Exti
R[[x]](4(λ)[[x]], A[[x]]) = 0 for all i ≥ d and all λ ∈ Λ, but there exists λ ∈ Λ such that

Extd
R[[x]](4(λ)[[x]], A[[x]]) 6= 0.

Theorem 4.5 Let A, B, C be R-module. If

0 → A[x] → B[x] → C[x] → 0

is exact, then we have

(1) If 4[x] − gfd(B[x]) > 4[x] − gfd(A[x]), then

4[x] − gfd(C[x]) = 4[x] − gfd(B[x]);

(2) If 4[x] − gfd(B[x]) < 4[x] − gfd(A[x]), then

4[x] − gfd(C[x]) = 4[x] − gfd(A[x]) + 1;

(3) If 4[x] − gfd(B[x]) = 4− gfd(A[x]), then

4[x] − gfd(C[x]) ≤ 4[x] − gfd(A[x]) + 1.

Proof There is a long exact sequence

· · · → Extn
R[x](C[x],∇(λ)[x]) → Extn

R[x](B[x],∇(λ)[x]) → Extn
R[x](A[x],∇(λ)[x])

→ Extn+1
R[x](C[x],∇(λ)[x]) → Extn+1

R[x](B[x],∇(λ)[x]) → Extn+1
R[x](A[x],∇(λ)[x]) → · · · , (4)

for all ∇(λ)[x] and n. Suppose 4[x] − gfd(B[x]) = m, 4[x] − gfd(A[x]) = n. We have

1) If m > n � then Extm
R[x](A[x],∇(λ)[x]) = 0 � but there exists a λ such that

Extm
R[x](B[x],∇(λ)[x]) 6= 0.

By the long exact sequence (4) we have that Extm
R[x](C[x],∇(λ)[x]) 6= 0,

Extm+j

R[x] (B[x],∇(λ)[x]) ' Extm+j

R[x] (C[x],∇(λ)[x]), j > 0, λ ∈ Λ.

Therefore, we have 4[x] − gfd(C[x]) = 4[x] − gfd(B[x]) from Theorem 4.3.

2) If m < n, then Extn
R[x](B[x],∇(λ)[x]) = 0, but there exists a λ such that

Extn
R[x](A[x],∇(λ)[x]) 6= 0.

By the long exact sequence (4) we have that Extn+1
R[x](C[x],∇(λ)[x]) 6= 0,

Extn+j

R[x](C[x],∇(λ)[x]) ' Extn+j−1
R[x] (A[x],∇(λ)[x]) j > 0, λ ∈ Λ.
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Therefore, we have 4[x] − gfd(C[x]) = 4[x] − gfd(A[x]) + 1 from Theorem 4.3.

3) If m = n, then Extn+1
R[x](B[x],∇(λ)[x]) ' Extn+1

R[x](A[x],∇(λ)[x]) = 0, but there is a λ ∈ Λ

such that Extn
R[x](A[x],∇(λ)[x]) 6= 0.

By the long exact sequence (4) we have that Extn+2
R[x](C[x],∇(λ)[x]) 6= 0.

Therefore, we have 4[x] − gfd(C[x] ≤ 4[x] − gfd(A[x]) + 1 from Theorem 4.3. 2

Similarly, we have

Theorem 4.6 Let A, B, C be R-modules, if

0 → A[[x]] → B[[x]] → C[[x]] → 0

is exact, we have

(1) If ∇[[x]] − gfd(B[[x]]) > ∇[[x]] − gfd(C[[x]]), then

∇[[x]] − gfd(A[[x]]) = ∇[[x]] − gfd(C[[x]]);

(2) If ∇[[x]] − gfd(B[[x]]) < ∇[[x]] − gfd(C[[x]]), then

∇[[x]] − gfd(A[[x]]) = ∇[[x]] − gfd(C[[x]]) + 1;

(3) If ∇[[x]] − gfd(B[[x]]) = ∇[[x]] − gfd(C[[x]]), then

∇− gfd(A[[x]]) ≤ ∇− gfd(C[[x]]) + 1.
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