H－Difference，H－Differentiability and S－Differentiability for Fuzzy Valued Functions

GONG Zeng－tai ${ }^{1}$ ，KONG Fang－di ${ }^{2}$
（1．College of Math．\＆Inform．Sci．，Northwest Normal University，Gansu 730070，China；
2．School of Sciences，Lanzhou University of Science and Technology，Gansu 730050，China ）

（E－mail：gongzt＠nwnu．edu．cn）

Abstract

In this paper，we introduce the concept of monotonicity of interval functions and give the characterization of fuzzy valued functions which satisfies the H－difference．Further－ more，relations among H－difference，H－differentiability and S－differentiability are discussed．

Key words：fuzzy number；fuzzy valued functions；H－difference．
MSC（2000）：26A39；26A42；26A45
CLC number：O159．2

1．Introduction

The differential and integral calculus for the fuzzy－valued functions，shortly fuzzy calculus， have been developed in the recent papers of O．Kaleva ${ }^{[4]}$ ，M．L．Puri，D．A．Ralescu ${ }^{[5]}$ ，Gong Zengtai and Wu Congxin ${ }^{[2]}$ ．In［4］，in order to show the existence of the solution of fuzzy differential equations，Kaleva discussed the properties of differentiability of fuzzy－valued mappings by the concept of H－differentiability．However，the discussion of H－differentiability is very difficult be－ cause the function considered must satisfy H－difference．H－difference was first presented by Puri and Ralescu ${ }^{[5]}$ in 1983．For H－differentiability of fuzzy－valued functions，we have pointed out that there exists a fuzzy－valued function which is Kaleva integrable on $[0,1]$ ，but its primitive is not differentiable almost everywhere ${ }^{[1]}$ ．Another definition of fuzzy－valued functions was given by Seikkala in $1987^{[6]}$ ．We call it S－differentiability．In this paper，first we have to recall some basic results of fuzzy numbers and definition of H－difference of fuzzy－valued functions．Next， we introduce the definition of the monotonicity of interval functions and use it to character－ ize H－difference．In addition，relations among H－difference，H－differentiability，and Seikkala differentiability are discussed．

2．Notations and preliminaries

Let $F(R)$ be the class of all fuzzy subsets on R ．For $\tilde{A} \in F(R)$ ，let \tilde{A} satisfy the following conditions：
（1）\tilde{A} is normal，i．e．，there exists $x_{0} \in R$ ，such that $A\left(x_{0}\right)=1$ ；
Received date：2005－04－01；Accepted date：2005－07－12
Foundation item：the Natural Scientific Fund of Gansu Province（3ZS041－A25－004）；the National Natural Science Stree Fund of China（40235053）
(2) \tilde{A} is a convex fuzzy set, i.e., $A(t x+(1-t) y) \geq \min (A(x), A(y))$, for any $x, y \in R, t \in[0,1]$;
(3) $A(x)$ is upper semi-continuous;
(4) $[A]_{0}=\overline{\{x \in R: A(x)>0\}}$ is compact.

Then we say \tilde{A} is a fuzzy number. Let E^{1} denote the set of all fuzzy numbers ${ }^{[3-5]}$.
For $\tilde{A}, \tilde{B} \in E^{1}, k \in R$, we define $\tilde{A}+\tilde{B}=\tilde{C}$ iff $A_{\lambda}+B_{\lambda}=C_{\lambda}, \lambda \in[0,1]$, iff $A_{\lambda}^{+}+B_{\lambda}^{+}=$ $C_{\lambda}^{+}, A_{\lambda}^{-}+B_{\lambda}^{-}=C_{\lambda}^{-}$, for any $\lambda \in[0,1] .[k A]_{\lambda}=k A_{\lambda}, \lambda \in[0,1]$, where $A_{\lambda}=\{x \mid A(x) \geq \lambda\}$. We easily prove that A_{λ} is a close interval, and write $\left[A_{\lambda}^{-}, A_{\lambda}^{+}\right]^{[3-5]}$.

