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Abstract: We study positive solutions for second order three-point boundary value problem:

() + f(t,z(t),2' (1) =0, t#t
Az(t;) = Li(z(t:), 2 (t:)), 1=1,2,---,k
Az (t;) = Jz(xgti Jx ))),

where 0 < < 1,0 < @ <1, and f:[0,1] x [0,00) X R — [0,00), I; : [0,00) X R — R, J; :
[0,00) x R — R, (i = 1,2,---,k) are continuous. Based on a new extension of Krasnoselskii
fixed-point theorem (which was established by Guo Yan-ping and GE VVei-gao[s‘])7 the existence
of positive solutions for the boundary value problems is obtained. In particular, we obtain the
Green function of the problem, which makes the problem simpler.
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1. Introduction

There is an increasing interest in the study of three-point BVPs for non-linear ordinary
differential equations. For example, authors in [1-5] studied the second-order ordinary differential
equations three-point BVPs. MA Ru-yun'—3!, HE Xiao-ming and GE Wei-gaol¥! studied the

equation

2 (8) + Mh(0)fa(t)) = 0, or
() + f(tx@),2'(t) =0, 0 <t <1,
z(0) =0=2(1) — az(n

GUO Yan-ping and GE Wei-gaol®! studied

{ 2"(t) + f(t,z(t),2'(t)) =0, 0< t < 1,
2(0) =0=z(1) — az(n).

In [5], a theorem was obtained which extended the Krasnoselskii’s compression-expansion theo-

rem in cones. Based on it, positive solutions for the boundary value problems were proved.
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On the other hand, with the applications of differential equations involving impulse effects in
population dynamics, ecology, biological systems, etc., many authors are interested in the study

of impulsive differential equations in [6-8]. For example, Ravi P. Agarwal, and Donal O’Regan!”

studied
y'(t) + o) f(t,y(t) =0, t # tx,
Ay(tk) - Ik( ( ))7 k= 1725"'ama
Ay'(tr) = Je(y(te)),
y(0) =y(1)=0
with the method of Krasnoselskii’s fixed point theorem.

,p229—240]

Guo Da-jun!® studied the existence of solution to the following equation

a"(t) + f(t,z(t),2'(t)) =0, t € J',
Da(ti) = Z(x(i)% i=1,2,-k,

Ax'(t;) = Ji(x(t:) ())a
ax(0) — bz'(0) = xo, cx(1) + dz' (1) = xf,

by use of the Banach contraction mapping principle and the Schauder fixed-point theorem.

However, to the best of our knowledge, existence results of positive solutions to three-point
BVPs of the second-order impulsive differential equation with dependence on the first order
derivative have not been found in literature.

In the paper, we are concerned with positive solutions of the following problem:

ﬁﬁﬂ{@ﬂ%fﬂ) e

Aw(t) = Li(x(t), ' (), @—1 2,0k (1.1)
A () = Ji(a(ts), 7' (1), '
z(0) = 0 = z(1) — az(n).

Through this paper, we assume that
(C1) J=10,1], ;(¢: = 1,2,---, k) are impulsive moments and 0 < t1 < tg < --- < tg < 1,
J = JI\{t1,te, - tk}, Jj = (b, t541], 7 =1,2,- -k, Jo=[0,t1],tk11 = 1. 0<n < 1,0 < < 1.
(C2) f:Jx[0,00)x R— [0,00) is continuous, and f(t,-,-) does not vanish identically on
any subset of [0,1]. I; € C([0,00) X R, R), J; € C([0,0) X R,R),i=1,2,--- k.
2. Preliminary lemmas

In order to prove our main result, we present in this section a series of useful lemmas.

Lemma 2.1 Let X be a Banach space and K C X a cone. Assume o, 3: X — RT are two

nonnegative continuous convex functionals such that, for each x € X,
a(Az) = [Ma(z), B(Ax) = |\|B(z),z € X, X € R,

2] < Mmax{a(z), 5(z)}, = € X,

where M > 0 is a constant, and

a(r) <a(y),z,y € K,z <y,
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Assume that there exist constants ro > ry > 0,L > 0 and
QG ={reX:alx)<r,fx) <L},i=12
are two open bounded sets in X. Let
D,={zxe X :a(x) =r}.

