Some Properties on Baer PP and PS Rings

ZHANG Mian－mian
（Dept．of Math．，Zhejiang University，Hangzhou 310027，China ）
（E－mail：zhmm126＠yahoo．com．cn）

Abstract

This paper gives some results on Strong－Armendariz rings and the Ore－extensions $R\left[x, x^{-1} ; \alpha\right]$ of Bare，PP and PS rings．And the main two results are：（1）R is a Bear（PP） ring if and only if $R[[x]]$ is a Baer（PP）ring；（2）If R is an α－rigid ring，then R is a Baer（PP， PS ）ring if and only if $R\left[x, x^{-1} ; \alpha\right]$ is a Baer（PP，PS）ring．

Key words：Baer ring；PP ring；PS ring；Strong－Armendariz ring；Ore extension．
MSC（2000）：13B02
CLC number：O153

1．Introduction

Through this paper，all rings are associative with identity．This paper is composed of three parts．The first part concerns the relationship between Strong－Armendariz rings and reduced rings，being motivated by［1，2］．Armendariz rings which was initiated by Armendariz ${ }^{[1]}$ and Rege and Chhawchharia ${ }^{[3]}$ is related to polynomial rings，while Strong－Armendariz rings are related to formal polynomial rings．A ring R is called an Armendariz ring if whenever $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$ satisfy $f(x) g(x)=0$ ，we have $a_{i} b_{j}=0$ for each i, j ．A ring R is called a Strong－Armendariz ring if whenever $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}, g(x)=\sum_{j=0}^{\infty} b_{j} x^{j} \in R[x]$ satisfy $f(x) g(x)=0$ ，we have $a_{i} b_{j}=0$ for each $i, j \geq 0$ ．A ring is called reduced if it has nonzero nilpotent elements．We will also show in this paper that the properties of Baer，PP and PS of R are closed under formal polynomial extension when R is a Strong－Armendariz ring．By Kaplansky ${ }^{[4]}$ ，a ring R is called Baer if the right annihilator of every nonempty subset of R is generated by an idempotent．PP rings are closely related to these rings．A ring is called a right PP ring if each principle right ideal of R is projective，or equivalently，if the right annihilator of each element of R is generated by an idempotent．A ring R is called a PP ring if it is both a right and a left PP ring．Baer rings are clearly right PP rings．A ring R is called a left PS ring if $\operatorname{Soc}\left({ }_{R} R\right)$ is projective．

We denote the right annihilator over a ring R by $r_{R}(-)$ and the left annihilator $l_{R}(-)$ ．The second part of this paper concerns the generalization of McCoy＇s theorem．McCoy ${ }^{[5]}$ proved that if R is a commutative ring，then whenever $g(x)$ is a zero－divisor in $R[x]$ there exists a nonzero element $c \in R$ such that $c g(x)=0$ ．Yasuyuki Hirano ${ }^{[6]}$ generalized this result as follows：Let

Received date：2004－11－01
Foundation item：the Program for New Century Excellent Talents in University（04－0522），and the National Natural Science Foundation of China（10571153）
$f(x)$ be an element of the polynomial ring $R[x]$ over a (not necessarily commutative) ring R. If $r_{R[x]}(f(x) R[x]) \neq 0$, then $\Psi\left(r_{R[x]}(f(x) R[x])\right)=r_{R[x]}(f(x) R[x]) \cap R \neq 0$. We will show in this paper that it is still right when $R\left[x, x^{-1}\right]$ instead of $R[x]$. The definition is stated later. The last part concerns the Skew Laurent polynomial $R\left[x, x^{-1} ; \alpha\right]$. Recall the Skew Laurent polynomial ring $R\left[x, x^{-1} ; \alpha\right]$ with a ring automorphism $\alpha: R \rightarrow R$ and relation: $x^{-1} a=a^{-1} x^{-1} ; x a=$ $\alpha(a) x ; x x^{-1}=u ; x^{-1} x=\alpha^{-1}(u), u$ is a central entire, $a, u \in R$. When $\alpha=1$, we write $R\left[x, x^{-1}\right]$ instead of $R\left[x, x^{-1} ; \alpha\right]$. we will show in this paper that the properties of Baer, PP, PS, weakly PP and PS are closed under Ore extension. A ring R is called weakly PP if every principle left ideal ${ }_{e} R e r$ is projective for each $r \in R$ and each primitive idempotent $e \in R$. We give an example in this paper about $R\left[x, x^{-1} ; \alpha\right]$ which is quasi-Baer, but R is not quasi-Baer. A ring is called quasi-Baer if the left annihilator of every ideal is generated, as a left ideal, by an idempotent.