Define $D(\tilde{A}, \tilde{B})=\sup _{\lambda \in[0,1]} \max \left(\left|A_{\lambda}^{-}-B_{\lambda}^{-}\right|,\left|A_{\lambda}^{+}-B_{\lambda}^{+}\right|\right)$.
Definition 2.1 ${ }^{[4,5]}$ Let $\tilde{f}:[a, b] \rightarrow E^{1}$. We say \tilde{f} satisfies H-difference on $[a, b]$, if for any $x_{1}, x_{2} \in[a, b]$ satisfying $x_{1}<x_{2}$, there exists $\tilde{A} \in E^{1}$ such that $\tilde{f}\left(x_{2}\right)=\tilde{f}\left(x_{1}\right)+\tilde{A}$, denoted by $\tilde{f}\left(x_{2}\right)-\tilde{f}\left(x_{1}\right)=\tilde{A}$.

3. Characterize of H-difference

Lemma 3.1 ${ }^{[3]}$ If $\tilde{A} \in E^{1}$, then
(1) A_{λ}^{-}is nondecreasing function on $[0,1]$,
(2) A_{λ}^{+}is nonincreasing function on $[a, b]$,
(3) $A_{\lambda}^{-}, A_{\lambda}^{+}$are bounded and left continuous on (0,1], and right continuous at $\lambda=0$, and
(4) $A_{1}^{-} \leq A_{1}^{+}$.

Conversely, if $a(\lambda), b(\lambda)$ satisfy (1)-(4), then there exists a unique $\tilde{A} \in E^{1}$ such that $A_{\lambda}=$ $[a(\lambda), b(\lambda)]$ for any $\lambda \in[0,1]$.

In order to study the characterization of H-difference condition, we will give the concept of interval function and its monotonicity.

Definition 3.2 Let $f:[a, b] \times[c, d] \rightarrow R$ be two variable function. $F(I)$ is called the interval function induced by f, if

$$
F(I)=f\left(x_{2}, y_{2}\right)-f\left(x_{2}, y_{1}\right)-f\left(x_{1}, y_{2}\right)+f\left(x_{1}, y_{1}\right)
$$

for nondegenerate interval $I=\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]$, where $\left[x_{1}, x_{2}\right] \subset[a, b],\left[y_{1}, y_{2}\right] \subset[c, d]$. In particular, for degenerate interval $I_{y}=\left[x_{1}, x_{2}\right] \times[y, y]\left(x_{1}<x_{2}\right), F\left(I_{y}\right)=f\left(x_{2}, y\right)-f\left(x_{1}, y\right)$. For degenerate interval $I^{x}=[x, x] \times\left[y_{1}, y_{2}\right]\left(y_{1}<y_{2}\right), F\left(I^{x}\right)=f\left(x, y_{2}\right)-f\left(x, y_{1}\right)$. For degenerate interval $I_{y}^{x}=[x, x] \times[y, y], F\left(I_{y}^{x}\right)=f(x, y)$.

Definition 3.3 Let $F(I)$ be the interval function induced by $f . F(I)$ is said to be nondecreasing (nonincreasing), if $F(I) \geq 0(F(I) \leq 0$), for any $I \subset[a, b] \times[0,1]$.

Theorem 3.4 Let $\tilde{f}:[a, b] \rightarrow E^{1}$, and $[\tilde{f}(x)]_{\lambda}=\left[f_{\lambda}^{-}(x), f_{\lambda}^{+}(x)\right]$. Then $\tilde{f}(x)$ satisfies H-difference if and only if:
(1) $F^{+}\left(I_{1}\right) \geq F^{-}\left(I_{1}\right)$,
(2) $F^{-}(I)$ is nondecreasing,
(3) $F^{+}(I)$ is nonincreasing.

Here $I_{1}=\left[x_{1}, x_{2}\right] \times[1,1],\left(\left[x_{1}, x_{2}\right] \subset[a, b]\right.$ and $\left.x_{1}<x_{2}\right)$, for nondegenerate interval $I \subset[a, b] \times$ $[0,1]$, and $F^{-}(I)$ and $F^{+}(I)$ are the interval functions induced by f^{-}and f^{+}, respectively.