And suppose that T : K — K is a completely continuous operator such that
(A1) o(Tu) <ri,u€ DiNK;a(Tu) > ry,u € DoNK;
(Az) B(Tu) < L,u € K;
(As) There exists a p € (1 (VK)\{0} such that a(p) # 0 and a(z + Ap) > a(z),z € K.
Then T has at least a fixed point x € (Q2\Q1) N K.
Consider the boundary value problem
2 +yt)=0,teJ,
Ax(t) =a;, i=1,,2--k,
Az (t;) = by,
2(0) = 0 = a(1) — az(s),

(2.1)

where a; and b; are constants, i = 1,2, - k.

Lemma 2.2 Let an # 1, then for y € PCI0,1], problem (2.1) has a unique solution

1 —s Taln—s «
=) _/o tl(l— om)y(s)ds - /o in— an)ty(s)ds 1 —tom Z bill =t:) + 1 —t

Z 1_ta ot Z 1at ai_/o(t_s)y(s)ds-y-Zbi(t—ti)—i-Zai. (2.2)

0<t; <1

Consider BVP

"+ f(ty),y' (1) =0, teJ
Ax(ti) = Li(y(t:), y'(t), i=1,2,--k (2.3)
Az'(t;) = Ji(y(t:), v/ (L)), '
z(0) =0 =z(1) — ax(n).
Lemma 2.3 Let an # 1, then BVP (2.3) has a unique solution
1 k
(t) :/ G(t,9)f (s,y(s), 9/ ()ds + Y Hi(t)Ti(y(t:), y/ () +
0 i=1
k
S Wi (y(ta), ¥ () — Jily(ts), v/ (t:)ti], (2.4)
i=1
where
ll=talonl - 5 < minft, )
HO—sitals—m] 4 < ¢ -
— -« ’ — n
G(t,s) = 5(1—?35@—5)7 n<s<t (2.5)
tfl,;?, s > max{t,n}
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A=t)falt=n) = 4. < min{t,n}

(@-1""
tla—
Wity =< 1o 1<t <n (2.6)
1;0”7 9 n < ti S t
Ten: ti > max{t,n}
07 t’L S mm{tﬂ?}
—t, t<t;<n
H,(t) = 2.7
i(t) _1;7(75", n<t; <t (2.7)
ams  ti > max{t,n}

From Lemma 2.3, solving BVP (1.1) is equivalent to finding a solution z(t) € PC[0, 1] which

satisfies the following integral equation

1 k
x(t) :/0 G(t,s)f(s,x(s),2'(s))ds + Z H;(t)J;(x(t;), o' (t;))+

fQM@mwmxfm»—ﬁumxfmmw (2.8)

Lemma 2.4 Suppose that in (1.1), a € (0,1), f(t,z(t),2'(t)) > 0 and
Ii(”;’x/) > 1, >0, (2.9)
Ji(w, ') <0, i=1,2,--- k. (2.10)

Then for each solution x(t) of the problem (1.1), it holds that x(t) > 0,¢ € [0, 1].
Proof Let
Ii(xvx/)v x 2 Oa

(a® —1)z, = <O0. (2.11)

i) = {

Let j = min{l € {1,2,---,k + 1}, then there is s € ({;_1,%] such that 2(s) < 0 } and 41 = 1.
Then
.I(t) Z O, t S tjfl.

We claim that x(t;il) > 0. Otherwise
0> a(t]_)) = a(tj—1) + L1 (2(tj-1),2'(tj-1)) = 2(tj—1) — 2(tj—1) = 0,
a contradiction. Then there is € [t;_1, s] such that
z(€) =0,z(t) <0,t € (&)
This yields in turn 2/(¢) < 0. By (2.10) and the nonnegativity of f, one has
2'(t) <0,z(t) < 0,t > €. (2.12)
Furthermore, at the same time it holds that

2(t) > 0,t € [0,¢] (2.13)
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i) If n € (0,€], then (2.12) and (2.13) imply 0 > z(1) = ax(n) > 0, a contradiction.
ii) Ifnp e (1), from (2.11) x(t) < 0,¢ > &, one has z(n) < 0. Without loss of generality, we
suppose 1 € (t;—1,t;] then from the denotative definition of I} (2.10) and 2'(¢) < 0,¢ > n,z(n) <

0, we have

z(1) <z tz) < a%x(tk) < a%x(tzfl) < a%x(tk_l) < .-
<a T oalh) <o koa(n) < ax(y).

