Article ID: 1000-341X(2006)04-0679-06

Document code: A

On Soluble Block-Transitive 2- $(5^6, 7, 1)$ **Designs**

LIU Wei-jun, TANG Jian-xiong

(Dept. of Math., Central South University, Hunan 410075, China) (E-mail: wjliu@mail.csu.edu.cn)

Abstract: Let G be a soluble block-transitive automorphism group of 2- $(5^6, 7, 1)$ design **D**. Then G is flag-transitive or $G \leq A\Gamma L(1, 5^6)$.

Key words: design; block-transitive; automorphism; soluble group. MSC(2000): 05B05, 20B25 CLC number: 0157.2, 0152.1

1. Introduction

A 2-(v, k, 1) design is a pair (**P**, **L**), where **P** is a point set of v points, and **L** is the set of some k-subsets of **P**, such that for any 2 points of **P**, there is exactly one element of **L** containing them. The elements of **P** are called points and the elements of **L** are called blocks. We denote by **D** the 2-(v, k, 1) design, by b the number of blocks in **D**, by r the number of blocks containing a fixed point of **P**. For a point-block pair $(\alpha, L), \alpha \in L$, we call it the flag of **D**. We say G is flag-transitive if G is transitive on the set of flags of **D**.

The notations and terminology above can be found in [1] and [8].

Denote by π the permutations of the point set **P**. We say π is an automorphism of **D** if it transforms the blocks of **D** into themselves. All the automorphisms of **D** consist of a group, denote by Aut(**D**). Put $G \leq \text{Aut}(\mathbf{D})$. We call G is block-transitive (point-transitive) if G acts transitively on the block set (point set). The results in [2] show that if G is block-transitive, then G is point-transitive. We say G is block-primitive (point-primitive) if G acts primitively on the block set (point set). Few years ago, Buekenhout, Delandtsheer, Doyen, Kleidman, Liebeck and Saxl classified the flag-transitive designs. Recently, A.R. Camina^[3] provides a scheme to classify the block-transitive designs. It says that if G is block-transitive and point-primitive, then the socle of G is either elementary abelian groups or non-abelian simple groups. So we can discuss the structure of G by using the classification of finite simple groups theorem.

In the beginning of 1980's, people have completely finished the classification of blocktransitive 2-(v, 3, 1) designs (to see [7,9,12,14]). In [6], the classification of soluble block-transitive 2-(v, 4, 1) designs is obtained by A. Camina and J. Siemons. In [15], H. L. Li classified the nonsoluble block-transitive 2-(v, 4, 1) designs. In [20], H. L. Li and W. W. Tong classified the soluble block-transitive 2-(v, 5, 1) designs. In [17], W. J. Liu, H. L. Li and C. G. Ma classified the soluble

Received date: 2004-07-15 Foundation item: the National Natural Science Foundation of China (10471152) block-transitive 2 - (v, 6, 1) designs. In [18], the authors got the following theorem:

Theorem 1.1 Let G be a soluble block-transitive automorphism group of 2 - (v, 7, 1) design. Then G is point-primitive and one of the following statements holds:

- (1) $v = 7^n$ and G is flag-transitive;
- (2) $v = 5^6$ and $G = Z_{5^6}$: H, where H is a soluble and irreducible subgroup of GL(6,5);
- (3) $v = p^n$ and $G \le A\Gamma L(1, p^n)$.
- In particular, $p \neq 2$ and $p^n \equiv 1 \pmod{42}$.

In this paper, we discuss the case (2) of the above theorem, and set the following theorem:

Main Theorem Let G be a soluble block-transitive automorphism group of 2- $(5^6, 7, 1)$ design. Then G is flag-transitive and $G \leq A\Gamma L(1, 5^6)$.

The authors would like to thank Prof. A. R. Camina and Prof. H. L. Li for their consistent encouragement and valuable advice.

