Article ID: 1000-341X(2007)01-0001-06

Document code: A

On Jackson Estimate for Müntz Rational Approximation in $L^p_{[0,1]}$ Spaces

YU Dan-sheng, ZHOU Song-ping

(Institute of Mathematics, Zhejiang Sci-Tech University, Zhejiang 310018, China) (E-mail: danshengyu@yahoo.com.cn)

Abstract: Let $\Lambda = \{\lambda_n\}_{n=1}^{\infty}$ be a sequence of real numbers, and $\lambda_n \searrow 0$ as $n \to \infty$. Suppose that $\lambda_n \leq Mn^{-\frac{1}{2}}$ for $n = 1, 2, \cdots$, where M > 0 is an absolute constant. The present paper considers the Müntz rational approximation rate in $L_{[0,1]}^p$ spaces and gets

$$R_n(f,\Lambda)_{L^p} \le C_M \omega(f,n^{-\frac{1}{2}})_{L^p}$$

for $1 \leq p \leq \infty$.

Key words: Müntz rational functions; L^p spaces; approximation rate. MSC(2000): 41A20; 41A30 CLC number: 0174.41

1. Introduction

Let $L^p[0,1]$ be the space of all *p*-power integrable functions on [0,1], $1 \le p \le \infty$. When $p = \infty$, it can be understood as $C_{[0,1]}$, that is, the space of all continuous functions on [0,1]. For any given real sequence $\{\lambda_n\}_{n=1}^{\infty}$, denote by $\prod_n(\Lambda)$ the set of Müntz polynomials of degree n, that is, all linear combinations of $\{x^{\lambda_1}, x^{\lambda_2}, \dots, x^{\lambda_n}\}$, and let $R_n(\Lambda)$ be the Müntz rational functions of degree n, that is,

$$R_n(\Lambda) = \left\{ \frac{P(x)}{Q(x)} : P(x), Q(x) \in \Pi_n(\Lambda), Q(x) \ge 0, x \in [0, 1] \right\}.$$

If Q(0) = 0, we require that $\lim_{x\to 0+} \frac{P(x)}{Q(x)}$ exist and be finite. For $f \in L^p[0,1], 1 \le p \le \infty$, define

$$R_n(f,\Lambda)_{L^p} = \inf_{\substack{r \in R_n(\Lambda) \\ |h| \le t}} \|f - r\|_{L^p},$$
$$\omega(f,t)_{L^p} = \sup_{|h| \le t} \|f(x+t) - f(x)\|_{L^p},$$

where $\|\cdot\|_{L^p}$ is the usual L^p - norm, that is

$$\|f\|_{L^p} = \left\{ \int_0^1 |f(x)|^p \, \mathrm{d}x \right\}^{\frac{1}{p}}, \quad 1 \le p < \infty,$$
$$\|f\|_{L^\infty} = \|f\|_C = \max_{0 \le x \le 1} |f(x)|.$$

Received date: 2005-03-04; Accepted date: 2005-10-25

Foundation item: the National Natural Science Foundation of China (10471130)

In the past dozens of years, there have been a few good works on rational Müntz approximation rate^[1-3,5-9]. Here, we want to remind the readers of a special Müntz system $\{x^{\lambda_n}\}$, that is, $\{\lambda_n\}$ satisfy $\lambda_n \searrow 0$ ($\lambda_n \searrow 0$ means λ_n strictly decreasing to 0), and $\lambda_n \leq Mn^{-\frac{1}{2}}$ for every $n \geq 1$. The second named author did the original work on this subject in [8]:

Theorem 1 Given M > 0. Let $\{\lambda_n\}$ be a sequence with $\lambda_n \searrow 0$, suppose that $\lambda_n \le Mn^{-\frac{1}{2}}$ for $n = 1, 2, \cdots$, then for any $f \in C_{[0,1]}$, we have

$$R_n(f,\Lambda) \le C_M \omega(f,n^{-\frac{1}{2}}),$$

where C_M is a positive constant only depending on M.

Recently, we^[7] generalized the above result to include the general $L^p[0, 1]$ spaces and established the following theorem

Theorem 2 Given M > 0. Let $\{\lambda_n\}$ be a sequence with $\lambda_n \searrow 0$, and let $\lambda_n \leq Mn^{-\frac{1}{2}}$ for $n = 1, 2, \cdots$. Then for any $f \in L^p_{[0,1]}, 1 , there is a positive constant <math>C_{M,p}$ only depending on M and p such that

$$R_n(f,\Lambda)_{L^p} \le C_{M,p}\omega(f,n^{-\frac{1}{2}})_{L^p}.$$

However, it is not a satisfactory result yet. First, $C_{M,p}$ is a positive constant depending not only on M but also on p. So a natural problem comes: whether can $C_{M,p}$ be replaced by C_M only depending on M? Secondly, the method used in [7] cannot give any result for p = 1. These problems could be hard without using the efficient tool, the Hardy-Littlewood maximum functions, which played a very important role in [7]. The present paper will give positive answers to these problems by employing a new method and by constructing a new type of Müntz rational functions. We obtain the following theorem

Theorem 3 Given M > 0. Let $\{\lambda_n\}$ be a real sequence with $\lambda_n \searrow 0$, and let $\lambda_n \leq Mn^{-\frac{1}{2}}$ for $n = 1, 2, \cdots$. Then for any $f \in L^p_{[0,1]}, 1 \leq p \leq \infty$, there is a positive constant C_M only depending on M such that

$$R_n(f,\Lambda)_{L^p} \le C_M \omega(f,n^{-\frac{1}{2}})_{L^p}.$$

Throughout the paper, C always denotes an absolute constant, and C_M a positive constant only depending on M. Their values may be different in different circumstances.

2. Auxiliary lemmas

Let $P_k(x, a_0, a_1, \dots, a_k)$ denote the k-th divided difference of $(\frac{x}{e})^{\alpha}$ with respect to α at $\alpha = a_0, a_1, \dots, a_k$, that is,

$$P_0(x, a_0) = \left(\frac{x}{e}\right)^{a_0},$$
$$P_k(x, a_0, a_1, \dots, a_k) = \frac{P_{k-1}(x, a_0, a_1, \dots, a_{k-1}) - P_{k-1}(x, a_1, a_2, \dots, a_k)}{a_0 - a_k}.$$

 Set

$$P_k(x) = P_{(n+k)^2}(x, \lambda_{n^2}, \lambda_{n^2+1}, \cdots, \lambda_{n^2+(n+k)^2})$$

for $k = 1, 2, \dots, n - 1$, and

$$P_n(x) = P_{(2n)^2}(x, \lambda_{5n^2}, \lambda_{5n^2+1}, \cdots, \lambda_{9n^2})$$

By the mean value theorem,

$$P_k(x) = \left(\frac{x}{e}\right)^{\eta_k} \frac{\log^{(n+k)^2}(\frac{x}{e})}{((n+k)^2)!},$$
(1)

$$\lambda_{n^2 + (n+k)^2} \le \eta_k \le \lambda_{n^2}, \ k = 1, 2, \cdots, n-1,$$

and

$$P_n(x) = \left(\frac{x}{e}\right)^{\eta_n} \frac{\log^{4n^2}\left(\frac{x}{e}\right)}{(4n^2)!},$$

$$\lambda_{9n^2} \le \eta_n \le \lambda_{5n^2}.$$
(2)

Define

$$x_j = \frac{n+1}{n+1-j}, \quad t_j = e^{1-x_j}, \quad j = 1, 2, \cdots, n.$$

In particular, let $t_0 = 1$ and $t_{n+1} = 0$. For any $f \in C_{[0,1]}$, we define

$$L_{n}(f,x) = \frac{\sum_{j=1}^{n} (-1)^{(n+j)^{2}} ((n+j)^{2})! f(t_{j}) \prod_{i=1}^{j} x_{i}^{-((n+i)^{2}-(n+i-1)^{2})} P_{j}(x)}{\sum_{j=1}^{n} (-1)^{(n+j)^{2}} ((n+j)^{2})! \prod_{i=1}^{j} x_{i}^{-((n+i)^{2}-(n+i-1)^{2})} P_{j}(x)}$$

$$= \frac{\sum_{j=1}^{n} f(t_{j}) \prod_{i=1}^{j} x_{i}^{-((n+i)^{2}-(n+i-1)^{2})} (-\log \frac{x}{e})^{(n+j)^{2}} (\frac{x}{e})^{\eta_{j}}}{\sum_{j=1}^{n} \prod_{i=1}^{j} x_{i}^{-((n+i)^{2}-(n+i-1)^{2})} (-\log \frac{x}{e})^{(n+j)^{2}} (\frac{x}{e})^{\eta_{j}}} \qquad (\text{from } (1), (2))$$

$$:= \frac{\sum_{j=1}^{n} f(t_{j}) Q_{j}(x)}{\sum_{j=1}^{n} Q_{j}(x)} := \sum_{j=1}^{n} f(t_{j}) r_{j}(x),$$

where

$$Q_j(x) := \prod_{i=1}^j x_i^{-((n+i)^2 - (n+i-1)^2)} \left(-\log\frac{x}{e}\right)^{(n+j)^2} \left(\frac{x}{e}\right)^{\eta_j},$$
$$r_j(x) := \frac{Q_j(x)}{\sum_{j=1}^n Q_j(x)}, \quad j = 1, 2, \cdots, n.$$

We estimate $r_j(x)$ first.

Lemma 1 For any $x \in [t_{j+1}, t_j], 0 \le j \le n$, we have

$$r_k(x) \le C_M e^{-C_M|j-k|}, \quad k = 1, 2, \cdots, n.$$
 (3)

Proof In fact, from $Zhou^{[8]}$, we have

$$Q_j^{-1}(x)Q_k(x) \le C_M e^{-C_M|j-k|}$$

By the definition of $r_k(x)$, (3) holds.

Lemma 2 For any $f \in L^p_{[0,1]}, 1 \le p \le \infty$, define

$$K(f,h)_{L^{p}} = \inf_{g} \left\{ \|f - g\|_{L^{p}} + h \|g'\|_{L^{p}} \right\},\$$

where $g \in AC_{[0,1]}$, that is, g is an absolute continuous function on [0,1], then

$$K(f,h)_{L^p} \sim \omega(f,h)_{L^p}, \quad 1 \le p \le \infty.$$

It is a well-known result in [4]. From Lemma 2, we have the following Lemma 3 immediately.

Lemma 3 For any $f \in L^p_{[0,1]}, 1 \le p \le \infty$, there is a $g \in AC_{[0,1]}$ such that

$$||f-g||_{L^p} \le C\omega(f,\frac{1}{n})_{L^p}, \ ||g'||_{L^p} \le Cn\omega(f,\frac{1}{n})_{L^p}.$$

3. Proof of Theorem 3

In view of Theorem 2, we only need to show Theorem 3 in the case $1 \le p < \infty$. For any $f \in L^p_{[0,1]}$, take a function g satisfying the properties of Lemma 3. Furthermore, set

$$L_n(g,x) = \sum_{k=1}^n r_k(x) \frac{1}{t_{k-1} - t_k} \int_{t_k}^{t_{k-1}} g(u) \mathrm{d}u.$$

By the definition of $r_k(x)$, we have $L_n(1, x) = 1$, and $L_n(g, x) \in R(\Lambda_{9n^2})$. In some sense, $L_n(g, x)$ is very similar to the usual Kantorovich-type operators in $L^p[0, 1]$ spaces although there is still some minor difference. Here we use g instead of f directly to construct the rational function. It enables us to avoid the proof of the boundness of operators, which may be very difficult to do. Note $L_n(g, x) \in R(\Lambda_{9n^2})$. Theorem 3 will be proved if the following inequality holds:

$$||L_n(g,x) - f(x)||_{L^p} \le C_M \omega(f,\frac{1}{n})_{L^p}.$$

Applying Lemma 3, we have

$$\begin{aligned} \|L_n(g,x) - f(x)\|_{L^p} &\leq \|L_n(g,x) - g(x)\|_{L^p} + \|f(x) - g(x)\|_{L^p} \\ &\leq \|L_n(g,x) - g(x)\|_{L^p} + C\omega(f,\frac{1}{n})_{L^p}, \end{aligned}$$

so that we only need to show that

$$\|L_n(g,x) - g(x)\|_{L^p} \le C\omega(f,\frac{1}{n})_{L^p}.$$
(4)

Assume that 1 . The case <math>p = 1 can be treated in a similar and easier way. It is not difficult to verify that, for $1 \le j \le n - 1$, it holds that

$$|t_j - t_{j+1}| = |e^{1 - x_j} - e^{1 - x_{j+1}}| \le Cn^{-1}e^{-x_j}x_j^2 \le Cn^{-1},$$

and

$$|t_0 - t_1| = |1 - e^{-\frac{1}{n}}| \le \frac{1}{n}, \quad |t_n - t_{n+1}| = e^{-n} \le \frac{1}{n}.$$

Hence, for any $x \in [t_{k+1}, t_k]$, $k = 0, 1, 2, \dots, n$, we have

$$|x - t_j| \le C \left(|k - j|\right) + 1 \right) n^{-1}, \quad j = 0, 1, 2, \cdots, n.$$
(5)

Without loss of generality, we always assume that $C_M \ge 1$. From Lemma 1, for any $x \in [t_{j+1}, t_j], 0 \le j \le n$, we have

$$\sum_{k=1}^{n} r_{k}^{\frac{p}{2p-2}}(x) \leq C_{M}^{\frac{p}{2p-2}} \sum_{k=1}^{n} \exp\left(\frac{-pC_{M}|j-k|}{2p-2}\right)$$
$$\leq C_{M}^{\frac{p}{2p-2}} \left(\sum_{s=1}^{\infty} e^{-Cs/2}\right)^{\frac{p}{p-1}} \leq C_{M}^{\frac{p}{p-1}}.$$
(6)

Using (6) and applying the Hölder's inequality repeatedly, we have

$$\begin{split} \|L_{n}(g,x) - g(x)\|_{L^{p}}^{p} &\leq \int_{0}^{1} \left|\sum_{k=1}^{n} r_{k}(x) \frac{1}{t_{k-1} - t_{k}} \int_{t_{k}}^{t_{k-1}} |g(u) - g(x)| \mathrm{d}u \right|^{p} \mathrm{d}x \\ &\leq \int_{0}^{1} \left(\sum_{k=1}^{n} r_{k}^{\frac{p}{2p-2}}(x)\right)^{p-1} \left(\sum_{k=1}^{n} r_{k}^{\frac{p}{2}}(x) \left|\frac{1}{t_{k-1} - t_{k}}\right|^{p} \left|\int_{t_{k}}^{t_{k-1}} \left|\int_{x}^{u} |g'(t)| \mathrm{d}t \right| \mathrm{d}u \right|^{p} \mathrm{d}x \right) \\ &\leq C_{M}^{p} \int_{0}^{1} \sum_{k=1}^{n} r_{k}^{\frac{p}{2}}(x) \left|\frac{1}{t_{k-1} - t_{k}}\right|^{p} \left|\int_{t_{k}}^{t_{k-1}} \left|\int_{x}^{u} |g'(t)| \mathrm{d}t \right| \mathrm{d}u \right|^{p} \mathrm{d}x \\ &\leq C_{M}^{p} \sum_{j=1}^{n+1} \sum_{k=1}^{n} \int_{t_{j}}^{t_{j-1}} r_{k}^{\frac{p}{2}}(x) \left|\frac{1}{t_{k-1} - t_{k}}\right|^{p} |t_{k} - t_{k-1}|^{p} \left|\int_{x^{*}}^{t^{*}} |g'(t)| \mathrm{d}t \right|^{p} \mathrm{d}x, \end{split}$$

where we take $x^* = t_{j-1}$, $t^* = t_k$, when j < k, and take $x^* = t_j$, $t^* = t_{k-1}$, when $j \ge k$. We continue the above process. By using (3), (5) and Hölder's inequality again, we have

$$\begin{split} \|L_{n}(g,x) - g(x)\|_{L^{p}}^{p} &\leq C_{M}^{p} \sum_{j=1}^{n+1} \sum_{k=1}^{n} e^{-C_{M}|j-k|p/2} |x^{*} - t^{*}|^{p-1} \int_{t_{j}}^{t_{j-1}} \left| \int_{x^{*}}^{t^{*}} |g'(t)|^{p} dt \right| dx \\ &\leq C_{M}^{p} \sum_{j=1}^{n+1} \sum_{k=1}^{n} e^{-C_{M}|j-k|p/2} |x^{*} - t^{*}|^{p-1} |t_{j-1} - t_{j}| \left| \int_{x^{*}}^{t^{*}} |g'(t)|^{p} dt \right| \\ &\leq C_{M}^{p} n^{-p} \sum_{j=1}^{n+1} \sum_{k=1}^{n} e^{-C|j-k|p/2} (|j-k|^{p} + 1) \left| \int_{x^{*}}^{t^{*}} |g'(t)|^{p} dt \right| \\ &\leq C_{M}^{p} n^{-p} \left\{ \sum_{j=1}^{n+1} \sum_{k=1, k \neq j}^{n} e^{-C_{M}|j-k|p/2} |j-k|^{p} \left| \int_{x^{*}}^{t^{*}} |g'(t)|^{p} dt \right| + \sum_{j=1}^{n} \left| \int_{x^{*}}^{t^{*}} |g'(t)|^{p} dt \right| \right\} \\ &:= I_{1} + I_{2}. \end{split}$$

It is easy to verify that

$$I_{2} \leq C_{M}^{p} n^{-p} \sum_{j=1}^{n} \int_{t_{j}}^{t_{j-1}} |g'(t)|^{p} dt \leq C_{M}^{p} n^{-p} \int_{0}^{1} |g'(t)|^{p} dt$$
$$\leq C_{M}^{p} n^{-p} ||g'(t)||_{L^{p}}^{p},$$

while

$$\begin{split} I_{1} &\leq C_{M}^{p} n^{-p} \left\{ \sum_{j=1}^{n+1} \sum_{k=1}^{n} e^{-C_{M}|j-k|p/2} |j-k|^{p} \left| \int_{x^{*}}^{t^{*}} |g'(t)|^{p} dt \right| \right\} \\ &\leq C_{M}^{p} n^{-p} \sum_{j=1}^{n+1} \sum_{k=1}^{n} e^{-C_{M}|j-k|p/2} |j-k|^{p} \left[\left| \int_{t_{j+1}}^{t_{k}} |g'(t)|^{p} dt \right| + \left| \int_{t_{k+1}}^{t_{j}} |g'(t)|^{p} dt \right| \right] \\ &\leq C_{M}^{p} n^{-p} \sum_{m=1}^{n} e^{-C_{M} m p/2} m^{p} \sum_{|j-k|=m} \left[\left| \int_{t_{j-1}}^{t_{k}} |g'(t)|^{p} dt \right| + \left| \int_{t_{k-1}}^{t_{j}} |g'(t)|^{p} dt \right| \right] \\ &\leq C_{M}^{p} n^{-p} \sum_{m=1}^{n} e^{-C_{M} m p/2} m^{p+1} \int_{0}^{1} |g'(t)|^{p} dt \\ &\leq C_{M}^{p} n^{-p} \left(\sum_{m=1}^{n} e^{-C_{M} m p/2} m^{2} \right)^{p} \|g'(t)\|_{L^{p}}^{p} \leq C_{M}^{p} n^{-p} \|g'(t)\|_{L^{p}}^{p}. \end{split}$$

Altogether with Lemma 3, we get

$$\|L_n(g,x) - g(x)\|_{L^p}^p \le C_M^p n^{-p} \|g'(t)\|_{L^p}^p \le C_M^p \omega(f,\frac{1}{n})_{L^p}^p,$$

and thus Inequality (4), consequently. Theorem 3 is proved.

References:

- [1] BAK J. On the efficiency of general rational approximation [J]. J. Approx. Theory, 1977, 20: 46–50.
- [2] GOLITSCHEK M VON, LEVIATAN D. Rational Müntz approximation [J]. Ann. Numer. Math., 1995, 2: 425 - 437.
- [3] NEWMAN D J. Approximation with Rational Functions [M]. Amer. Math. Soc. Providence, Rhode Island, 1978
- [4] STEIN E M. Singular Integrals and Differentiability of Functions [M]. Princeton Univ. Press, Princeton, New Jersey, 1970.
- [5] SOMORJAI G. A Müntz-type problem for rational approximation [J]. Acta Math. Hungar., 1976, 27: 197-199.
- [6] XIAO Wei, ZHOU Song-ping. On Müntz rational approximation rate in $L_{[0,1]}^p(p \ge 1)$ spaces [J]. J. Approx. Theory, 2001, **111**: 50–58.
- [7] YU Dan-sheng, ZHOU Song-ping. Jackson-type estimate for rational approximation for the Müntz system $\{x^{\lambda_n}\}$ with $\lambda_n \searrow 0$ [J]. J. Zhejiang Univ. Sci. Ed., 2005, **32**: 253–255. (in Chinese)
- [8] ZHOU Song-ping. A note on rational approximation rate for Müntz system $\{x^{\lambda_n}\}$ with $\lambda_n \searrow 0$ [J]. Anal. Math., 1994, 20: 155-159.
- [9] ZHOU Song-ping. On Müntz rational approximation [J]. Constr. Approx., 1993, 9: 435-444.

$L^p_{[0,1]}$ 空间 Müntz 有理逼近的 Jackson 型估计

虞旦盛, 周颂平 (浙江理工大学数学研究所,浙江杭州 310018)

摘要: 设 $\Lambda = \{\lambda_n\}_{n=1}^{\infty}$ 为正的实数数列, 且当 $n \to \infty$ 时, 有 $\lambda_n \searrow 0$. 本文给出了当 $\lambda_n \le Mn^{-\frac{1}{2}}$, $n = 1, 2, \cdots$, (其中 M > 0 为一正常数) 时 Müntz 系统 $\{x^{\lambda_n}\}$ 的有理函数在 $L^p_{[0,1]}$ 空间 的逼近速度,主要结论为 $R_n(f,\Lambda)_{L^p} \leq C_M \omega(f,n^{-\frac{1}{2}})_{L^p}, 1 \leq p \leq \infty$.

关键词: Müntz 有理函数; L^p 空间; 逼近速度.