Proof If $\tilde{f}(x)$ satisfies H-difference on $[a, b]$, then for any $x_{1}, x_{2} \in[a, b]$ satisfying $x_{1}<x_{2}$, there exists $\tilde{A} \in E^{1}$ such that $\tilde{f}\left(x_{2}\right)=\tilde{f}\left(x_{1}\right)+\tilde{A}$. This gives that
(1) $F^{+}\left(I_{1}\right)=f_{1}^{+}\left(x_{2}\right)-f_{1}^{+}\left(x_{1}\right)=A_{1}^{+}, F^{-}\left(I_{1}\right)=f_{1}^{-}\left(x_{2}\right)-f_{1}^{-}\left(x_{1}\right)=A_{1}^{-}$. Since \tilde{A} is a fuzzy number, by Lemma 3.1, we have $A_{1}^{-} \leq A_{1}^{+}$, i.e., $F^{-}\left(I_{1}\right) \leq F^{+}\left(I_{1}\right)$.
(2) By Lemma 3.1, we have that $A_{\lambda}^{-}=f_{\lambda}^{-}\left(x_{2}\right)-f_{\lambda}^{-}\left(x_{1}\right)$ is nondecreasing. For any $0 \leq$ $\lambda_{1} \leq \lambda_{2} \leq 1$, we have $f_{\lambda_{2}}^{-}\left(x_{2}\right)-f_{\lambda_{2}}^{-}\left(x_{1}\right) \geq f_{\lambda_{1}}^{-}\left(x_{2}\right)-f_{\lambda_{1}}^{-}\left(x_{1}\right)$, then $F^{-}(I)=f_{\lambda_{2}}^{-}\left(x_{2}\right)-f_{\lambda_{2}}^{-}\left(x_{1}\right)-$ $f_{\lambda_{1}}^{-}\left(x_{2}\right)+f_{\lambda_{1}}^{-}\left(x_{1}\right) \geq 0$. Here $I=\left[x_{1}, x_{2}\right] \times\left[\lambda_{1}, \lambda_{2}\right]$.

Hence $F^{-}(I)$ is nondecreasing.
(3) By Lemma 3.1, we have that $A_{\lambda}^{+}=f_{\lambda}^{+}\left(x_{2}\right)-f_{\lambda}^{+}\left(x_{1}\right)$ is nonincreasing. For any $0 \leq \lambda_{1} \leq$ $\lambda_{2} \leq 1$, we have $f_{\lambda_{2}}^{+}\left(x_{2}\right)-f_{\lambda_{2}}^{+}\left(x_{1}\right) \leq f_{\lambda_{1}}^{+}\left(x_{2}\right)-f_{\lambda_{1}}^{+}\left(x_{1}\right)$, that is $F^{+}(I)=f_{\lambda_{2}}^{+}\left(x_{2}\right)-f_{\lambda_{2}}^{+}\left(x_{1}\right)-$ $f_{\lambda_{1}}^{+}\left(x_{2}\right)+f_{\lambda_{1}}^{+}\left(x_{1}\right) \leq 0$. Here $I=\left[x_{1}, x_{2}\right] \times\left[\lambda_{1}, \lambda_{2}\right]$.

Hence $F^{+}(I)$ is nonincreasing.
Conversely, for any $x_{1}, x_{2} \in[a, b]$ satisfying $x_{1}<x_{2}$ and each $\lambda \in[0,1]$, let $[a(\lambda), b(\lambda)]=$ $\left[f_{\lambda}^{-}\left(x_{2}\right)-f_{\lambda}^{-}\left(x_{1}\right), f_{\lambda}^{+}\left(x_{2}\right)-f_{\lambda}^{+}\left(x_{1}\right)\right]$. We can show that $a(\lambda)$ and $b(\lambda)(\lambda \in[0,1])$ satisfy the conditions of Lemma 3.1.
(1) For any $\lambda_{1}, \lambda_{2} \in[0,1]$ satisfying $\lambda_{1}<\lambda_{2}$, we have

$$
\begin{aligned}
a\left(\lambda_{2}\right)-a\left(\lambda_{1}\right) & =\left(f_{\lambda_{2}}^{-}\left(x_{2}\right)-f_{\lambda_{2}}^{-}\left(x_{1}\right)\right)-\left(f_{\lambda_{1}}^{-}\left(x_{2}\right)-f_{\lambda_{1}}^{-}\left(x_{1}\right)\right) \\
& =f_{\lambda_{2}}^{-}\left(x_{2}\right)-f_{\lambda_{2}}^{-}\left(x_{1}\right)-f_{\lambda_{1}}^{-}\left(x_{2}\right)+f_{\lambda_{1}}^{-}\left(x_{1}\right)=F^{-}(I) \geq 0 .
\end{aligned}
$$

Here $I=\left[x_{1}, x_{2}\right] \times\left[\lambda_{1}, \lambda_{2}\right]$. Hence $a\left(\lambda_{2}\right) \geq a\left(\lambda_{1}\right)$, i.e., $a(\lambda)$ is a nondecreasing function on $[0,1]$.
(2) For any $\lambda_{1}, \lambda_{2} \in[0,1]$ satisfying $\lambda_{1}<\lambda_{2}$, we have

$$
\begin{aligned}
b\left(\lambda_{2}\right)-b\left(\lambda_{1}\right) & =\left(f_{\lambda_{2}}^{+}\left(x_{2}\right)-f_{\lambda_{2}}^{+}\left(x_{1}\right)\right)-\left(f_{\lambda_{1}}^{+}\left(x_{2}\right)-f_{\lambda_{1}}^{+}\left(x_{1}\right)\right) \\
& =f_{\lambda_{2}}^{+}\left(x_{2}\right)-f_{\lambda_{2}}^{+}\left(x_{1}\right)-f_{\lambda_{1}}^{+}\left(x_{2}\right)+f_{\lambda_{1}}^{+}\left(x_{1}\right)=F^{+}(I) \leq 0
\end{aligned}
$$

Here $I=\left[x_{1}, x_{2}\right] \times\left[\lambda_{1}, \lambda_{2}\right]$. i.e. $b\left(\lambda_{2}\right) \leq b\left(\lambda_{1}\right)$. Hence $b(\lambda)$ is nonincreasing on $[0,1]$.
(3) Obviously, $a(\lambda), b(\lambda)$ are bounded and left continuous on (0,1], and right continuous at $\lambda=0$.
(4) $b(1)=f_{1}^{+}\left(x_{2}\right)-f_{1}^{+}\left(x_{1}\right)=F^{+}\left(I_{1}\right), a(1)=f_{1}^{-}\left(x_{2}\right)-f_{1}^{-}\left(x_{1}\right)=F^{-}\left(I_{1}\right)$. Hence, $a(1) \leq$ $b(1)$.

By Lemma 3.1, $a(\lambda), b(\lambda)$ determine a fuzzy number $\tilde{B} \in E^{1}$ such that $\tilde{f}\left(x_{2}\right)-\tilde{f}\left(x_{1}\right)=\tilde{B}$. This is, there exists $\tilde{B} \in E^{1}$ such that $\tilde{f}\left(x_{2}\right)=\tilde{f}\left(x_{1}\right)+\tilde{B}$.

The proof is complete.
Proposition 3.5 Let $\tilde{f}, \tilde{g}:[a, b] \rightarrow E^{1}$. For any $x \in[a, b]$, the H-difference $\tilde{f}(x)-\tilde{g}(x)$ exists if and only if:
(1) $\left(F^{-}-G^{-}\right)\left(I_{1}^{x}\right) \leq\left(F^{+}-G^{+}\right)\left(I_{1}^{x}\right)$,
(2) $\left(F^{-}-G^{-}\right)\left(I^{x}\right)$ is nondecreasing,
(3) $\left(F^{+}-G^{+}\right)\left(I^{x}\right)$ is nonincreasing.

Here $(F-G)(I)$ denote interval function $F(I)-G(I) . F^{-}(I), F^{+}(I), G^{-}(I)$ and $G^{+}(I)$ are the interval functions induced by f^{-}, f^{+}, g^{-}and g^{+}, respectively.

Proof If $\tilde{f}(x)=\tilde{g}(x)+\tilde{A}(x)$, for any $x \in[a, b]$, i.e., $\tilde{f}(x)-\tilde{g}(x)=\tilde{A}(x) \in E^{1}$, then
(1) $\left(F^{-}-G^{-}\right)\left(I_{1}^{x}\right)=f_{1}^{-}(x)-g_{1}^{-}(x)=A_{1}^{-}(x) \leq A_{1}^{+}(x)=f_{1}^{+}(x)-g_{1}^{+}(x)=\left(F^{+}-G^{+}\right)\left(I_{1}^{x}\right)$,
(2) $A_{\lambda}^{-}(x)=f_{\lambda}^{-}(x)-g_{\lambda}^{-}(x)$ is nondecreasing on $[0,1]$. For any $\lambda_{1}, \lambda_{2} \in[0,1]$ satisfying $\lambda_{1}<\lambda_{2}$, we have

$$
\left(F^{-}-G^{-}\right)\left(I^{x}\right)=f_{\lambda_{2}}^{-}(x)-g_{\lambda_{2}}^{-}(x)-\left(f_{\lambda_{1}}^{-}(x)-g_{\lambda_{1}}^{-}(x)\right)=A_{\lambda_{2}}^{-}(x)-A_{\lambda_{1}}^{-}(x) \geq 0,
$$

i.e., $\left(F^{-}-G^{-}\right)\left(I^{x}\right)$ is nondecreasing.
(3) The proof is similar to (2).

Conversely, for any $x \in[a, b]$, we can prove that $f_{\lambda}^{-}(x)-g_{\lambda}^{-}(x), f_{\lambda}^{+}(x)-g_{\lambda}^{+}(x)(\lambda \in[0,1])$ satisfy the condition of Lemma 3.1.
(i) For any $\lambda_{1}, \lambda_{2} \in[0,1]$ satisfying $\lambda_{1}<\lambda_{2}$, we have

$$
\left(f_{\lambda_{2}}^{-}(x)-g_{\lambda_{2}}^{-}(x)\right)-\left(f_{\lambda_{1}}^{-}(x)-g_{\lambda_{1}}^{-}(x)\right)=\left(F^{-}-G^{-}\right)\left(I^{x}\right) \geq 0,
$$

i.e., $f_{\lambda_{2}}^{-}(x)-g_{\lambda_{2}}^{-}(x) \geq\left(f_{\lambda_{1}}^{-}(x)-g_{\lambda_{1}}^{-}(x)\right)$. Hence, $f_{\lambda}^{-}(x)-g_{\lambda}^{-}(x)$ is nondecreasing on $[0,1]$.
(ii) Similarly, $f_{\lambda}^{+}(x)-g_{\lambda}^{+}(x)$ is nonincreasing on $[0,1]$.
(iii) Obviously, $f_{\lambda}^{-}(x)-g_{\lambda}^{-}(x), f_{\lambda}^{+}(x)-g_{\lambda}^{+}(x)$ are bounded and left continuous on (0,1$]$, and right continuous at $\lambda=0$.
(iv) $f_{1}^{-}(x)-g_{1}^{-}(x)=\left(F^{-}-G^{-}\right)\left(I_{1}^{x}\right) \leq\left(F^{+}-G^{+}\right)\left(I_{1}^{x}\right)=f_{1}^{+}(x)-g_{1}^{+}(x)$.

By Lemma 3.1, $\left[f_{\lambda}^{-}(x)-g_{\lambda}^{-}(x), f_{\lambda}^{+}(x)-g_{\lambda}^{+}(x)\right](\lambda \in[0,1])$ determines a fuzzy $\tilde{A}(x) \in E^{1}$, such that $\tilde{f}(x)-\tilde{g}(x)=\tilde{A}(x)$. i.e., $\tilde{f}(x)=\tilde{g}(x)+\tilde{A}(x)$.

Hence, H-difference $\tilde{f}(x)-\tilde{g}(x)$ exists, for all $x \in[a, b]$.

4. Seikkala differentiability, H-differentiability and H-difference

Remark 4.1 Let $\tilde{f}:[a, b] \rightarrow E^{1}$. For each $x \in[a, b]$ there exists a $\beta(x)>0$ such that the H-differences $\tilde{f}(x+h)-\tilde{f}(x)$ and $\tilde{f}(x)-\tilde{f}(x-h)$ exist for all $0 \leq h<\beta(x)$. Then \tilde{f} satisfies the H-difference on $[a, b]$.

Proof By the Heine-Borel covering theorem we easyly prove.
Definition 4.2 ${ }^{[6]}$ Let $\tilde{f}:[a, b] \rightarrow E^{1} . \tilde{f}$ is said to be Seikkala differentiable at $x \in[a, b]$ if there exists $f^{\prime}(x) \in E^{1}$ such that

$$
\left[\tilde{f}^{\prime}(x)\right]_{\lambda}=\left[\left(f_{\lambda}^{-}(x)\right)^{\prime},\left(f_{\lambda}^{+}(x)\right)^{\prime}\right],
$$

for any $\lambda \in[0,1]$. In this case, \tilde{f} is called S-differentiable at $x \in[a, b]$.
Theorem 4.3 Let $\tilde{f}:[a, b] \rightarrow E^{1}$. If \tilde{f} is S-differentiable on $[a, b]$, then \tilde{f} satisfies the H difference on $[a, b]$.

Proof For any $x \in[a, b]$, since $\tilde{f}(x)$ is S-differentiable at x, there exists $\tilde{f}^{\prime}(x) \in E^{1}$ such that $\left[\tilde{f}^{\prime}(x)\right]_{\lambda}=\left[\left(f_{\lambda}^{-}(x)\right)^{\prime},\left(f_{\lambda}^{+}(x)\right)^{\prime}\right]$.
(1) By Lemma 3.1, $\left(f_{\lambda}^{-}(x)\right)^{\prime}$ is nondecreasing on $\lambda \in[0,1]$. For any $\lambda_{1}, \lambda_{2} \in[0,1]$ satisfying $\lambda_{1}<\lambda_{2}$, we have $\left(f_{\lambda_{1}}^{-}(x)\right)^{\prime} \leq\left(f_{\lambda_{2}}^{-}(x)\right)^{\prime}$, i.e., $\left(f_{\lambda_{2}}^{-}(x)-f_{\lambda_{1}}^{-}(x)\right)^{\prime} \geq 0$. Hence $f_{\lambda_{2}}^{-}(x)-f_{\lambda_{1}}^{-}(x)$ is nondecreasing on $[a, b]$. For any $x_{1}, x_{2} \in[a, b]$ satisfying $x_{1}<x_{2}$, we have $f_{\lambda_{2}}^{-}\left(x_{2}\right)-f_{\lambda_{1}}^{-}\left(x_{2}\right) \geq$ $f_{\lambda_{2}}^{-}\left(x_{1}\right)-f_{\lambda_{1}}^{-}\left(x_{1}\right)$, i.e., $f_{\lambda_{2}}^{-}\left(x_{2}\right)-f_{\lambda_{1}}^{-}\left(x_{2}\right)-f_{\lambda_{2}}^{-}\left(x_{1}\right)+f_{\lambda_{1}}^{-}\left(x_{1}\right) \geq 0$. This implies that $F^{-}(I)$ is nondecreasing, where $I=\left[x_{1}, x_{2}\right] \times\left[\lambda_{1}, \lambda_{2}\right] \subset[a, b] \times[0,1]$ is arbitrary nondegenerate interval.
(2) $\left(f_{\lambda}^{+}(x)\right)^{\prime}$ is nondecreasing on $\lambda \in[0,1]$. For any $\lambda_{1}, \lambda_{2} \in[0,1]$ satisfying $\lambda_{1}<\lambda_{2}$, we have $\left(f_{\lambda_{2}}^{+}(x)\right)^{\prime} \leq\left(f_{\lambda_{1}}^{+}(x)\right)^{\prime}$, i.e., $\left(f_{\lambda_{2}}^{-}(x)-f_{\lambda_{1}}^{-}(x)\right)^{\prime} \leq 0$. So $f_{\lambda_{2}}^{+}(x)-f_{\lambda_{1}}^{+}(x)$ is nondecreasing on $[a, b]$. For any $x_{1}, x_{2} \in[a, b]$ satisfying $x_{1}<x_{2}$, we have $f_{\lambda_{2}}^{+}\left(x_{2}\right)-f_{\lambda_{1}}^{+}\left(x_{2}\right) \geq f_{\lambda_{2}}^{+}\left(x_{1}\right)-f_{\lambda_{1}}^{+}\left(x_{1}\right)$, i.e., $f_{\lambda_{2}}^{+}\left(x_{2}\right)-f_{\lambda_{1}}^{+}\left(x_{2}\right)-f_{\lambda_{2}}^{+}\left(x_{1}\right)+f_{\lambda_{1}}^{+}\left(x_{1}\right) \leq 0$. This implies that $F^{+}(I)$ is nonincreasing, where $I=\left[x_{1}, x_{2}\right] \times\left[\lambda_{1}, \lambda_{2}\right] \subset[a, b] \times[0,1]$ is arbitrary nondegenerate interval.
(3) By Lemma 3.1, $\left(f_{1}^{-}(x)\right)^{\prime} \leq\left(f_{1}^{+}(x)\right)^{\prime}$, for any $x \in[a, b]$. There exists a $\beta(x)>0$ such that

$$
f_{1}^{-}\left(x_{2}\right)-f_{1}^{-}\left(x_{1}\right) \leq f_{1}^{+}\left(x_{2}\right)-f_{1}^{+}\left(x_{1}\right)
$$

for any $0<h<\beta(x), x_{1}, x_{2} \in[x-h, x+h]$ satisfying $x_{1}<x_{2}$, i.e., $F^{-}\left(I_{1}\right) \leq F^{+}\left(I_{1}\right)$.
By using Theorem 3.4 and Remark 4.1, \tilde{f} satisfies the H-difference on $[a, b]$.
Definition 4.4 ${ }^{[4,5]}$ Let $\tilde{f}:[a, b] \rightarrow E^{1}$ satisfy H-difference. \tilde{f} is said to be H-differentiable at $x_{0} \in[a, b]$ if there exists $f^{\prime}(x) \in E^{1}$ such that the limits

$$
\lim _{h \rightarrow 0^{+}} \frac{\tilde{f}\left(x_{0}+h\right)-\tilde{f}\left(x_{0}\right)}{h} \text { and } \lim _{h \rightarrow 0^{+}} \frac{\tilde{f}\left(x_{0}\right)-\tilde{f}\left(x_{0}-h\right)}{h}
$$

exist and equal $f^{\prime}(x)$.
Here the limit is taken in the metric space $\left(E^{1}, D\right)$. At the end points of $[a, b]$ we consider only the one-sided derivatives.

Lemma 4.5 ${ }^{[7]}$ Let $\tilde{f}:[a, b] \rightarrow E^{1}$. Then \tilde{f} satisfies H-difference and H-differentiable on $[a, b]$ if and only if $f_{\lambda}^{-}(x)$ and $f_{\lambda}^{+}(x)(\lambda \in[0,1])$ are differentiable, and

$$
G_{h}^{-}(\lambda)=\frac{f_{\lambda}^{-}(x+h)-f_{\lambda}^{-}(x)}{h}, \quad G_{h}^{+}(r)=\frac{f_{\lambda}^{+}(x+h)-f_{\lambda}^{+}(x)}{h}
$$

converge to $\left(f_{\lambda}^{-}(x)\right)^{\prime},\left(f_{\lambda}^{+}(x)\right)^{\prime}$ uniformly, respectively, and $\left(f_{\lambda}^{-}(x)\right)^{\prime},\left(f_{\lambda}^{+}(x)\right)^{\prime}$ determine a fuzzy number, for any $x \in[a, b]$.