2. Preparation

Definition 2.1 Let p be a prime and n, t be positive integers. We say that t is a p-primitive divisor of $p^n - 1$, if t > 0 and $(t, p^m - 1) = 1$ for all m with 0 < m < n. Call t the maximal p-primitive divisor of $p^n - 1$ if t is a primitive divisor of $p^n - 1$ and s|t for all p-primitive divisors s of $p^n - 1$.

By [21], we know that there always exists a *p*-primitive divisor of $p^n - 1$ that is not equal to 1 except that n = 1 and p = 2, n = 2, n = 6 and p = 2.

For a 2-(v, k, 1) design, there is a well known result as below.

Lemma 2.1 Let **D** be a 2-(v, k, 1) design. Denote by b the number of blocks of **D**. Then

- (i) bk(k-1) = v(v-1);
- (ii) $b \ge v$;
- (iii) either $v = k^2 k + 1$ or $v \ge k^2$.

Let $G \leq \operatorname{Aut}(\mathbf{D})$ and B be a block of \mathbf{D} . Denote by G_B the subgroup of G stabilizing B (as a set).

Lemma 2.2 (Lemma 2 of [6]) Let G act as a block-transitive automorphism group of a linear space **D**. Let B be a block and H a subgroup of G_B . Assume that H satisfies the following two conditions:

(i) $|\operatorname{Fix}(H) \cap B| \ge 2$ and

(ii) if $K \leq G_L$ and $|Fix(K) \cap B| \geq 2$ and K is conjugate to H in G then H is conjugate to K in G_B .

Then either (a) $\operatorname{Fix}(H) \subseteq B$ or (b) the induced structure on $\operatorname{Fix}(H)$ is also a regular linear space with parameters (b_0, v_0, r_0, k_0) , where $v_0 = |\operatorname{Fix}(H)|$, $k_0 = |\operatorname{Fix}(H) \cap B|$. Furthermore, $N_G(H)$ acts as a line-transitive group on this linear space.

Lemma 2.3 (Lemma 4 of [6]) Let G act block-transitively on a 2-(v, k, 1) design. If s is an

involution in G which fixes no points, then k divides v.

Recall [4], we have that G is flag-transitive.

Lemma 2.4 (Lemma 5 of [6]) Let G act block-transitively on a 2-(v, k, 1) design. Assume that G contains a regular normal subgroup V whose elements are identified with **P**. Suppose that some element in G maps every element of **P** onto its inverse. If k > 2 then any block containing 1 is a subgroup of V so that k divides v.

The following Lemma is a generalization of Lemma 2.2 of [5].

Lemma 2.5 Let G be a group acting block-transitively on a 2-(v, k, 1) design \mathcal{D} . Let g be an element of order s of G_B , where s is a prime and B is a block of \mathcal{D} . Assume that there is a normal subgroup N of G with |G:N| = s, such that $g \notin N$. Then N also acts block-transitively.

Proof Since $N \leq G$, $N \cap G_B = N_B \leq G_B$. By $g \in G_B$ and $g \notin N$, we get $N < NG_B \leq G$. Because |G:N| = s is a prime, $G = NG_B$. Hence

$$G_B/N_B = G_B/(N \cap G_B) \cong NG_B/N = G/N,$$

and so $|G/G_B| = |N/N_B|$. It follows that N is block-transitive.

Lemma 2.6^[19] The maximal irreducible soluble subgroup of linear group GL(6,5) is isomorphic to the following three subgroups:

- (1) $(Z_{124}: Z_3)wrS_2$, its order is $2^5 \cdot 31^2$;
- (2) $(Z_{31} \times NS) : Z_3$, where NS is a group of order 96;
- (3) $Z_{5^6-1}: Z_6$, that is, $\Gamma L(1, 5^6)$.

Lemma 2.7 (Theorem 3.2 of [10]) Let G be a primitive group of degree n, and N a minimal normal subgroup. If N is soluble, then

- (a) N is regular and elementary abelian, and the degree n is a prime power p^n ;
- (b) $G = NG_1$ and $N \cap G_1 = E$, where G_1 denotes the stabilizer in G of the element 1;
- (c) $C_G(N) = N;$
- (d) N is unique minimal normal subgroup.