This contradicts the boundary condition z(1) = ax(n).
Therefore, for each solution z(t) of the problem (2.3), it holds that x(t) > 0,¢t € [0,1]. O

Lemma 2.5 Let 3 <n <1, 177” < a < 1, and suppose that (2.6), (2.7) hold, J;(u(t;)) <0, (i =
1,2,---,k) and I;(u(t;)) satisty the follow conditions

Il(u(tl)) <0, n <t < 1

max{—u(ti),tiJi(u(ti))} < Ii(u(ti)), 0< t; < 1. (213)

Then

Proof First, we will show W;(¢)I;(u(t;)) >0, for n < t,¢; < 1.
From (2.6), for n < ¢,¢; <1, one has

1-t—an )
—an 0 N<ti<t
Wit) =q 5"
{ T—an’ t; >t >
Hence W/ (t) = 1:01”7 <0, and, forn <t <1
L—n—oan
Wi(t) < W; < —
(0 < Wil < 1720

When n<t; < 1, Il(u(tl)) <0, so

WO (u(t) > S ),

frOHlOéZl_Tn,l—n—omgO. So, for n <t t; <1,

I—n—on
(81 (u(t;)) > —————I;(u(t;)) = 0.
Wit (u(t)) > L (u(t)) > 0
Next, we will show
[tiWi(t) — Hz(t)]Jl(u(tl)) S 0, for 0 S t,ti S 1.

From (2.6) and (2.7), we have

ti[l—t+a(t— .
[1_735777)]5 t; < mln{tvn}a
t(l*tiiﬁ*at(ti*n) t< tz < n

tWilt) — Hi(t) = S a—oreni ey,
%z()a n < tz S tv
t(1—t;)

T—an ti > max{t,n}.
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From the above form, we know

3. Main results

In this section, we shall apply the lemmas to the boundary value problem (1.1) to obtain
the existence theorem of positive solutions.

Let E = PCY(J,R) = {z: J — R | z(t) is continuously differentiable, for ¢t € J’; there exist
o (t7), 2 (¢7) and z(t;) = z(t; ),/ (t;) = 2/ (t] ), i = 1,2, - k}.

Let ||z|| = sup,e s[z2(t) + (2/(1))? ]2, then obviously, E is a Banach space.

Let

K ={z e E:x(t) > 0,z(t)is concave,t € [0, 1]}.

A function x € PC[J, R](C?[J’, R] is called the solution of the BVP (1.1), if it satisfies the
Equation (1.1).
Vz € E, define two functionals

afz) = sup [z(t)], (3.1)
t€[0,1]

B(x) = sup |2'(t)], (32)
te[0,1]

then [|z|| < v2max{a(z), 3(x)} and
a(Ax) = |Ma(z), BAx)=|\B(x),x € E;ZAXER
a(z) < aly), Ve,ye K,z <.

If (Cq1) holds, then Green function G(t,s) > 0. Let y(t) = 1, then we have

! _ 1 t(1 —an?)
/0 G(t,s)ds = _Et + 2 —an) (3.3)

By a simple calculation, we know that

|8G(t,s)|< 1
ot 1—an
and [H/(1)] < [W/()] < 1%
bet (- ) k(3 —2an)
' —an —2am
M= st T ay (3.4)

m:= max]/ G(t,s)ds (3.5)

te(0,1
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1+ 2k
Q= T an (3.6)
o Flta o). (tuo) € T x 0,5 x (~o0,50)
, U, V), ,U,V) € X 10,0] X (—00,00),
F(tu,v) = { F(Ebv), (fu,w) € ' x (b,00) X (—00,00),
. | L(u,v),  (u,v) €0,b] X (—00,00),
I (u,v) = { I;(b,v), (u,v) € (b,00) X (—00,00),
" | Ji(u,v), (u,v) € [0,b] x (—o0,00),
Ji () = { Ji(b,v), (u,v) € (b,00) X (—00,00),
and f*t,u,—L), (t,u,v) € J x[0,b] x (—o0, —L],
7t u,v) = { f*(t,u,v), (t,u,v) € J' x [0,b] x [—-L, L],
f*(t,u, L), (t,u,v) € J' x [0,b] x [L,00),
I (u,—L), (u,v) € 10,b] x (—o0, —L],
I (u,v) = ¢ IF(u,v), (u,v) €10, x [-L, L],
I# (u, L), (u,v) € [0,b] x [L, 00),
*(u, —L), (u,v) € 10,b] x (—o0,—L],
J 7 (u,v) = *(u, v), (u,v) € 10,b] x [-L, L],
*(u, L), (u,v) € [0,b] x [L, 00).
So f**(t,u,v) € C(J' x [0,00) X R, R"), I}*(u,v), J*(u,v) € C([0,0) x R, R)
Define an operator
1 k
(T)(0) = [ Gl sv(s). /(s + 3 H(0I7 (). 1)+
i=1
k
S Wi (x(ts), 2/ (8:) — 7 (@(t:), & (£:))ti]. (3.7)
i=1

