Orthodox Semirings with Additive Idempotents Satisfying Permutation Identities

ZHOU Yuan-lan1,2

(1. Dept. of Math., Zhongshan University, Guangzhou 510275, China; 2. Dept. of Math., Jiangxi Normal University, Nanchang 330027, China)

(E-mail: ylzhou185@163.com)

Abstract: This paper deals with orthodox semirings whose additive idempotents satisfy permutation identities. A structure theorem for such semirings is established.

Key words: orthodox semiring; d-inverse semiring; band semiring.

MSC(2000): 20M10, 20M17, 16Y60

CLC number: O152.7, O153.3

1. Introduction and Preliminaries

Throughout this paper, we use the terminologies and notions given in [3]. A semiring S is an algebraic structure $(S, +, \cdot)$ consisting of a non-empty set S together with two binary operations $+$ and \cdot such that $(S, +)$ and (S, \cdot) are semigroups, connected by ring-like distributivity (that is, $x(y + z) = xy + xz, (y + z)x = yx + zx$, for all x, y and z in S). Usually, we write $(S, +, \cdot)$ simply as S, and for any $x, y \in S$, write $x \cdot y$ simply as xy.

An element a of a semiring S is called an idempotent if it satisfies $a + a = a \cdot a = a$. A semiring S is an idempotent semiring if all of its elements are idempotents. An idempotent semiring S is called a band semiring$^{[2]}$, if it satisfies the following conditions

$$a + ab + a = a, \quad a + ba + a = a \quad (1.1)$$

for any $a, b \in S$. A T band semiring S is a band semiring such that $(S, +)$ is a T band$^{[2]}$. In [6], the authors proved that band semirings are always regular band semirings.

Let D be a distributive lattice. For each $\alpha \in D$, let S_α be a semiring and assume that $S_\alpha \cap S_\beta = \emptyset$ if $\alpha \neq \beta$. For each pair $\alpha, \beta \in D$ such that $\alpha \leq \beta$, let $\varphi_{\alpha, \beta} : S_\alpha \rightarrow S_\beta$ be a semiring homomorphism such that

1. $\varphi_{\alpha, \alpha} = 1_{S_\alpha}$;
2. $\varphi_{\alpha, \beta} \varphi_{\beta, \gamma} = \varphi_{\alpha, \gamma}$, if $\alpha \leq \beta \leq \gamma$;
3. $\varphi_{\alpha, \beta}$ is injective, if $\alpha \leq \beta$;
4. $S_\alpha \varphi_{\alpha, \gamma} S_{\beta} \varphi_{\beta, \gamma} \subseteq S_{\alpha \beta} \varphi_{\alpha \beta, \gamma}$, if $\alpha + \beta \leq \gamma$.

On $S = \cup_{\alpha \in D} S_\alpha$, $+$ and \cdot are defined as follows: For $a \in S_\alpha$ and $b \in S_\beta$.

Received date: 2005-05-12
Foundation item: the National Natural Science of China (10471112)
With the above operations, S is a semiring, and each S_α is a subsemiring of S. Write S as $[D; S_\alpha, \varphi_{\alpha,\beta}]$, and call it a strong distributive lattice D of semirings S_α.

Let S be a semiring, and A a subset of S. Then A is said to satisfy the permutation identity if

$$(\forall x_1, x_2, \ldots, x_n \in A) \ x_1 + x_2 \cdots + x_n = x_{p_1} + x_{p_2} + \cdots + x_{p_n},$$

where $(p_1p_2\cdots p_n)$ is a nontrivial permutation of $(12\cdots n)$. Yamada\cite{7} investigated the regular semigroups whose idempotents satisfy permutation identities and discussed the structure of such semigroups.

If U is a subsemiring of S, the restriction of the relation R on S to U will be denoted by R_U. Also, we denote the set of all additive idempotents (if there exist) of a semiring S by E. We remark that E is an ideal of the multiplicative reduct (S, \cdot).

We first recall some results about band semirings.

Theorem 1.1\cite{5} A semiring S is a rectangular band semiring if and only if S is isomorphic to the direct product of a left zero band semiring and a right zero band semiring.

Theorem 1.2\cite{5} A semiring S is a normal band semiring if and only if S is a strong distributive lattice of rectangular band semirings.

The following result will be used in the sequel.

Theorem 1.3\cite{7} Let S be a regular semigroup. Then the following statements are equivalent:

1. $E(S)$ satisfies a permutation identity;
2. $E(S)$ is a normal band.