Lemma 2.8 (Theorem 7.3 of [11]) Any a soluble 2-transitive group with degrees p^n is isomorphic to a subgroup of AFL(1, p^n), unless $p^n = 3^2, 5^2, 7^2, 11^2, 23^2$ or 3^4 .

Lemma 2.9^[16] Let G be a soluble block-transitive automorphism group of a 2-(v, k, 1) design. If G is point -primitive, then

(i) there exists a prime number p and a positive integer n such that $v = p^n$, and

(ii) if there exists a *p*-primitive prime divisor *r* of $p^n - 1$, such that r||G|, then either $G \leq A\Gamma L(1, p^n)$ or k|v.

3. Proof of the main theorem

Let **D** be a 2-(5⁶, 7, 1) design, and denote by **P** the point set of **D**, and $G \leq \text{Aut}(\mathbf{D})$. We

have $v = 5^6$ and $b = 2^2 \cdot 3 \cdot 5^6 \cdot 31$. Hence $v > (7(7-1)/2-1)^2 = 400$. Since **D** is block-transitive, by [8], *G* acts primitively on the point set of **D**. It follows that *G* is a soluble primitive group. By Lemma 2.7, *G* contains an abelian minimal normal subgroup *V*. By identifying the point set **P** of **D** with *V*, we can regard **P** as an *n*-dimensional vector space over the field GF(p), and G_0 , the stabilizer in *G* of the zero vector, is a subgroup of GL(6,5) and irreducible. We know that

$$Fix(\langle g \rangle) = C_V(g) = \{ v \in V \, | \, v^g = v \}$$

where $g \in G_0$. If G is flag-transitive, then by [13] and Lemma 2.8, $G \leq A\Gamma L(1, 5^6)$.

We assume that G is a group of least order which is not flag-transitive as below.

(i) $G \not\leq A\Gamma L(1, 5^6)$.

Assume that $G \leq A\Gamma L(1, 5^6)$. Then G_0 contains a subgroup of an even order of a Singer cycle. But then G_0 contains the involution s so that $v^s = -v$ for all $v \in V$. Then G would be flag-transitive by Lemma 2.4. Hence we can assume that $G \not\leq A\Gamma L(1, 5^6)$.

(ii) 7 does not divide $|G_0|$.

Note that 7 is a 5-primitive divisor of $5^6 - 1$. Hence if 7 | $|G_0|$, then, by Lemma 2.9 and [13], we have $G \leq A\Gamma L(1, 5^6)$. This conflicts with (i).

(iii) There is no involution whose determinant is -1.

By second isomorphism theorem of groups, we have

$$G_0/(G_0 \cap \mathrm{SL}(6,5)) \cong G_0 \mathrm{SL}(6,5) / \mathrm{SL}(6,5) \le \mathrm{GL}(6,5) / \mathrm{SL}(6,5) \le Z_4.$$

Since G_0 is soluble, we know that $SL(6,5) \leq G_0$. Therefore,

$$G_0/(G_0 \cap \operatorname{SL}(6,5)) \cong Z_2.$$

Thus if there is an involution whose determinant is -1, then we see that there is a normal subgroup $K = G_0 \cap SL(6,5)$ of index 2 in G_0 so that $G_0 = K\langle s \rangle$. By Lemma 2.5, VK would be a group of smaller order which was block-transitive, a contradiction.

(iv) Each involution fixes 25 or 625 points.

Let s be an involution in G_0 . If s fixes only one point then $v^s = -v$ for all v of V, which is false by Lemma 2.4 and as noted in (i). The eigenvalues of s are either +1 or -1 but by (iii) there must be an even number of -1's and this number is less than 6. For these involutions s, we have $|C_V(s)| = 5^4$ or 5^2 , and so (iv) is true.

(v) The only primes that divide the order of G_0 are 2, 3 and 31.