Theorem 3.1 Suppose that (C1), (Cz) and Lemma 2.5 hold, and that there exist constants
L >b>c >0, such that

(Hy) f(t,u,v) < 57, (tu,v) € J' < [0,¢] x [=L, L], Ii(u,v) < 57, (u,v) € [0,¢] x [-L, L],
Ji(u,v) > =47, (u,v) €[0,¢] x [-L, L];

(Hy) f(t,u,v)> L (t,u,v) € J x (¢,b] x [-L, L];

(Hs) f(t,u,v) > é, (t,u,v) € J' x [0,b] x [-L, L], |I;(u,v)| > %, (u,v) € [0,b] x [-L, L],
Ji(u,v) < —é, (u,v) € 10,b] x [-L, L].
Then BVP (1.1) has at least one positive solution x(t) such that ¢ < a(z) <b, |2'(t)| < L.

Proof Let
O ={zr€F:alx)= sup |z(t)| <cB(z)= sup |2'(t)| < L},
te[0,1] t€[0,1]
Qo ={zx € E:alx)= sup |z(t)] <b,B(z)= sup |2'(t)] < L}
te[0,1] te(0,1]

be two open bounded sets in E, and let

Dy ={z € E,a(zx) = sup |z(t)| = ¢},
te0,1]
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Dy={zx € E,c<z(t) <ba(x)= sup |z(t)| =b}.
te0,1]

From (3.7), one knows that T : K — K is completely continuous. And takes p € (0,¢)\{0} such
that Vz € K, and A\ > 0,

alz+ Ap) = sup |z(t) + Ap| = Ap+ sup |z(t)] > a(x)
te[0,1] te[0,1]

If z € D1 K, then 0 < z(¢) < c. From (Hy), W;(¢t) <1,—H;(t) < 1710”7 and (2.14), one has

1

o(Tz) = sup | [ G(t,s)f™(s,x ds+ZH 0T (), o' (8)+
tefo,1] Jo

Zw DU (). 2/ (1)) = T (k). o' (0))1])

1 k 1
< sup | / Glt,3)f** (5. 2(5), 2/ ())ds = 3 Tre(a(ts), 2! (t))+

te(0,1
k

Z[I**( (t), 2" (1)) = T (a(ta), 2" (t:) )il

< s / Gt (s 2(6) () + 317 o0/ (00)~
2—an ok /
) Ji (a(t), 2/ (t:)
k(3 — 2am)
t:;z%/G“dS* ar
[(l—om k(3 — 2a77)]
M 8(1 — an)? 1—an

Next, if © € Do N K, then ¢ < x(t) < b. From (Hs) and Lemma 2.5, one has

a(Tz)= sup | | G(t,s)f " (s,x dS—I—ZH ) (x(t), 2/ () +

tefo,1] Jo

k

Y Wi ((ts), @' (1) — I (a(ta), ' (8)) ]

1=

> sup [/ Glt,5) ™ (s,0(5), ' (N)ds + 3 Wit} (alt), o' (4)+

te(0,1] n<t;,s<1}
Do (W) = Hi@®))(=T7 ((t:), 2 (£:)))]
n<t;,s<1}

> sup/Gts (s, 2(s), 2" (s))ds

tel0,1]
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b 1
> — sup / G(t,s)ds
"

M tefo,1]

=b.

For z € K, From (Hs) and (2.14), one has

B(Tz) = sup |(Tz)'(t)]
te[0,1]

1 k
_wp%ﬁﬁ%ﬂw@ﬂﬂﬂﬂ@+2ﬁﬂ@ﬂmmﬂMH

t€[0,1] i1

k
S WL ) 1)
k

< sup ([ 200 (o). (9)ds = S HLOL o0, ')+

t€[0,1] i1

k
E:WW@WHWMU%f@»H

k
L 1 2
<=
_Q[l—an+;1—an]
_L1+2k
Ql—an

From Lemma 2.1, there exists z(¢) € (Q22\Q1) N K such that Tz = z, i.e., BVP (1.1) has at least

one positive solution z(t) such that ¢ < a(x) < b, |2/(t)| < L. O
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