2. Orthodox semirings

A semiring S is *additively regular* if for each element a in S there exists an element a' such that $a = a + a' + a$. If, in addition, the element a' is unique, and satisfies $a' = a' + a + a'$, then S is an additively inverse semiring. Usually, we denote the unique additive inverse of a by a^{-1}. Additively inverse semirings were first studied by Karvellas\cite{4} in 1974, and he proved the following theorem:

Theorem 2.1\cite{4} Let S be an additively inverse semiring. Then for x, y in S,

$$(xy)^{-1} = x^{-1}y = xy^{-1}, xy = x^{-1}y^{-1}.$$

Definition 2.2 An additively regular semiring S is an orthodox semiring if E is a band semiring.

Definition 2.3 An additively regular semiring S is called a d-inverse semiring if E is a distributive lattice.
Suppose S is an orthodox semiring. Then we define a relation σ on S as follows:

$$a \sigma b \iff V^+(a) = V^+(b),$$

where $V^+(x)$ is the set of all additive inverses of x.

Proposition 2.4 If S is an orthodox semiring, then σ is a congruence on S and S/σ is a d-inverse semiring.

Proof Since σ is an inverse semigroup congruence on $(S, +)$, we just need to prove σ is compatible with multiplication. Let $a \sigma b$ and $c \in S$. Then by distributive laws, we can prove easily that $ca' \in V^+(ca) \cap V^+(cb)$, $a' \in V^+(ac) \cap V^+(bc)$ where a' is an additive inverse of a. It follows that $V^+(ac) = V^+(bc)$ and $V^+(ca) = V^+(cb)$ which mean that σ is a congruence on S. Now we prove S/σ is a d-inverse semiring. Clearly, S/σ is also an orthodox semiring and $E^+(S/\sigma) = \{ e\sigma | e \in E^+(S) \}$. Since

$$ef + efe + ef = ef(f + fe + f) = ef,$$

$$efe + ef + efe = efe(e + ef + e) = efe,$$

we have $efe \sigma efe$. Similarly, we can prove $fefe \sigma fefe$. So $e \sigma fefe$. Also, $(e + ef)\sigma(e + e + ef)\sigma(e + ef + e) = e$. Therefore, $E^+(S/\sigma)$ is a distributive lattice.

3. The quasi-spined product structure

First, we introduce the definition of quasi-spined product.

Let T be a d-inverse semiring whose distributive lattice of additive idempotents is D, $L = [D; L_\alpha, \varphi_{\alpha, \beta}]$ a strong distributive lattice of left zero band semirings L_α, and $R = [D; R_\alpha, \psi_{\alpha, \beta}]$ a strong distributive lattice of right zero band semirings R_α. Let

$$M = \{ (e, \xi, f) \in L \times T \times R : \xi \in T, e \in L_{\xi + \xi^{-1}}, f \in R_{\xi^{-1} + \xi} \}.$$

We define addition “$+$” and multiplication “$.$” as follows:

$$(e, \xi, f) + (g, \eta, h) = (e + u, \xi + \eta, v + h),$$

$$(e, \xi, f) \cdot (g, \eta, h) = (eg, \xi \eta, fh),$$

where $u \in L_{\xi + \eta + (\xi + \eta)^{-1}}, v \in R_{(\xi + \eta)^{-1} + \xi + \eta}$. It is easy to see that the addition and the multiplication above are well defined respectively.

Using Theorem 2.1, we can easily prove the following lemma by simple calculation:

Lemma 3.1 $(M, +, \cdot)$ is a semiring.

We call $(M, +, \cdot)$ the quasi-spined product of the left normal band semiring L, the right normal band semiring R and the d-inverse semiring T on the distributive lattice D in this paper. We denote it by $QS(L, R, T; D)$.

Lemma 3.2 Let $(e, \xi, f), (g, \eta, h) \in QS(L, R, T; D)$. Then (e, ξ, f) is an idempotent if and only
if ξ is an idempotent of T.

Theorem 3.3 $S \cong QS(L, R, T; D)$ is an orthodox semiring whose additive idempotents satisfy a permutation and $S/\sigma \cong T$.

