Some Sufficient Conditions to Quasi－Convex Functions

XU Ya－shan
（School of Mathematical Sciences，Fudan University，Shanghai 200433，China ）
（E－mail：yashanxu＠gmail．com）

Abstract

The concept of the midpoint quasi－convex function is introduced，and some con－ ditions are obtained to ensure that midpoint quasi－convex function is quasi－convex in the measurable function space．

Key words：quasi－convex；midpoint quasi－convex；measurability．
MSC（2000）：26A51
CLC number：O174．13

1．Introduction

Quasi－convex functions play an important role in economics and many economic models are actually quasi－convex functions．The properties of quasi－convex functions have been discussed in e．g．［1］．

Let us introduce the concept of quasi－convex function．
Definition 1．1 Let Ω be a convex subset of R^{m} ．The function f is quasi－convex on Ω if the following inequality

$$
\begin{equation*}
f[\lambda x+(1-\lambda) y] \leq \max \{f(x), f(y)\} \tag{1.1}
\end{equation*}
$$

holds for any $x, y \in \Omega$ ，and $\lambda \in[0,1]$ ．
The definition of the midpoint quasi－convex function is introduced as follows
Definition 1．2 Let Ω be a convex subset of $I R^{m}$ ．The function f is midpoint quasi－convex on Ω if the following inequality holds

$$
\begin{equation*}
f\left(\frac{1}{2} x+\frac{1}{2} y\right) \leq \max \{f(x), f(y)\} \tag{1.2}
\end{equation*}
$$

for any $x, y \in \Omega$ ．
Compared with the above two concepts，it is clear that a quasi－convex function must be midpoint quasi－convex．But not all midpoint quasi－convex functions are quasi－convex．We can illustrate it by the following counterexample．

Example 1．1 Let $\Omega=[0,1]$ and

$$
f(x)= \begin{cases}0, & \text { if } x \text { is rational in } \Omega \tag{1.3}\\ 1, & \text { if } x \text { is irrational in } \Omega\end{cases}
$$

Received date：2004－10－18；Accepted date：2006－01－17
Foundation item：the National Natural Science Foundation of China（10371024）

Now fix $x, y \in \Omega$. If $\max \{f(x), f(y)\}=1$, then

$$
f\left(\frac{1}{2} x+\frac{1}{2} y\right) \leq \max _{z \in \Omega} f(z)=1=\max \{f(x), f(y)\}
$$

or else, $\max \{f(x), f(y)\}=0$ holds. Then x, y are all rational. Thus $\frac{1}{2} x+\frac{1}{2} y$ is also rational. Therefore, it follows that

$$
f\left(\frac{1}{2} x+\frac{1}{2} y\right)=\max _{z \in \Omega} f(z)=0 \leq \max \{f(x), f(y)\}
$$

which together with (1.4) implies that function f is midpoint quasi-convex. But

$$
f\left(\frac{\sqrt{2}}{2} x+\left(1-\frac{\sqrt{2}}{2}\right) y\right)=1>0=\max \{f(x), f(y)\}
$$

It means that f is not quasi-convex.
Since not all midpoint quasi-convex functions are quasi-convex, it is natural for us to ask that what condition can ensure that a midpoint quasi-convex function is quasi-convex. This paper is devoted to answer this question.

2. Main results

The example in the above section shows that quasi-convex function space is just a subset of midpoint quasi-convex function space. But what would happen if the considered function space is restricted?

Let Ω be a convex subset of $I R^{m}$. Denote by $\operatorname{LSC}(\Omega)$ a set containing all lower semicontinuous function on Ω, and $\operatorname{USC}(\Omega)$ a set containing all upper semi-continuous function on Ω. Now we discuss function f in the framework of $\operatorname{LSC}(\Omega)$ or $\operatorname{USC}(\Omega)$. We has the following result.

Theorem 2.1 Let convex set $\Omega \subset I R^{m}$ and $f(\cdot) \in \operatorname{LSC}(\Omega) \cup \operatorname{USC}(\Omega)$. Then the midpoint quasi-convex function f is quasi-convex.

Proof First, assume that $f(\cdot) \in \operatorname{LSC}(\Omega)$ and $f(\cdot)$ is midpoint quasi-convex. Fix $x, y \in \Omega$. It follows by mathematical induction with respect to variable n that

$$
f\left(\frac{k}{2^{n}} x+\frac{2^{n}-k}{2^{n}} y\right) \leq \max \{f(x), f(y)\}, \quad n=0,1,2,3, \cdots, \quad 0 \leq k \leq 2^{n}
$$

Since set $\left\{\frac{k}{2^{n}}, n=0,1,2,3, \cdots, 0 \leq k \leq 2^{n}\right\}$ is dense on $[0,1]$, there exists a sequence

$$
\lim _{j \rightarrow \infty} \frac{k_{j}}{2^{n_{j}}}=\lambda
$$

for any given $\lambda \in[0,1]$. Thus, the following inequality holds from the the lower semi-continuity of function f

$$
f(\lambda x+(1-\lambda) y) \leq \lim _{j \rightarrow \infty} f\left(\frac{k_{j}}{2^{n_{j}}} x+\frac{2^{n_{j}}-k_{j}}{2^{n_{j}}} y\right) \leq \max \{f(x), f(y)\}
$$