Example 4.7 shows that the following Proposition 4.6 hold.
Proposition 4.6 Let $\tilde{f}:[a, b] \rightarrow E^{1}$, and \tilde{f} be S-differentiable on $[a, b]$. Although \tilde{f} satisfies the H-difference on $[a, b]$, it does not imply that \tilde{f} is H-differentiable on $[a, b]$.

Example 4.7 Define

$$
\widetilde{G}(x)(s)=\left\{\begin{array}{cc}
1, & s=0 \\
x-\frac{s}{2}, & 0 \leq s \leq 2 x \\
0, & \text { otherwise }
\end{array}\right.
$$

the λ－level set is

$$
[G(x)]_{\lambda}=\left\{\begin{array}{cl}
{[0,0],} & x<\lambda \leq 1 \\
{[0,2(x-\lambda)],} & 0 \leq \lambda \leq x
\end{array}\right.
$$

Obviously，$\widetilde{G}(x)$ is S－differentiable on $[0,1]$ ，and

$$
\widetilde{G}^{\prime}(x)=\widetilde{f}(x)
$$

where

$$
\widetilde{f}(x)(s)=\left\{\begin{array}{lc}
1, & s=0 \\
x, & 0 \leq s \leq 2 \\
0, & \text { otherwise }
\end{array}\right.
$$

and

$$
[f(x)]_{\lambda}= \begin{cases}{[0,0],} & x<\lambda \leq 1 \\ {[0,2],} & x<\lambda \leq 1\end{cases}
$$

Furthermore，

$$
\widetilde{G}(x)=\widetilde{G}(0)+\int_{0}^{x} \widetilde{f}(t) \mathrm{d} t
$$

satisfies H－difference．However，$\widetilde{G}(x)$ is not H－differentiable．In fact，for any $x \in[0,1]$ and $h>0$ ，we have

$$
\begin{aligned}
D\left(\frac{\tilde{G}(x+h)-\tilde{G}(x)}{h}, \tilde{f}(x)\right) & \geq \frac{1}{h} \sup _{\lambda \in(x, x+h]}\left|[G(x+h)-G(x)]_{\lambda}^{+}-h[f(x)]_{\lambda}^{+}\right| \\
& =\frac{1}{h} \sup _{\lambda \in(x, x+h]}(2(x+h-\lambda))=2 .
\end{aligned}
$$

References：

［1］GONG Zeng－tai．On the problem of characterizing derivatives for the fuzzy－valued functions．II．Almost everywhere differentiability and strong Henstock integral［J］．Fuzzy Sets and Systems，2004，145：381－393．
［2］GONG Zeng－tai，WU Cong－xin，LI Bao－lin．On the problem of characterizing derivatives for the fuzzy－valued functions［J］．Fuzzy Sets and System，2001，127：315－322．
［3］GOETSCHEL R，VOXMAN W．Elementary fuzzy calculus［J］．Fuzzy Sets and System，1986，18：31－43．
［4］KALEVA O．Fuzzy differential equations［J］．Fuzzy Sets and Systems，1987，24：301－317．
［5］PURI M L，RALESILL D A．Differentiation of fuzzy functions［J］．J．Math．Anal．Appl．，1983，91：552－558．
［6］SEIKKALA S．On the fuzzy initial value problem［J］．Fuzzy Set and System，1987，24：319－330．
［7］WU Cong－xin，MA Ming．On embedding problem of fuzzy number space：Part 2 ［J］．Fuzzy Sets and Systems， 1992，45：189－202．

模糊数值函数的 H－差，H－可导性和 S－可导性

巩增泰 ${ }^{1}$ ，孔芳第 ${ }^{2}$
（1．西北师范大学数学与信息科学学院，甘肃 兰州 730070；2．兰州理工大学理学院，甘肃 兰州 730050 ）
摘要：本文提出了区间值函数单调的概念，并利用所定义的区间值函数刻划了模糊数值函数的 H－差，H－可导性和 S－可导性及其相互关系。

关键词：模糊数；模糊数值函数；H－差．