Note that $b = v(v-1)/(k(k-1)) = 2^2 \cdot 3 \cdot 5^6 \cdot 31$ and G is block-transitive. Hence we have $2^2 \cdot 3 \cdot 31$ divides $|G_0|$. Since G_0 is a soluble irreducible subgroup of GL(6, 5), by Lemma 2.6, we know that the conclusion is true.

(vi) We complete the analysis by showing that G_0 has no elementary abelian minimal normal subgroup, M.

(a) M is not a 31-group.

Assume M is a 31-group. Then by Lemma 2.6 $|M| = 31^2$ or 31. If $|M| = 31^2$, then there has to be an element of order 31 which fixes more than one point. In fact, if this is not true,

then every element of M other than 1 fixes only one point. Thus this point is the vector 0. This implies that M acts semiregularly on $5^6 - 1$ points. Thus |M| divides $5^6 - 1$, and so |M| = 31. Now let δ be an element of order 31 of M which fixes at least two points. Let x, y be any two points in $\operatorname{Fix}(\langle \delta \rangle)$, and let B be the block containing them. Since 31 > 7, $\langle \delta \rangle$ fixes every point of B. Hence $|\operatorname{Fix}(\langle \delta \rangle)| = 5^e$, where 1 < e < 6. Therefore, $\operatorname{Fix}(\langle \delta \rangle)$ is the point-set of a $2 - (|\operatorname{Fix}(\langle \delta \rangle)|, 7, 1)$ design. By Lemma 2.1 there are no $2 - (5^e, 7, 1)$ designs with e < 6, a contradiction. So M is a cyclic group of order 31. Let $M = \langle \delta \rangle$. Then

$$G_0/C_{G_0}(\delta) \le Aut(M) = Z_{30}.$$
 (1)

Note that

$$|G| = v|G_0| = b|G_B|,$$

that is,

$$|G_0| = 12 \cdot 31 \cdot |G_B|.$$

Hence 4 divides $|G_0|$, and hence by (1), 2 divides $|C_{G_0}(\delta)|$. Thus there is an involution s which centralizes M. This implies that Fix(s) is a fixed set of M. By the above argument M fixes only one point, that is, the zero vector of V. Hence M acts on the fixed points of s with only one fixed point. However 31 does not divide 25 - 1 nor 625 - 1. So M does not have order a power of 31.

(b) M is not a 3-group.

Let δ be an element of order 31. Then $|\operatorname{Fix}(\langle \delta \rangle)| = 1$ as the proof of (a). Suppose that δ can centralize an element η of order 3. Then $\operatorname{Fix}(\langle \eta \rangle)$ is a fixed set of $\langle \delta \rangle$, and so 31 divides $|\operatorname{Fix}(\langle \eta \rangle)| = 1$. Note that $|\operatorname{Fix}(\langle \eta \rangle)| = 5^e$, where $0 \leq e < 6$. Thus e = 3. But 3 divides $5^6 - |\operatorname{Fix}(\langle \eta \rangle)| = 5^6 - 5^3$, which is impossible. Thus δ can not centralize an element of order 3. It follows that 31 does divide $|C_{G_0}(M)|$. Let $|M| = 3^m$. Recall that

$$G_0/C_{G_0}(M) \le \operatorname{Aut}(M) = \operatorname{GL}(m, 3).$$

Then 31 | |GL(m,3)|, and so $|M| \ge 3^{30}$ as 3 is a primitive root modulo 31. This does not exist in GL(6,5).

(c) M is not a 2-group.

Assume that there is an element of order 31 which centralizes an element of order 2. Then we can get a contradiction as in the proof of (a). Thus 31 does not divide $|C_{G_0}(M)|$. Let $M = \mathbb{Z}_2^m$. Then

$$G_0/C_{G_0}(M) \leq \operatorname{Aut}(M) = \operatorname{GL}(m, 2).$$

Therefore 31 divides |GL(m, 2)|. By Lemma 2.6, we get m = 5. Thus G_0 contains a subgroup of type $2^5 : 31$. Such a group is Frobenius and has no representations of degree 6.

Now we completed the proof of the main theorem.