Proof Let $(e, \xi, f), (g, \eta, h) \in E^+(S)$. Then

$$(e, \xi, f) + (g, \eta, h) = (e, \xi, f) + (e, \xi, f) + (e, \xi, f) + (g, \eta, h) + (e, \xi, f)$$

$$= (e + u, \xi + \xi \eta, v + fh) + (e, \xi, f)$$

$$= (e, \xi, f + fh) + (e, \xi, f)$$

$$= (e, \xi, f).$$

Similarly, we can prove $(e, \xi, f) + (g, \eta, h)(e, \xi, f) + (e, \xi, f) = (e, \xi, f)$. Also,

$$(e, \xi, f) + (g, \eta, h) + (i, \tau, j) + (e, \xi, f) = (e + u, \xi + \eta + \tau + \xi, v + f)$$

$$= (e, \xi, f) + (i, \tau, j) + (g, \eta, h) + (e, \xi, f).$$

Therefore, S is an orthodox semiring whose additive idempotents satisfy a permutation. Now, we define a mapping $\varphi : S \rightarrow T$ by $(e, \xi, f) \varphi = \xi$. Easily, we can prove φ is a surjective semiring homomorphism and $\ker \varphi = \sigma$. That is, $S/\sigma \cong T$.

Theorem 3.4 If S is an orthodox semiring whose additive idempotents satisfy a permutation identity, then S is isomorphic to $QS(L, R, T; D)$ where D is a distributive lattice, $L = \cup_{\alpha \in D} L_{\alpha}$, $R = \cup_{\alpha \in D} R_{\alpha}$ are left and right normal band semiring respectively, and T is a d-inverse semiring.

Proof Suppose that S is an orthodox semiring whose additive idempotents satisfy a permutation identity. Then E is a normal band semiring. So from Theorem 1.2, E is a strong distributive lattice $[E/ \hat{D}_E; E_{\alpha}, \theta_{\alpha, \beta}]$ of rectangular band semirings E_{α}. Let E_{α} be the direct product $L_{\alpha} \times R_{\alpha}$ of a left zero band semiring L_{α} and a right zero band semiring R_{α}. Denote $\cup_{\alpha \in D} L_{\alpha}, \cup_{\alpha \in D} R_{\alpha}$ by L and R respectively. For any $\alpha, \beta \in D$ with $\alpha \leq \beta$, by Corollary IV 3.6 in [3], the additive semigroup homomorphism $\theta_{\alpha, \beta} : E_{\alpha} \rightarrow E_{\beta}$ determines additive semigroup homomorphisms $\varphi_{\alpha, \beta} : L_{\alpha} \rightarrow L_{\beta}$ and $\psi_{\alpha, \beta} : R_{\alpha} \rightarrow R_{\beta}$ such that

$$(l_{\alpha}, r_{\alpha}) \theta_{\alpha, \beta} = (l_{\alpha} \varphi_{\alpha, \beta}, r_{\alpha} \psi_{\alpha, \beta})$$

for all (l_{α}, r_{α}) in E_{α}. Easily, we can prove that $\varphi_{\alpha, \beta}$ is a semiring homomorphism. Furthermore, since $\theta_{\alpha, \beta}$ satisfies (1)–(4), we have $\varphi_{\alpha, \beta}$ satisfies (1)–(4) accordingly. That is, $L = \cup_{\alpha \in D} L_{\alpha}$ is a strong distributive lattice $[E/ \hat{D}_E; L_{\alpha}, \varphi_{\alpha, \beta}]$ of left zero band semirings L_{α}. Similarly, $R = \cup_{\alpha \in D} R_{\alpha}$ is a strong distributive lattice $[E/ \hat{D}_E; R_{\alpha}, \psi_{\alpha, \beta}]$ of right zero band semirings R_{α}. Obviously, E/ \hat{R}_E and E/ \hat{L}_E are isomorphic to L and R. Note that $\sigma_E = \hat{D}_E$. So, $E^+(S/\sigma)$ is isomorphic to D.
For the sake of simplicity, we identity \(E/\mathcal{R}_E \), \(E/\mathcal{L}_E \) and \(E/\mathcal{D}_E \) with \(L, R \) and \(D \) respectively. Now, define a mapping \(\chi : S \rightarrow QS(L,R,T;D) \) as follows:

\[
a \chi = (\overline{a + a'}, \overline{a'}, \overline{a'} + a),
\]
where \(a' \) is an inverse of \(a \). By the properties of \(L \) and \(R \), \(\chi \) is well defined and is an additive semigroup isomorphism. Let \(a, b \in S \). Then,

\[
a \chi b \chi = (\overline{a + a'}, \overline{a'}, \overline{a'} + a)(\overline{b + b'}, \overline{b'}, \overline{b'} + b)
\]
\[
= ((a + a')(b + b'), \overline{ab}, (a' + a)(b' + b))
\]
\[
= (ab + ab', \overline{ab}, ab' + ab)
\]
\[
= (ab + (ab)', \overline{ab}, (ab) + ab)
\]
\[
= (ab) \chi.
\]

Consequently, we have proved that \(\chi \) is an isomorphism of \(S \) onto \(QS(L,R,T;D) \).

References: