Article ID: 1000-341X(2007)01-0035-06

Document code: A

H-Difference, *H*-Differentiability and *S*-Differentiability for Fuzzy Valued Functions

GONG Zeng-tai¹, KONG Fang-di²

(1. College of Math. & Inform. Sci., Northwest Normal University, Gansu 730070, China;
2. School of Sciences, Lanzhou University of Science and Technology, Gansu 730050, China) (E-mail: gongzt@nwnu.edu.cn)

Abstract: In this paper, we introduce the concept of monotonicity of interval functions and give the characterization of fuzzy valued functions which satisfies the H-difference. Furthermore, relations among H-difference, H-differentiability and S-differentiability are discussed.

Key words: fuzzy number; fuzzy valued functions; *H*-difference. MSC(2000): 26A39; 26A42; 26A45 CLC number: O159.2

1. Introduction

The differential and integral calculus for the fuzzy-valued functions, shortly fuzzy calculus, have been developed in the recent papers of O.Kaleva^[4], M.L.Puri, D.A.Ralescu^[5], Gong Zengtai and Wu Congxin^[2]. In [4], in order to show the existence of the solution of fuzzy differential equations, Kaleva discussed the properties of differentiability of fuzzy-valued mappings by the concept of *H*-differentiability. However, the discussion of *H*-differentiability is very difficult because the function considered must satisfy *H*-difference. *H*-difference was first presented by Puri and Ralescu^[5] in 1983. For *H*-differentiability of fuzzy-valued functions, we have pointed out that there exists a fuzzy-valued function which is Kaleva integrable on [0, 1], but its primitive is not differentiable almost everywhere^[1]. Another definition of fuzzy-valued functions was given by Seikkala in 1987^[6]. We call it *S*-differentiability. In this paper, first we have to recall some basic results of fuzzy numbers and definition of *H*-difference of fuzzy-valued functions. Next, we introduce the definition of the monotonicity of interval functions and use it to characterize *H*-difference. In addition, relations among *H*-difference, *H*-differentiability, and Seikkala differentiability are discussed.

2. Notations and preliminaries

Let F(R) be the class of all fuzzy subsets on R. For $\tilde{A} \in F(R)$, let \tilde{A} satisfy the following conditions:

(1) A is normal, i.e., there exists $x_0 \in R$, such that $A(x_0) = 1$;

Received date: 2005-04-01; Accepted date: 2005-07-12

Foundation item: the Natural Scientific Fund of Gansu Province (3ZS041-A25-004); the National Natural Science Stree Fund of China (40235053)

- (2) \tilde{A} is a convex fuzzy set, i.e., $A(tx+(1-t)y) \ge \min(A(x), A(y))$, for any $x, y \in R, t \in [0, 1]$;
- (3) A(x) is upper semi-continuous;
- (4) $[A]_0 = \overline{\{x \in R : A(x) > 0\}}$ is compact.

Then we say \tilde{A} is a fuzzy number. Let E^1 denote the set of all fuzzy numbers^[3-5].

For $\tilde{A}, \tilde{B} \in E^1$, $k \in R$, we define $\tilde{A} + \tilde{B} = \tilde{C}$ iff $A_{\lambda} + B_{\lambda} = C_{\lambda}, \lambda \in [0, 1]$, iff $A_{\lambda}^+ + B_{\lambda}^+ = C_{\lambda}^+, A_{\lambda}^- + B_{\lambda}^- = C_{\lambda}^-$, for any $\lambda \in [0, 1]$. $[kA]_{\lambda} = kA_{\lambda}, \lambda \in [0, 1]$, where $A_{\lambda} = \{x | A(x) \ge \lambda\}$. We easily prove that A_{λ} is a close interval, and write $[A_{\lambda}^-, A_{\lambda}^+]^{[3-5]}$.

Define $D(\tilde{A}, \tilde{B}) = \sup_{\lambda \in [0,1]} \max(|A_{\lambda}^{-} - B_{\lambda}^{-}|, |A_{\lambda}^{+} - B_{\lambda}^{+}|).$

Definition 2.1^[4,5] Let $\tilde{f} : [a,b] \to E^1$. We say \tilde{f} satisfies *H*-difference on [a,b], if for any $x_1, x_2 \in [a,b]$ satisfying $x_1 < x_2$, there exists $\tilde{A} \in E^1$ such that $\tilde{f}(x_2) = \tilde{f}(x_1) + \tilde{A}$, denoted by $\tilde{f}(x_2) - \tilde{f}(x_1) = \tilde{A}$.

3. Characterize of *H*-difference

Lemma 3.1^[3] If $\tilde{A} \in E^1$, then

- (1) A_{λ}^{-} is nondecreasing function on [0, 1],
- (2) A_{λ}^{+} is nonincreasing function on [a, b],
- (3) $A_{\lambda}^{-}, A_{\lambda}^{+}$ are bounded and left continuous on (0, 1], and right continuous at $\lambda = 0$, and (4) $A_{1}^{-} \leq A_{1}^{+}$.

Conversely, if $a(\lambda), b(\lambda)$ satisfy (1)–(4), then there exists a unique $\tilde{A} \in E^1$ such that $A_{\lambda} = [a(\lambda), b(\lambda)]$ for any $\lambda \in [0, 1]$.

In order to study the characterization of H-difference condition, we will give the concept of interval function and its monotonicity.

Definition 3.2 Let $f : [a,b] \times [c,d] \to R$ be two variable function. F(I) is called the interval function induced by f, if

$$F(I) = f(x_2, y_2) - f(x_2, y_1) - f(x_1, y_2) + f(x_1, y_1),$$

for nondegenerate interval $I = [x_1, x_2] \times [y_1, y_2]$, where $[x_1, x_2] \subset [a, b], [y_1, y_2] \subset [c, d]$. In particular, for degenerate interval $I_y = [x_1, x_2] \times [y, y](x_1 < x_2)$, $F(I_y) = f(x_2, y) - f(x_1, y)$. For degenerate interval $I^x = [x, x] \times [y_1, y_2](y_1 < y_2)$, $F(I^x) = f(x, y_2) - f(x, y_1)$. For degenerate interval $I^x_y = [x, x] \times [y, y], F(I^x_y) = f(x, y)$.

Definition 3.3 Let F(I) be the interval function induced by f. F(I) is said to be nondecreasing (nonincreasing), if $F(I) \ge 0$ ($F(I) \le 0$), for any $I \subset [a, b] \times [0, 1]$.

Theorem 3.4 Let $\tilde{f} : [a, b] \to E^1$, and $[\tilde{f}(x)]_{\lambda} = [f_{\lambda}^-(x), f_{\lambda}^+(x)]$. Then $\tilde{f}(x)$ satisfies H-difference if and only if:

- (1) $F^+(I_1) \ge F^-(I_1)$,
- (2) $F^{-}(I)$ is nondecreasing,

(3) $F^+(I)$ is nonincreasing.

Here $I_1 = [x_1, x_2] \times [1, 1], ([x_1, x_2] \subset [a, b] \text{ and } x_1 < x_2)$, for nondegenerate interval $I \subset [a, b] \times [0, 1]$, and $F^-(I)$ and $F^+(I)$ are the interval functions induced by f^- and f^+ , respectively.

Proof If $\tilde{f}(x)$ satisfies *H*-difference on [a, b], then for any $x_1, x_2 \in [a, b]$ satisfying $x_1 < x_2$, there exists $\tilde{A} \in E^1$ such that $\tilde{f}(x_2) = \tilde{f}(x_1) + \tilde{A}$. This gives that

(1) $F^+(I_1) = f_1^+(x_2) - f_1^+(x_1) = A_1^+, F^-(I_1) = f_1^-(x_2) - f_1^-(x_1) = A_1^-$. Since \tilde{A} is a fuzzy number, by Lemma 3.1, we have $A_1^- \leq A_1^+$, i.e., $F^-(I_1) \leq F^+(I_1)$.

(2) By Lemma 3.1, we have that $A_{\lambda}^- = f_{\lambda}^-(x_2) - f_{\lambda}^-(x_1)$ is nondecreasing. For any $0 \le \lambda_1 \le \lambda_2 \le 1$, we have $f_{\lambda_2}^-(x_2) - f_{\lambda_2}^-(x_1) \ge f_{\lambda_1}^-(x_2) - f_{\lambda_1}^-(x_1)$, then $F^-(I) = f_{\lambda_2}^-(x_2) - f_{\lambda_2}^-(x_1) - f_{\lambda_1}^-(x_2) + f_{\lambda_1}^-(x_1) \ge 0$. Here $I = [x_1, x_2] \times [\lambda_1, \lambda_2]$.

Hence $F^{-}(I)$ is nondecreasing.

(3) By Lemma 3.1, we have that $A_{\lambda}^{+} = f_{\lambda}^{+}(x_{2}) - f_{\lambda}^{+}(x_{1})$ is nonincreasing. For any $0 \leq \lambda_{1} \leq \lambda_{2} \leq 1$, we have $f_{\lambda_{2}}^{+}(x_{2}) - f_{\lambda_{2}}^{+}(x_{1}) \leq f_{\lambda_{1}}^{+}(x_{2}) - f_{\lambda_{1}}^{+}(x_{1})$, that is $F^{+}(I) = f_{\lambda_{2}}^{+}(x_{2}) - f_{\lambda_{2}}^{+}(x_{1}) - f_{\lambda_{1}}^{+}(x_{2}) + f_{\lambda_{1}}^{+}(x_{1}) \leq 0$. Here $I = [x_{1}, x_{2}] \times [\lambda_{1}, \lambda_{2}]$.

Hence $F^+(I)$ is nonincreasing.

Conversely, for any $x_1, x_2 \in [a, b]$ satisfying $x_1 < x_2$ and each $\lambda \in [0, 1]$, let $[a(\lambda), b(\lambda)] = [f_{\lambda}^-(x_2) - f_{\lambda}^-(x_1), f_{\lambda}^+(x_2) - f_{\lambda}^+(x_1)]$. We can show that $a(\lambda)$ and $b(\lambda)$ ($\lambda \in [0, 1]$) satisfy the conditions of Lemma 3.1.

(1) For any $\lambda_1, \lambda_2 \in [0, 1]$ satisfying $\lambda_1 < \lambda_2$, we have

$$\begin{aligned} a(\lambda_2) - a(\lambda_1) &= (f_{\lambda_2}^-(x_2) - f_{\lambda_2}^-(x_1)) - (f_{\lambda_1}^-(x_2) - f_{\lambda_1}^-(x_1)) \\ &= f_{\lambda_2}^-(x_2) - f_{\lambda_2}^-(x_1) - f_{\lambda_1}^-(x_2) + f_{\lambda_1}^-(x_1) = F^-(I) \ge 0. \end{aligned}$$

Here $I = [x_1, x_2] \times [\lambda_1, \lambda_2]$. Hence $a(\lambda_2) \ge a(\lambda_1)$, i.e., $a(\lambda)$ is a nondecreasing function on [0, 1].

(2) For any $\lambda_1, \lambda_2 \in [0, 1]$ satisfying $\lambda_1 < \lambda_2$, we have

$$b(\lambda_2) - b(\lambda_1) = (f_{\lambda_2}^+(x_2) - f_{\lambda_2}^+(x_1)) - (f_{\lambda_1}^+(x_2) - f_{\lambda_1}^+(x_1))$$

= $f_{\lambda_2}^+(x_2) - f_{\lambda_2}^+(x_1) - f_{\lambda_1}^+(x_2) + f_{\lambda_1}^+(x_1) = F^+(I) \le 0$

Here $I = [x_1, x_2] \times [\lambda_1, \lambda_2]$. i.e. $b(\lambda_2) \le b(\lambda_1)$. Hence $b(\lambda)$ is nonincreasing on [0, 1].

(3) Obviously, $a(\lambda), b(\lambda)$ are bounded and left continuous on (0, 1], and right continuous at $\lambda = 0$.

(4) $b(1) = f_1^+(x_2) - f_1^+(x_1) = F^+(I_1), a(1) = f_1^-(x_2) - f_1^-(x_1) = F^-(I_1).$ Hence, $a(1) \le b(1).$

By Lemma 3.1, $a(\lambda), b(\lambda)$ determine a fuzzy number $\tilde{B} \in E^1$ such that $\tilde{f}(x_2) - \tilde{f}(x_1) = \tilde{B}$. This is, there exists $\tilde{B} \in E^1$ such that $\tilde{f}(x_2) = \tilde{f}(x_1) + \tilde{B}$.

The proof is complete.

Proposition 3.5 Let $\tilde{f}, \tilde{g} : [a, b] \to E^1$. For any $x \in [a, b]$, the *H*-difference $\tilde{f}(x) - \tilde{g}(x)$ exists if and only if:

$$(1) (F^{-} - G^{-})(I_1^x) \le (F^{+} - G^{+})(I_1^x),$$

(2) $(F^- - G^-)(I^x)$ is nondecreasing,

(3) $(F^+ - G^+)(I^x)$ is nonincreasing.

Here (F - G)(I) denote interval function F(I) - G(I). $F^{-}(I)$, $F^{+}(I)$, $G^{-}(I)$ and $G^{+}(I)$ are the interval functions induced by f^{-} , f^{+} , g^{-} and g^{+} , respectively.

Proof If $\tilde{f}(x) = \tilde{g}(x) + \tilde{A}(x)$, for any $x \in [a, b]$, i.e., $\tilde{f}(x) - \tilde{g}(x) = \tilde{A}(x) \in E^1$, then

(1) $(F^{-} - G^{-})(I_{1}^{x}) = f_{1}^{-}(x) - g_{1}^{-}(x) = A_{1}^{-}(x) \le A_{1}^{+}(x) = f_{1}^{+}(x) - g_{1}^{+}(x) = (F^{+} - G^{+})(I_{1}^{x}),$

(2) $A_{\lambda}^{-}(x) = f_{\lambda}^{-}(x) - g_{\lambda}^{-}(x)$ is nondecreasing on [0, 1]. For any $\lambda_{1}, \lambda_{2} \in [0, 1]$ satisfying $\lambda_{1} < \lambda_{2}$, we have

$$(F^{-} - G^{-})(I^{x}) = f^{-}_{\lambda_{2}}(x) - g^{-}_{\lambda_{2}}(x) - (f^{-}_{\lambda_{1}}(x) - g^{-}_{\lambda_{1}}(x)) = A^{-}_{\lambda_{2}}(x) - A^{-}_{\lambda_{1}}(x) \ge 0,$$

i.e., $(F^- - G^-)(I^x)$ is nondecreasing.

(3) The proof is similar to (2).

Conversely, for any $x \in [a, b]$, we can prove that $f_{\lambda}^{-}(x) - g_{\lambda}^{-}(x), f_{\lambda}^{+}(x) - g_{\lambda}^{+}(x)(\lambda \in [0, 1])$ satisfy the condition of Lemma 3.1.

(i) For any $\lambda_1, \lambda_2 \in [0, 1]$ satisfying $\lambda_1 < \lambda_2$, we have

$$(f_{\lambda_2}^-(x) - g_{\lambda_2}^-(x)) - (f_{\lambda_1}^-(x) - g_{\lambda_1}^-(x)) = (F^- - G^-)(I^x) \ge 0,$$

i.e., $f_{\lambda_2}^-(x) - g_{\lambda_2}^-(x) \ge (f_{\lambda_1}^-(x) - g_{\lambda_1}^-(x))$. Hence, $f_{\lambda}^-(x) - g_{\lambda}^-(x)$ is nondecreasing on [0, 1].

(ii) Similarly, $f_{\lambda}^{+}(x) - g_{\lambda}^{+}(x)$ is nonincreasing on [0, 1].

(iii) Obviously, $f_{\lambda}^{-}(x) - g_{\lambda}^{-}(x)$, $f_{\lambda}^{+}(x) - g_{\lambda}^{+}(x)$ are bounded and left continuous on (0, 1], and right continuous at $\lambda = 0$.

(iv) $f_1^-(x) - g_1^-(x) = (F^- - G^-)(I_1^x) \le (F^+ - G^+)(I_1^x) = f_1^+(x) - g_1^+(x).$ By Lemma 3.1, $[f_{\lambda}^-(x) - g_{\lambda}^-(x), f_{\lambda}^+(x) - g_{\lambda}^+(x)] \ (\lambda \in [0, 1])$ determines a fuzzy $\tilde{A}(x) \in E^1$, such that $\tilde{f}(x) - \tilde{g}(x) = \tilde{A}(x)$. i.e., $\tilde{f}(x) = \tilde{g}(x) + \tilde{A}(x).$

Hence, *H*-difference $\tilde{f}(x) - \tilde{g}(x)$ exists, for all $x \in [a, b]$.

4. Seikkala differentiability, *H*-differentiability and *H*-difference

Remark 4.1 Let $\tilde{f} : [a,b] \to E^1$. For each $x \in [a,b]$ there exists a $\beta(x) > 0$ such that the *H*-differences $\tilde{f}(x+h) - \tilde{f}(x)$ and $\tilde{f}(x) - \tilde{f}(x-h)$ exist for all $0 \le h < \beta(x)$. Then \tilde{f} satisfies the *H*-difference on [a,b].

Proof By the Heine-Borel covering theorem we easyly prove.

Definition 4.2^[6] Let $\tilde{f} : [a, b] \to E^1$. \tilde{f} is said to be Seikkala differentiable at $x \in [a, b]$ if there exists $f'(x) \in E^1$ such that

$$[\tilde{f}'(x)]_{\lambda} = [(f_{\lambda}^{-}(x))', (f_{\lambda}^{+}(x))'],$$

for any $\lambda \in [0,1]$. In this case, \tilde{f} is called S-differentiable at $x \in [a,b]$.

Theorem 4.3 Let $\tilde{f} : [a,b] \to E^1$. If \tilde{f} is S-differentiable on [a,b], then \tilde{f} satisfies the H-difference on [a,b].

Proof For any $x \in [a, b]$, since $\tilde{f}(x)$ is S-differentiable at x, there exists $\tilde{f}'(x) \in E^1$ such that $[\tilde{f}'(x)]_{\lambda} = [(f_{\lambda}^-(x))', (f_{\lambda}^+(x))'].$

(1) By Lemma 3.1, $(f_{\lambda}^{-}(x))'$ is nondecreasing on $\lambda \in [0, 1]$. For any $\lambda_1, \lambda_2 \in [0, 1]$ satisfying $\lambda_1 < \lambda_2$, we have $(f_{\lambda_1}^{-}(x))' \leq (f_{\lambda_2}^{-}(x))'$, i.e., $(f_{\lambda_2}^{-}(x) - f_{\lambda_1}^{-}(x))' \geq 0$. Hence $f_{\lambda_2}^{-}(x) - f_{\lambda_1}^{-}(x)$ is nondecreasing on [a, b]. For any $x_1, x_2 \in [a, b]$ satisfying $x_1 < x_2$, we have $f_{\lambda_2}^{-}(x_2) - f_{\lambda_1}^{-}(x_2) \geq f_{\lambda_2}^{-}(x_1) - f_{\lambda_1}^{-}(x_1)$, i.e., $f_{\lambda_2}^{-}(x_2) - f_{\lambda_1}^{-}(x_2) - f_{\lambda_2}^{-}(x_1) + f_{\lambda_1}^{-}(x_1) \geq 0$. This implies that $F^-(I)$ is nondecreasing, where $I = [x_1, x_2] \times [\lambda_1, \lambda_2] \subset [a, b] \times [0, 1]$ is arbitrary nondegenerate interval.

(2) $(f_{\lambda}^+(x))'$ is nondecreasing on $\lambda \in [0,1]$. For any $\lambda_1, \lambda_2 \in [0,1]$ satisfying $\lambda_1 < \lambda_2$, we have $(f_{\lambda_2}^+(x))' \leq (f_{\lambda_1}^+(x))'$, i.e., $(f_{\lambda_2}^-(x) - f_{\lambda_1}^-(x))' \leq 0$. So $f_{\lambda_2}^+(x) - f_{\lambda_1}^+(x)$ is nondecreasing on [a,b]. For any $x_1, x_2 \in [a,b]$ satisfying $x_1 < x_2$, we have $f_{\lambda_2}^+(x_2) - f_{\lambda_1}^+(x_2) \geq f_{\lambda_2}^+(x_1) - f_{\lambda_1}^+(x_1)$, i.e., $f_{\lambda_2}^+(x_2) - f_{\lambda_1}^+(x_2) - f_{\lambda_2}^+(x_1) + f_{\lambda_1}^+(x_1) \leq 0$. This implies that $F^+(I)$ is nonincreasing, where $I = [x_1, x_2] \times [\lambda_1, \lambda_2] \subset [a, b] \times [0, 1]$ is arbitrary nondegenerate interval.

(3) By Lemma 3.1, $(f_1^-(x))' \leq (f_1^+(x))'$, for any $x \in [a,b]$. There exists a $\beta(x) > 0$ such that

$$f_1^-(x_2) - f_1^-(x_1) \le f_1^+(x_2) - f_1^+(x_1)$$

for any $0 < h < \beta(x), x_1, x_2 \in [x - h, x + h]$ satisfying $x_1 < x_2$, i.e., $F^-(I_1) \le F^+(I_1)$.

By using Theorem 3.4 and Remark 4.1, \tilde{f} satisfies the *H*-difference on [a, b].

Definition 4.4^[4,5] Let $\tilde{f} : [a,b] \to E^1$ satisfy *H*-difference. \tilde{f} is said to be *H*-differentiable at $x_0 \in [a,b]$ if there exists $f'(x) \in E^1$ such that the limits

$$\lim_{h \to 0^+} \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0)}{h} \text{ and } \lim_{h \to 0^+} \frac{\tilde{f}(x_0) - \tilde{f}(x_0 - h)}{h}$$

exist and equal f'(x).

Here the limit is taken in the metric space (E^1, D) . At the end points of [a, b] we consider only the one-sided derivatives.

Lemma 4.5^[7] Let $\tilde{f} : [a, b] \to E^1$. Then \tilde{f} satisfies *H*-difference and *H*-differentiable on [a, b] if and only if $f_{\lambda}^-(x)$ and $f_{\lambda}^+(x)$ ($\lambda \in [0, 1]$) are differentiable, and

$$G_{h}^{-}(\lambda) = \frac{f_{\lambda}^{-}(x+h) - f_{\lambda}^{-}(x)}{h}, \quad G_{h}^{+}(r) = \frac{f_{\lambda}^{+}(x+h) - f_{\lambda}^{+}(x)}{h}$$

converge to $(f_{\lambda}^{-}(x))'$, $(f_{\lambda}^{+}(x))'$ uniformly, respectively, and $(f_{\lambda}^{-}(x))'$, $(f_{\lambda}^{+}(x))'$ determine a fuzzy number, for any $x \in [a, b]$.

Example 4.7 shows that the following Proposition 4.6 hold.

Proposition 4.6 Let $\tilde{f} : [a,b] \to E^1$, and \tilde{f} be S-differentiable on [a,b]. Although \tilde{f} satisfies the H-difference on [a,b], it does not imply that \tilde{f} is H-differentiable on [a,b].

Example 4.7 Define

$$\widetilde{G}(x)(s) = \begin{cases} 1, & s = 0, \\ x - \frac{s}{2}, & 0 \le s \le 2x, \\ 0, & \text{otherwise,} \end{cases}$$

the λ -level set is

$$[G(x)]_{\lambda} = \begin{cases} [0,0], & x < \lambda \le 1, \\ [0,2(x-\lambda)], & 0 \le \lambda \le x. \end{cases}$$

Obviously, $\widetilde{G}(x)$ is S-differentiable on [0, 1], and

$$\widetilde{G}'(x) = \widetilde{f}(x),$$

where

$$\widetilde{f}(x)(s) = \begin{cases} 1, & s = 0, \\ x, & 0 \le s \le 2, \\ 0, & \text{otherwise,} \end{cases}$$

and

$$[f(x)]_{\lambda} = \begin{cases} [0,0], & x < \lambda \le 1, \\ [0,2], & x < \lambda \le 1. \end{cases}$$

Furthermore,

$$\widetilde{G}(x) = \widetilde{G}(0) + \int_0^x \widetilde{f}(t) \mathrm{d}t$$

satisfies H-difference. However, $\widetilde{G}(x)$ is not H-differentiable. In fact, for any $x \in [0,1]$ and h > 0, we have

$$D(\frac{\hat{G}(x+h) - \hat{G}(x)}{h}, \tilde{f}(x)) \ge \frac{1}{h} \sup_{\lambda \in (x, x+h]} |[G(x+h) - G(x)]_{\lambda}^{+} - h[f(x)]_{\lambda}^{+}|$$

= $\frac{1}{h} \sup_{\lambda \in (x, x+h]} (2(x+h-\lambda)) = 2.$

References:

- [1] GONG Zeng-tai. On the problem of characterizing derivatives for the fuzzy-valued functions. II. Almost everywhere differentiability and strong Henstock integral [J]. Fuzzy Sets and Systems, 2004, 145: 381–393.
- [2] GONG Zeng-tai, WU Cong-xin, LI Bao-lin. On the problem of characterizing derivatives for the fuzzy-valued functions [J]. Fuzzy Sets and System, 2001, 127: 315-322.
- [3] GOETSCHEL R, VOXMAN W. Elementary fuzzy calculus [J]. Fuzzy Sets and System, 1986, 18: 31-43.
- [4] KALEVA O. Fuzzy differential equations [J]. Fuzzy Sets and Systems, 1987, 24: 301-317.
- [5] PURI M L, RALESILL D A. Differentiation of fuzzy functions [J]. J. Math. Anal. Appl., 1983, 91: 552–558.
- [6] SEIKKALA S. On the fuzzy initial value problem [J]. Fuzzy Set and System, 1987, 24: 319–330.
- [7] WU Cong-xin, MA Ming. On embedding problem of fuzzy number space: Part 2 [J]. Fuzzy Sets and Systems, 1992, 45: 189-202.

模糊数值函数的 H- 差, H- 可导性和 S- 可导性

巩增泰¹, 孔芳第² (1. 西北师范大学数学与信息科学学院,甘肃 兰州 730070; 2. 兰州理工大学理学院,甘肃 兰州 730050)

摘要:本文提出了区间值函数单调的概念,并利用所定义的区间值函数刻划了模糊数值函数的 H- 差, H- 可导性和 S- 可导性及其相互关系.

关键词: 模糊数; 模糊数值函数; H-差.