2. Strong-Armendariz ring

Lemma 2.1 If R is a reduced ring, then R is a Strong-Armendariz ring.
Proof Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}+\cdots, f(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n}+\cdots \in R[[x]]$ with $0=f(x) g(x)=a_{0} b_{0}+\left(a_{1} b_{0}+a_{0} b_{1}\right) x+\cdots+\left(a_{n} b_{0}+a_{n-1} b_{1}+a_{0} b_{n}\right) x^{n}+\cdots$. So we have the following system of equations:
(0) $a_{0} b_{0}=0$;
(1) $a_{1} b_{0}+a_{0} b_{1}=0$;
...;
(n) $a_{n} b_{0}+a_{n-1} b_{1}+\cdots+a_{0} b_{n}=0$;
\cdots;
Multiply Eq.(1) on the right side by $a_{1} b_{0}$, we get $a_{1} b_{0} a_{1} b_{0}+a_{0} b_{1} a_{1} b_{0}=0$. But $a_{0} b_{1} a_{1} b_{0}=0$ since R is reduced and $a_{0} b_{0}=0$. Hence $\left(a_{1} b_{0}\right)^{2}=a_{1} b_{0} a_{1} b_{0}=0$, that is $a_{1} b_{0}=0$. So Eq.(1) becomes $a_{0} b_{1}=0$. Now assume that k is a positive integer such that $a_{i} b_{j}=0$ for all $i+j \leq$ k. Multiply Eq. $(k+1)$ on the right side by $a_{k+1} b_{0}$, we get $a_{k+1} b_{0}=0$. Eq. $(k+1)$ becomes $a_{k} b_{1}+\cdots+a_{0} b_{k+1}=0$. Continue the method we get $a_{i} b_{j}=0$, for all $i+j=k+1$. Therefore $a_{i} b_{j}=0$, for all $i, j \geq 0$. Then R is Strong-Armendariz.

A ring is called abelian if every idempotent of it is central.
Lemma 2.2 If R is a Strong-Armendariz ring, then R is an abelian ring.
Proof Let $f(x)=(e r e-e r)+e x, g(x)=(e r e-e r)+(e-1) x \in R[[x]]$, for any $e, r \in R, e^{2}=e$. ere $-e r=e(e r e-e r)=0$, since R is Strong-Armendariz and $f(x) g(x)=0$. Let $f(x)=$ $(e r e-r e)+(e-1) x, g(x)=(e r e-r e)+(e-1) x \in R[[x]]$, for any $e, r \in R, e^{2}=e$. We get ere $-r e=(e-1)(e r e-r e)=0$ by the same reason. Hence $e r=r e$, for any $e, r \in R, e^{2}=e$. Then R is abelian.

Lemma 2.3 ${ }^{[1]}$ Suppose that a ring R is abelian, then we have the following:
(1) Every idempotent of $R[x]$ is in R and $R[x]$ is abelian.
(2) Every idempotent of $R[[x]]$ is in R and $R[[x]]$ is abelian.

Lemma 2.4 If R is a Strong-Armendariz ring, then for any idempotent $e \in R, e R e$ is a StrongArmendariz ring.

Proof Let $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}, g(x)=\sum_{j=0}^{\infty} b_{j} x^{j} \in e R e[[x]]$ be polynomials satisfy $f(x) g(x)=0$. Obviously $e R e \subseteq R$, then $f(x), g(x) \in R[[x]]$. Since R is Strong-Armendariz, then $a_{i} b_{j}=0$ for any $i, j \geq 0$. Then $e R e$ is Strong-Armendariz.

One may suspect that if $e R e$ is a Strong-Armendariz ring for any nonidentity idempotent e of R, then R is a Strong-Armendariz ring. However, it is not true in general by the following example.

Example 2.1 Let Z_{2} be the ring of integers modulo 2 and consider the ring $R=\left(\begin{array}{cc}Z_{2} & Z_{2} \\ 0 & Z_{2}\end{array}\right)$. Then by Example 1 in [1], R is not Armendariz, so is not Strong-Armendariz. Notice that the only nontrivial nonidentity idempotents of R are

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)
$$

and that $e R e \cong Z_{2}$ is a Strong-Armendariz ring for any nontrivial nonidentity idempotent e in R.

Lemma 2.5 Let R be a Strong-Armendariz ring. Then R is a Baer ring if and only if $R[[x]]$ is a Baer ring.

Proof Assume that R is Baer. Let A be a nonempty subset of $R[[x]]$, and R^{*} be the set of all coefficients of elements of A. Then R^{*} is a nonempty subset of R, and so $r_{R}\left(A^{*}\right)=e R$ for some idempotent $e \in R$. Since $e \in r_{R[[x]]}(A)$, we get $e R[[x]] \subseteq r_{R[[x]]}(A)$. Now, let $g=$ $b_{0}+b_{1} x+\cdots+b_{n} x^{n}+\cdots \in r_{R[[x]]}(A)$. Then $A g=0$ and hence $f g=0$ for any $f \in A$. Thus $b_{0}, b_{1}, \cdots, b_{n}, \cdots \in r_{R}\left(A^{*}\right)=e R$ since R is a Strong-Armendariz ring. Hence there exists $c_{0}, c_{1}, \cdots, c_{n}, \cdots \in R$, such that $g=e c_{0}+e c_{1}+\cdots+e c_{n}+\cdots=e\left(c_{0}+c_{1}+\cdots+c_{n}+\cdots\right) \in e R[[x]]$. Therefore, $R[[x]]$ is Baer.

Conversely, assume that $R[[x]]$ is a Baer ring. Let B be a nonempty subset of R. Then $r_{R[[x]]}(B)=e R[[x]]$ for some idempotent $e \in R$ by Lemma 2.3. Hence $r_{R}(B)=e R$ and R is a Baer ring.