References:

[1] BUEKENHOUT F, DELANDTSHEER A, DOYEN J. et al. Linear spaces with flag-transitive automorphism

groups [J]. Geom. Dedicata, 1990, **36**(1): 89–94.

- [2] BLOCK R E. On the orbits of colblockar groups [J]. Math. Z., 1961, 96: 33-49.
- [3] CAMINA A R. The socle of automorphism groups of linear spaces [J]. Bull. London Math. Soc., 1996, 28: 269–272.
- [4] CAMINA A R, GAGEN T M. Block transitive automorphism groups of designs [J]. J. Algebra, 1984, 86: 549–554.
- [5] CAMINA A R, SPIEZIA F. Sporadic groups and automorphisms of linear spaces [J]. J. Combin. Des., 2000, 8: 353–362.
- [6] CAMINA A R, SIEMONS J. Block transitive automorphism groups of 2-(v, k, 1) block designs [J]. J. Combin. Theory Ser. A, 1989, 51: 268–276.
- [7] CLAPHAM P C. Steiner triple systems with block-transitive automorphism groups [J]. Discrete Math., 1976, 14: 121–131.
- [8] DELANDTSHEER A, DOYEN J. Most block-transitive t-designs are point-primitive [J]. Geom. Dedicata, 1989, 29: 307–310.
- [9] HALL J I. Steiner triple systems and 2-transitive groups [D]. [M Sc Thesis]. Oxford University, 1972.
- [10] HUPPERT B. Endliche Gruppen I [M]. New York, Springer-Verlag, 1967.
- [11] HUPPERT B. Finite Groups III [M]. New York, Springer-Verlag, 1982.
- [12] KEY J D, SHULT E E. Steiner triple systems with doubly transitive automorphism groups: a corollary to the classification theorem for finite simple groups [J]. J. Combin. Theory Ser. A, 1984, 36: 105–110.
- [13] LIEBECK M W. The classification of finite linear spaces with flag-transitive automorphism groups of affine type [J]. J. Combin. Theory Ser. A, 1998, 84: 196–235.
- [14] LÜNEBURG H. Steinersche tripelsysteme mit fahnentransitiver Kollineationsgruppe [J]. Math. Ann., 1962/1963, 149: 261–270. (in Germany)
- [15] LI H L. On block-transitive 2 (v, 4, 1) designs [J]. J. Combin Theory Ser A, 1995, **69**: 115–124.
- [16] LIU Wei-jun, LI Hui-ling. Solvable line-transitive automorphism groups of finite linear spaces [J]. Sci. China Ser. A, 2000, 43: 1009–1013.
- [17] LIU Wei-jun, LI Hui-ling, MA Chuan-gui. Soluble block-transitive automorphism groups of 2-(v, 6, 1) designs
 [J]. Acta Math. Sinica, 2000, 43: 157–162. (in Chinese)
- [18] LIU Wei-jun, LI Hui-ling, MA Chuan-gui. Soluble block-transitive automorphism groups of 2-(v, 7, 1) designs
 [J]. Adv. Math. (China), 2001, 30: 56–62. (in Chinese)
- [19] SHORT M W. The Primitive Soluble Permutaion Groups of Degree Less than 256 [M]. Springer-Verlag, Berlin, 1992.
- [20] TONG Wen-wen, LI Hui-ling. Solvable block transitive automorphism groups of 2-(v, 5, 1) designs [J]. Discrete Math., 2003, 260: 267–273.
- [21] K. Zsigmondy K, Zur theorie der potenzreste. Monatsh Fur Math u Phys, 3(1892) 256-284.

关于可解区组传递的 $2-(5^6,7,1)$ 设计

刘伟俊, 唐剑雄

(中南大学数学科学与计算技术学院,湖南 长沙 410075)

摘要: 设 *G* 是设计 2-(5⁶,7,1) 的一个可解区传递自同构群, 则 *G* 是旗传递的且 *G* ≤ *A*Γ*L*(1,5⁶). **关键词**: 设计, 区组传递, 自同构群, 可解群.