Theorem 2.6 Let R be a Strong-Armendariz ring. Then R is a $P P$ ring if and only if $R[[x]]$ is a $P P$ ring.

Proof Assume that R is a PP ring. Let $p=a_{0}+a_{1}+\cdots+a_{n} x^{n}+\cdots \in R[[x]]$. There exists $e_{i}^{2}=e_{i} \in R$ such that $r_{R}\left(a_{i}\right)=e_{i} R$, for $i=0,1, \cdots, n, \cdots$. Let $e=e_{0} e_{1} \cdots e_{n} \cdots$. Then by Lemma 2.2, $e^{2}=e \in R$ and $e R=\bigcap_{i=0}^{\infty} r_{R}\left(a_{i}\right)$. So $p e=a_{0} e+a_{1} e x+\cdots+a_{n} e x^{n}+\cdots=0$. Hence $e R[[x]] \subseteq r_{R[[x]]}(p)$. Let $q=b_{0}+b_{1}+\cdots+b_{n} x^{n}+\cdots \in r_{R[[x]]}(p)$. Since $p q=0$ and R is a Strong-Armendariz, $a_{i} b_{j}=0$ for all $i, j \geq 0$. Then $b_{j} \in e R$ for all $j=0,1, \cdots, n, \cdots$. Hence $q \in e R[[x]]$. Consequently, $e R[[x]]=r_{R[x x]]}(p)$ and $R[[x]]$ is a PP ring.

Conversely, assume that $R[[x]]$ is a PP ring. Let $a \in R$. By Lemma 2.3, there exists an idempotent $e \in R$ such that $r_{R[x]]]}(a)=e R[[x]]$. Hence, $r_{R}(a)=r_{R[[x]]}(a) \cap R=e R$ and R is a PP ring.

Theorem 2.7 Let R be an Armendariz ring. Then R is a $P S$ ring if and only if $R[x]$ is a $P S$ ring.

Proof By the same method in the proof of Theorem 2.6.
Theorem 2.8 Let R be a Strong-Armendariz ring. Then R is a $P S$ ring if and only if $R[[x]]$ is a PS ring.

Proof If R is a PS ring, then $R[[x]]$ is a PS ring according to the Theorem 3.1 in [7].
Conversely, if L is a maximal ideal of R, then $I=L[[x]]$ is a maximal ideal of $R[[x]]$. According to the fact that $R[[x]]$ is a PS ring, we have $r_{R[[X]]}(I)=e R[[x]], e^{2}=e \in R$, because R is a Strong-Armendariz ring and Lemma 2.3. So $r_{R}(L) \supseteq e R$. Assume there exists an element $0 \neq a \in r_{R}(L)-e R, a \neq 0$. For any element $g=b_{m} x^{m}+b_{m+1} x^{m+1}+\cdots+b_{n} x^{n} \in I, b_{m} \neq 0, g a=0$. That is $a \in r_{R[[x]]}(I)=e R[[x]]$, a contradiction. Thus $r_{R}(L)=e R$ as required.

Theorem 2.9 Let R be a reduced ring. Then R is a $P S$ ring if and only if $R[x]$ or $R[[x]]$ is a PS ring.

Proof We prove the result for $R[[x]]$ only; The proof for $R[x]$ is similar.
The "if" part has been proved by [7]. Let us see the "only if" part. It is clear that $R[[x]]=R[[x ; \alpha]]$, where $\alpha=1$. By hypothesis R is a reduced ring, then if $r \alpha(r)=r^{2}=0$, we have $r=0$. Thus $R[[x]]$ is a 1-rigid ring. Let L be the maximal ideal of R, then $I=L[[x]]$ is a maximal ideal of $R[[x]]$. So $r(I)=e R[[x]], e^{2}=e \in R$ according to $R[[x]]$ is a 1-rigid ring. Hence $r(L) \supseteq e R$. If there exists an element $0 \neq a \in\left(r_{R}(L)-e R\right)$. For any element $g=b_{m} x^{m}+b_{m+1} x^{m+1}+\cdots \in I, b_{m} \neq 0, b_{m+1}, \cdots \in L, g a=0$. So $a \in e R[[x]] \cap R=e R$, a contradiction. Thus $r(L)=e R$ as required.

3. A generalization of McCoy's theorem

First define the degree of $f(x)=\sum_{i=m}^{n} a_{i} x^{i} \in R\left[x, x^{-1}\right]$ in this way that $\operatorname{deg}(f(x))=|n|$ if $n=m ; \operatorname{deg}(f(x))=n-m$, if $n \neq m$.

We begin with the following lemma.
Lemma 3.1 Let $f(x)$ and $g(x)$ be two elements of $R\left[x, x^{-1}\right]$. Then $f(x) R g(x)=0$ if and only if $f(x) R\left[x, x^{-1}\right] g(x)=0$.

Proof Assume that $f(x) R g(x)=0$ and take an arbitrary element $\sum_{k=p}^{q} c_{k} x^{k}$ of $R\left[x, x^{-1}\right]$. Then $f(x)\left(\sum_{k=p}^{q} c_{k} x^{k}\right) g(x)=\sum_{k=p}^{q} f(x) c_{k} g(x) x^{k}=0$. This implies $f(x) R\left[x, x^{-1}\right] g(x)=0$. The "only if part" is clear.

Theorem 3.2 Let $f(x)$ be an element of $R\left[x, x^{-1}\right]$. If $r_{R\left[x, x^{-1}\right]}\left(f(x) R\left[x, x^{-1}\right]\right) \neq 0$, then $r_{R\left[x, x^{-1}\right]}\left(f(x) R\left[x, x^{-1}\right]\right) \cap R \neq 0$.

Proof We freely use Lemma 3.1 without mention it. Let $f(x)=\sum_{i=m}^{n} a_{i} x^{i} \in R\left[x, x^{-1}\right]$. If $\operatorname{deg}(f(x))=0$ or $f=0$, the assertion is clear. So let $\operatorname{deg}(f(x))=n-m>0$. Assume contrary, let $0 \neq g(x)=\sum_{j=s}^{t} x^{j} \in R\left[x, x^{-1}\right] \in r_{R\left[x, x^{-1}\right]}\left(f(x) R\left[x, x^{-1}\right]\right)$ with minimal degree. Since

$$
\begin{gathered}
\left(\sum_{i=m}^{n} a_{i} x^{i}\right) R\left[x, x^{-1}\right]\left(\sum_{j=s}^{t} b_{j} x^{j}\right)=0 \\
\quad\left(\sum_{i=m}^{n} a_{i} x^{i}\right) R\left(\sum_{j=s}^{t} b_{j} x^{j}\right)=0
\end{gathered}
$$

then $a_{n} R b_{t}=0$. Hence

$$
a_{n} R\left[x, x^{-1}\right] g(x)=a_{n} R\left[x, x^{-1}\right]\left(b_{t-1} x^{t-1}+\cdots+b_{s} x^{s}\right)
$$

and

$$
\left(f(x) R\left[x, x^{-1}\right] a_{n}\right) R\left[x, x^{-1}\right]\left(b_{t-1} x^{t-1}+\cdots+b_{s} x^{s}\right)=\left(f(x) R\left[x, x^{-1}\right] a_{n}\right) R\left[x, x^{-1}\right] g(x)=0
$$

Since $g(x)$ is of minimal degree, we have

$$
a_{n} R\left[x, x^{-1}\right]\left(b_{t-1} x^{t-1}+\cdots+b_{s} x^{s}\right)=0 .
$$

Therefore,

$$
a_{n} \in l_{R}\left(R\left[x, x^{-1}\right] b_{t} x^{t}+R\left[x, x^{-1}\right]\left(b_{t-1} x^{t-1}+\cdots+b_{s} x^{s}\right)\right) .
$$

Hence,

$$
\left(a_{n-1} x^{n-1}+\cdots+a_{m} x^{m}\right) R\left[x, x^{-1}\right]\left(b_{t} x^{t}+\cdots+b_{s} x^{s}\right)=0 \text { and } a_{n-1} R b_{t}=0
$$

Thus we obtain

$$
f(x) R\left[x, x^{-1}\right]\left(a_{n-1} R\left[x, x^{-1}\right]\left(b_{t-1} x^{t-1}+\cdots+b_{s} x^{s}\right)\right)=f(x)\left(R\left[x, x^{-1}\right] a_{n-1} R\left[x, x^{-1}\right]\right) g(x)=0
$$

Since $g(x)$ is of minimal degree, we obtain $a_{n-1} R\left[x, x^{-1}\right]\left(b_{t-1} x^{t-1}+\cdots+b_{s} x^{s}\right)=0$. Therefore,

$$
a_{n}, a_{n-1} \in l_{R}\left(R\left[x, x^{-1}\right] b_{t} x^{t}+R\left[x, x^{-1}\right]\left(b_{t-1} x^{t-1}+\cdots+b_{s} x^{s}\right)\right)
$$

Repeating, we obtain

$$
a_{n}, a_{n-1}, \cdots, a_{m} \in l_{R}\left(R\left[x, x^{-1}\right] b_{t} x^{t}+R\left[x, x^{-1}\right]\left(b_{t-1} x^{t-1}+\cdots+b_{s} x^{s}\right)\right)
$$

This implies that

$$
b_{s}, b_{s-1}, \cdots, b_{t} \in r_{R\left[x, x^{-1}\right]}\left(f(x) R\left[x, x^{-1}\right]\right)
$$

Contradicted.

Corollary 3.3 Let R be a semi-commutative ring. If $f(x)$ is a zero-divisor in $R[x]$, then there exists a nonzero element $c \in R$ such that $f(x) c=0$.

4. Ore extension of $R\left[x, x^{-1} ; \alpha\right]$

Lemma 4.1 ${ }^{[9]}$ Let R be an α-rigid ring, α is a ring automorphism, $a, b \in R$, then we have:
(1) If $a b=0$, then $a \alpha^{n}(b)=\alpha^{n}(a) b=0$, for any $n \in Z$.
(2) If $a \alpha^{k}(b)=\alpha^{k}(a) b=0$, for some $k \in Z$, then $a b=0$.
(3) If a is central entire, then $\alpha(a)$ is still a central entire in R.

Lemma 4.2 Ore extension $R\left[x, x^{-1} ; \alpha\right]$ is reduced if and only if R is an α-rigid ring. In this case, $\alpha(e)=e$, for some $e^{2}=e \in R$.

Proof Suppose that R is α-rigid. Assume to the contrary that $R\left[x, x^{-1} ; \alpha\right]$ is not reduced. Then there exists $0 \neq f \in R\left[x, x^{-1} ; \alpha\right]$ such that $f^{2}=0$. Since R is reduced, $f \notin R$. Thus we put $f=\sum_{i=n}^{m} a_{i} x^{i}$, where $a_{i} \in R$, for $n \leq i \leq m$ and $a_{n} \neq 0, a_{m} \neq 0$. Since $f^{2}=0$, we have $a_{m} \alpha^{m}\left(a_{m}\right)=0, a_{n} \alpha^{n}\left(a_{n}\right)=0$. By Lemma 4.1, $a_{m}^{2}=0, a_{n}^{2}=0$ and so $a_{m}=0, a_{n}=0$, which is a contradiction. Therefore, $R\left[x, x^{-1} ; \alpha\right]$ is reduced.

Conversely, suppose that $R\left[x, x^{-1} ; \alpha\right]$ is reduced. Clearly, R is reduced as a subring. If $a \alpha(a)=0$ and $\alpha(a) x a=0$. Thus $0=\alpha(a) \alpha(a) x=(\alpha(a))^{2} x$, and so $\alpha(a)=0$. Since α is an automorphism, we have $a=0$. Therefore, R is α-rigid.

Next, let e be an idempotent in R. Then e is central, and so $e x=x e=\alpha e x$. This implies that $\alpha e=e$.

Lemma 4.3 ${ }^{[9]}$ Let R be an α-rigid ring. If $p=\sum_{i=n}^{m} a_{i} x^{i}, q=\sum_{j=s}^{t} b_{j} x^{j} \in R\left[x, x^{-1} ; \alpha\right], m, n, s, t$ are integers, then $p q=0$ if $a_{i} b_{j}=0$, for any $n \leq i \leq m, s \leq j \leq t$.

Lemma 4.4 Let R be an α-rigid ring. If $e^{2}=e \in R\left[x, x^{-1} ; \alpha\right], e=e_{n} x^{n}+\cdots+e_{0}+\cdots+e_{m} x^{m}$, then $e=e_{0}$.

Proof Since $1-e=\left(1-e_{0}\right)-\sum_{i=n}^{-1}-\sum_{j=1}^{m} e_{j} x_{j}$, we get $e_{0}\left(1-e_{0}\right)=0$ and $e_{i}^{2}=0$ for all $n \leq i \leq-1,1 \leq i \leq m$ by Lemma 4.3. Thus $e_{i}=0$ for all $n \leq i \leq m, i \neq 0$, and so $e=e_{0}=e_{0}^{2} \in R$.

Birkermeier proved if R is a quasi-Baer ring, then $R\left[x, x^{-1} ; \alpha\right]$ is a quasi-Baer ring. However the following example shows that there exists $R\left[x, x^{-1} ; \alpha\right]$ which is quasi-Baer, but R is not quasiBaer.

Example 4.1 Let Z be the ring of integers and consider the ring $Z \oplus Z$ with the usual addition and multiplication. Then the subring $R=\{(a, b) \in Z \oplus Z \mid a \equiv b(\bmod 2)\}$ of $Z \oplus Z$ is a commutative reduced ring. Note that only idempotents of R are $(0,0)$ and (1,1). In fact, if $(a, b)^{2}=(a, b)$, then $\left(a^{2}, b^{2}\right)=(a, b)$ and so $a^{2}=a, b^{2}=b$. Since $a \equiv b(\bmod 2)$, then $(a, b)=$ $(0,0)$ or $(a, b)=(1,1)$. Now we claim that R is not quasi-Baer. For $(2,0) \in R$, we note that $r_{R}((2,0))=\{(0,2 n) \mid n \in Z\}$. So we can see that $r_{R}((2,0))$ does not contain a nonzero
idempotent of R. Hence R is not a quasi-Baer ring.
Now let $\alpha: R \rightarrow R$ be defined by $\alpha((a, b))=(b, a)$. Then α is an automorphism of R. Note that R is not α-rigid. We claim that $R\left[x, x^{-1} ; \alpha\right]$ is quasi-Baer. Let I be a nonzero right ideal of $R\left[x, x^{-1} ; \alpha\right]$ and $p \in I$, put $p=\left(a_{i}, b_{i}\right) x^{i}+\cdots+\left(a_{m}, b_{m}\right) \neq 0$. Then for some positive integer $2 k-i>|i|+|m|+|j|+|n|, j, n$ is the integer in q, it will be stated later in the following. $p(1,1) x^{2 k-i}=\left(a_{i}, b_{i}\right) \prod_{h=0}^{-\min \{0, j\}} a^{-h}(u) x^{2 k}+\cdots+\left(a_{m}, b_{m}\right) \prod_{h=0}^{-\min \{0, m\}} a^{-h}(u) x^{2 k+m-i} \in I$ and $p(1,1) x^{2 k+1-i}=\left(a_{i}, b_{i}\right) \prod_{h=0}^{-\min \{0, j\}} a^{-h}(u) x^{2 k+1}+\cdots+\left(a_{m}, b_{m}\right) \prod_{h=0}^{-\min \{0, m\}} a^{-h}(u) x^{2 k+m+1-i} \in$ I (where $a^{-2}(u)=\alpha^{-1}\left(\alpha^{-1}(u)\right), h=2$). Suppose that $0 \neq q \in r_{R\left[x, x^{-1} ; \alpha\right]}(I)$ and put $q=$ $\left(u_{j}, v_{j}\right) x^{j}+\cdots+\left(u_{n}, v_{n}\right) x^{n} x^{n}$, where $n-j$ is the smallest integer such that $\left(a_{i}, b_{i}\right) \neq 0,\left(a_{m}, b_{m}\right) \neq$ 0 . Then $p(1,1) x^{2 k-i} q=0$ and $p(1,1) x^{2 k+1-i} q=0$. So we have
$\left(a_{i}, b_{i}\right) \prod_{h=0}^{-\min \{0, i\}} \alpha^{-h}(u) x^{2 k}\left(u_{j}, v_{j}\right) x^{j}+\cdots=\left(a_{i}, b_{i}\right)\left(u_{j}, v_{j}\right) \prod_{h=0}^{-\min \{0, i\}} \alpha^{-h}(u) u^{-\min \{0, j\}} x^{2 k+j}+\cdots$
and
$\left(a_{i}, b_{i}\right) \prod_{h=0}^{-\min \{0, i\}} \alpha^{-h}(u) x^{2 k+1}\left(u_{j}, v_{j}\right) x^{j}+\cdots=\left(a_{i}, b_{i}\right)\left(u_{j}, v_{j}\right) \prod_{h=0}^{-\min \{0, i\}} \alpha^{-h}(u) u^{-\min \{0, j\}} x^{2 k+1+j}+\cdots$.
Hence $\left(a_{i} u_{j}, b_{i} v_{j}\right)=(0,0)$ and $\left(a_{i} v_{j}, b_{i} u_{j}\right)=(0,0)$. This implies that $a_{i} u_{j}=b_{i} v_{j}=0$ and $a_{i} v_{j}=b_{i} u_{j}=0$. Since $\left(a_{i}, b_{j}\right) \neq 0, a_{i}$ or b_{i} is nonzero. Then we have $\left(u_{j}, v_{j}\right)=(0,0)$, which is a contradiction. So $r_{R\left[x, x^{-1}\right]}(I)=(0,0)$ and hence $R\left[x, x^{-1}\right]$ is quasi-Baer.

Lemma 4.5 Let R be an α-rigid ring. Then R is a $P P$ ring if and only if $R\left[x, x^{-1} ; \alpha\right]$ is a $P P$ ring.

Proof Assume that R is a PP ring. Let $p=a_{n} x^{n}+\cdots+a_{m} x^{m} \in R\left[x, x^{-1} ; \alpha\right]$. There exists an idempotent $e_{i} \in R$ such that $r_{R}\left(a_{i}\right)=e_{i} R$ for $i=n, \cdots, m$. Let $e=e_{n} \cdots e_{m}$. Then $e^{2}=e \in R, e R=\bigcap_{i=n}^{m} r_{R}\left(a_{i}\right)$. So by Lemma 4.2, $p e=a_{n} \alpha^{n}(e) x^{n}+\cdots+a_{m} \alpha^{m}(e) x^{m}=a_{n} e x^{n}+$ $\cdots+a_{m} e x^{m}=0$. Hence $e R\left[x, x^{-1} ; \alpha\right] \subseteq r_{R\left[x, x^{-1} ; \alpha\right]}(p)$. Let $q=b_{s} x^{s}+\cdots+b_{t} x^{t} \in r_{R\left[x, x^{-1} ; \alpha\right]}(p)$. Since $p q=0, a_{i} b_{j}=0$ for all $n \leq i \leq m, s \leq j \leq t$. Then $b_{j} \in e R$ for $s \leq j \leq t$, and so $q \in R\left[x, x^{-1} ; \alpha\right]$. Consequently, $e R\left[x, x^{-1} ; \alpha\right]=r_{R\left[x, x^{-1} ; \alpha\right]}(p)$. Thus $R\left[x, x^{-1} ; \alpha\right]$ is a PP ring.

Conversely, assume that $R\left[x, x^{-1} ; \alpha\right]$ is a PP ring. Let $a \in R$ by Lemma 4.4, there exists an idempotent $\operatorname{ein} R$ such that $r_{R\left[x, x^{-1} ; \alpha\right]}(a)=e R\left[x, x^{-1} ; \alpha\right]$. Hence $r_{R}(a)=e R$. Therefore, R is a PP ring.

According to [3,Lemma 1]. Let R be a reduced ring. Then the following statement are equivalent:
(1) R is a PP ring; (2) R is a p.q-Baer ring.

Then we have the following corollary:
Corollary 4.6 Let R be an α-rigid ring. Then R is a $p . q$-Baer ring if and only if $R\left[x, x^{-1} ; \alpha\right]$ is a $p . q$-Baer ring.

Theorem 4.7 Let R be an α-rigid ring. Then R is a weakly PP ring if and only if $R\left[x, x^{-1} ; \alpha\right]$
is a weakly PP ring.
Proof For every $f=\sum_{i=n}^{m} b_{i} x^{i} \in R\left[x, x^{-1} ; \alpha\right]$ and every primitive idempotent $e \in R\left[x, x^{-1} ; \alpha\right]$, by Lemma 4.4, $e \in R$. If $e f=0$, then $R\left[x, x^{-1} ; \alpha\right] e f$ is projective. Suppose that $e f \neq 0$. Then there exists an integer $n \leq k \leq m$ such that $e b_{k} \neq 0$. It is obvious that $R\left[x, x^{-1} ; \alpha\right](1-e) \subseteq$ $l_{R\left[x, x^{-1} ; \alpha\right]}(e f)$. Conversely, for any $g \in l_{R\left[x, x^{-1} ; \alpha\right]}(e f), g=\sum_{j=s}^{t} a_{j} x^{j}, g e f=0$. Then by Lemma 4.3, $a_{j} e b_{i}=0$. From $e b_{k} \neq 0$ and R is a weakly PP ring, we get $l_{R}\left(e b_{k}\right)=R(1-e)$, thus $a_{j} \in R(1-e)$. By Lemma 4.2, $g \in R\left[x, x^{-1} ; \alpha\right](1-e)$. Hence $R\left[x, x^{-1} ; \alpha\right](1-e) \subseteq l_{R\left[x, x^{-1} ; \alpha\right]}(e f)$. Hence $R\left[x, x^{-1} ; \alpha\right]$ is a weakly PP ring.

Conversely, if $R\left[x, x^{-1} ; \alpha\right]$ is a weakly PP ring, then for every $r \in R$ and every primitive idempotent $e \in R$, we have $l_{R\left[x, x^{-1} ; \alpha\right]}(e f)=R\left[x, x^{-1} ; \alpha\right] f, f^{2}=f \in R\left[x, x^{-1} ; \alpha\right]$. Hence R is a weakly PP ring.

Theorem 4.8 Let R be an α-rigid ring. Then R is a PS ring if and only if $R\left[x, x^{-1} ; \alpha\right]$ is a PS ring.

Proof If L is a maximal ideal of $R\left[x, x^{-1} ; \alpha\right]$ we show that $r_{R\left[x, x^{-1} ; \alpha\right]}(L)=e R\left[x, x^{-1} ; \alpha\right]$ for an idempotent $e^{2}=e \in R\left[x, x^{-1} ; \alpha\right]$. Let I denote the set of all constant coefficients of polynomials in L. Let J be the left ideal of R which is generated by I. If $J=R$, then there exists $s_{1}, \cdots, s_{n} \in$ $I, r_{1}, \cdots, r_{n} \in R$, such that $1=r_{1} s_{1}+\cdots+r_{n} s_{n}$. Assume $h \in r_{R\left[x, x^{-1} ; \alpha\right]}(L), h_{0} \neq 0, h_{0}$ is the constant coefficient of h for any $f=\sum_{i=s}^{t} f_{i} x^{i} \in L, f_{0} h_{0}=0$, for the arbitrary of f, we get $s_{i} h_{0}=0,1 \leq i \leq n$, so $h_{0}=0$, a contradiction. Hence $r_{R\left[x, x^{-1} ; \alpha\right]}(L)=0$.

Now assume $J \neq R$ we show that J is a maximal left ideal of R. Let $r \in(R-J)$, obviously $r \in R\left[x, x^{-1} ; \alpha\right]$, if $r \in L$, then $r \in J$, a contradiction. So $r \notin L$. Then $R\left[x, x^{-1} ; \alpha\right]=$ $L+R\left[x, x^{-1} ; \alpha\right] r$. Hence $1=f+g r=f_{0}+g_{0} r, g \in R\left[x, x^{-1} ; \alpha\right]$. If $f_{0}=0$, then $1 \in R r, R=J+R r$. If $f_{0} \neq 0$, then $f_{0} \in J, R=J+R r$. Hence J is a maximal left ideal of R.

Because R is a PS ring, then there exists an idempotent $e \in R$, such that $r_{R}(J)=e R$. So $L e=0$. Hence $r_{R\left[x, x^{-1} ; \alpha\right]}(L) \supseteq e R\left[x, x^{-1} ; \alpha\right]$. Conversely, let $g=\sum_{j=k}^{m} b_{j} x^{j} \in r_{R\left[x, x^{-1} ; \alpha\right]}(L), b_{k} \neq$ 0 , for any $f=\sum_{i=t}^{n} a_{i} x^{i} \in L, a_{t} \neq 0, f g=0$. By Lemma 4.3, $a_{i} b_{j}=0, t \leq i \leq n, k \leq j \leq m$. Particularly, $a_{0} b_{j}=0$, where a_{0} is the constant coefficient of f. For the arbitrary of $f, b_{j} \in$ $r_{R}(J)=e R$. So $g \in e R\left[x, x^{-1} ; \alpha\right]$. Hence $r_{R\left[x, x^{-1} ; \alpha\right]}(L) \subseteq e R\left[x, x^{-1} ; \alpha\right]$. Thus $r_{R\left[x, x^{-1} ; \alpha\right]}(L)=$ $e R\left[x, x^{-1} ; \alpha\right] . R\left[x, x^{-1} ; \alpha\right]$ is a PS ring.

Conversely, if L is a maximal left ideal of R, then $I=L\left[x, x^{-1} ; \alpha\right]$ is a maximal left ideal of $R\left[x, x^{-1} ; \alpha\right]$. By hypothesis and Lemma 4.4, $r(I)=e R\left[x, x^{-1} ; \alpha\right], e^{2}=e \in R$. Hence $r(L) \supseteq e R$. Assume there exists an element $0 \neq a \in r(L)-e R$. For any $g=\sum_{i=s}^{t} g_{i} t^{i} \in I, g a=0$. By using Lemma 4.1, then $a \in r(I)=e R\left[x, x^{-1} ; \alpha\right] \bigcap R=e R$, a contradiction. Hence $r(L)=e R$.

At last we prove the following two Theorems.
Recall that for a ring R with a ring endomorphism $\alpha: R \rightarrow R$ and an α-derivation $\delta: R \rightarrow R$, the Ore extension $R[x ; \alpha, \delta]$ of R is the ring obtained by giving the polynomial ring over R with the new multiplication

$$
x r=\alpha(r) x+\delta(r)
$$

for all $r \in R$ ．If we have $\delta=0$ ，we write $R[x ; \alpha, 0]$ is stead of $R[x ; \alpha, 0]$ and $R[x, \alpha]$ is called Ore extension of endomorphism type（also called a skew polynomial ring）．While $R[[x ; \alpha]]$ is called a skew power series ring．

Theorem 4．9 Let R be an α－rigid ring．Then $R[x ; \alpha, \delta]$ is a $P S$ ring if and only if R is a $P S$ ring．

Proof The＂if＂part has been proved in［9］．Let us see the＂only if＂part．Let L be the maximal left ideal of R ．Then $L[x]$ is a maximal left ideal of $R[x ; \alpha, \delta]$ is a PS ring．So $r_{R[x ; \alpha, \delta]}(L[x])=$ $e R[x ; \alpha, \delta], e^{2}=e \in R$ ．Hence $r_{R}(L) \supseteq e R$ ．If there exists an element $0 \neq a \in r_{R}(L)-e R$ ，for any element $g=b_{0}+b_{1}+\cdots+b_{m} x^{m} \in L[x], g a=0$ ．Hence $a \in r_{R[x ; \alpha, \delta]}(L[x]) \cap R=e R$ ，a contradiction．Thus $r_{R}(L)=e R$ ．

Theorem 4．10 Let R be an R be an α－rigid ring．Then $R[[x ; \alpha]]$ is a $P S$ ring if and only if R is a $P S$ ring．

Proof The proof of this theorem is similar to the proof of Theorem 4．9．

References：

［1］ARMENDARIZ E P．A note on extensions of Baer and P．P．－rings［J］．J．Austral．Math．Soc．，1974，18： 470－473．
［2］KIM N K，LWW Y．Armendariz rings and Reduced rings［J］．J．Algebra，2000，223：477－488．
［3］REGE M B，ROBSON S C．Armendariz rings［J］．Proc．Japan Acad．Ser．A Math．Sci．，1997，73：14－17．
［4］KAPLANSKY I．Rings of Operators［M］．W．A．Benjamin，Inc．，New York－Amsterdam， 1968.
［5］MCCOY N H．Remarks on divisors of zero［J］．Amer．Math．Monthly，1942，49：286－295．
［6］HIRANO Y．On annihilator ideals of a polynomial ring over a noncommutative ring［J］．J．Pure Algebra，2002， 168：45－52．
［7］NICHOLSON W K，WATTERS J F．Rings with projective socles［C］．Projective socles，Proceedings of the America Mathematical society，V102，No 3，March 1988；
［8］HONG C Y，KIM N K，KWAK T K．Ore extension of Baer and PP ring［J］．J．Pure Algebra，2000，151： 215－226．
［9］SONG Jun－quan．Ore extensions of PP and PS rings［J］．J．Zhejiang Univ．Sci．Ed．，2004，31（1）：10－13．（in Chinese）

关于 Baer PP 和 PS 环的一些性质

张棉棉

（浙江大学数学系，浙江 杭州310027）
摘要：在此文中，我们对 Strong－Armendariz 环和 Baer PP 及 PS 环 Ore－扩张 $R\left[x, x^{-1} ; \alpha\right]$ 的一些性质进行了讨论研究，并得到了一些结果。主要证明了 R 是 Baer（PP）环当且仅当 $R[[x]]$是 $\operatorname{Baer}(\mathrm{PP})$ 环及 R 是 α－rigid 环时，R 是 $\operatorname{Baer}(\mathrm{PP}, \mathrm{PS})$ 环当且仅当 $R[[x]]$ 是 Baer（PP，PS）环。

关键词：Bare 环；PP 环；PS 环；Strong－Armendariz 环；Ore－扩张。