Therefore, the midpoint quasi-convex function f is quasi-convex if $f(\cdot) \in \operatorname{LSC}(\Omega)$.
Secondly, assume that $f(\cdot) \in \operatorname{USC}(\Omega)$ and $f(\cdot)$ is midpoint quasi-convex. It follows from the upper semi-continuity of function f that there exists $\delta>0$ for any $\varepsilon>0$ such that the following two inequalities hold,

$$
\begin{aligned}
& f((1-\tau) x+\tau y) \leq f(x)+\varepsilon \leq \max \{f(x), f(y)\}+\varepsilon, \\
& f(\tau x+(1-\tau) y) \leq f(y)+\varepsilon \leq \max \{f(x), f(y)\}+\varepsilon
\end{aligned}
$$

for any $0 \leq \tau \leq \delta$. We denote

$$
\Omega_{0,0}=\{(1-\tau) x+\tau y \mid 0 \leq \tau \leq \delta\}, \text { and } \Omega_{1,0}=\{\tau x+(1-\tau) y \mid 0 \leq \tau \leq \delta\} .
$$

Then it is derived that

$$
f(z) \leq \max \{f(x), f(y)\}+\varepsilon, \quad \forall z \in \Omega_{0,0} \cup \Omega_{1,0} .
$$

Set $\left\{\Omega_{k, n}, 0 \leq k \leq 2^{n}, n=1,2, \cdots\right\}$ is defined by following recursion formulas

$$
\begin{equation*}
\Omega_{k,(n+1)}=\frac{1}{2} \Omega_{\left(\frac{k-1}{2}\right), n}+\frac{1}{2} \Omega_{\left(\frac{k+1}{2}\right), n} \equiv\left\{\left.\frac{1}{2} z_{1}+\frac{1}{2} z_{2} \right\rvert\, z_{1} \in \Omega_{\left(\frac{k-1}{2}\right), n}, \quad z_{2} \in \Omega_{\left(\frac{k-1}{2}\right), n}\right\}, \tag{2.1}
\end{equation*}
$$

for all odd $1 \leq k \leq 2^{n}-1$ and

$$
\begin{equation*}
\Omega_{k,(n+1)}=\Omega_{\left(\frac{k}{2}\right), n}, \tag{2.2}
\end{equation*}
$$

for all even $0 \leq k \leq 2^{n}$. It follows by mathematical induction with respect to variable n that

$$
\begin{equation*}
f(z) \leq \max \{f(x), f(y)\}+\varepsilon, \quad \forall z \in \bigcup_{0 \leq k \leq 2^{n}} \Omega_{k, n} . \tag{2.3}
\end{equation*}
$$

As a line segment, $\Omega_{k, n}$ is δ in length for any $n=0,1,2,3, \cdots$ and $0 \leq k \leq 2^{n}$, which together with the fact that the set $\left\{\frac{k}{2^{n}}, n=0,1,2,3, \cdots, 0 \leq k \leq 2^{n}\right\}$ is dense on [0,1], implies that

$$
\begin{equation*}
\bigcup_{\substack{n=0,1, \ldots, \ldots \\ 0 \leq k \leq 2^{n}}} \Omega_{k, n}=\{\lambda x+(1-\lambda) y \mid 0 \leq \lambda \leq 1\} . \tag{2.4}
\end{equation*}
$$

Thus, it follows from (2.3)-(2.4) that

$$
f(z) \leq \max \{f(x), f(y)\}+\varepsilon, \quad \forall z \in\{\lambda x+(1-\lambda) y \mid 0 \leq \lambda \leq 1\} .
$$

Let $\varepsilon \rightarrow 0$, then we get (1.1). Then the proof is complete.
From the above Theorem 2.1, it is known that the concept of midpoint quasi-convex function is equivalent to that of quasi-convex in the framework of lower semi-continuous function space or upper semi-continuous function space. Therefore, we could release the above continuity constraint. In what follows, we would discuss in the framework of the space. Denote $\operatorname{BM}(\Omega)$ be a set containing all Lebesgue measurable function on Ω for a given convex set $\Omega \subset I R^{m}$.

First we consider the case for the dimension of domain $m=1$. Without loss of generality, assume that $\Omega=[0,1]$ and the Lebesgue measurable function f satisfies $\max \{f(0), f(1)\}=0$.

To obtain the main result of this paper, we need the following two lemmas.
Lemma 2.2 Let $f(\cdot)$ be measurable on $[0,1]$ and $\max \{f(0), f(1)\}=0$. If $f(\cdot)$ is mid-point quasi-convex on $[0,1]$, then the following equation holds

$$
\begin{equation*}
\frac{m([a, b] \cap E)}{b-a}=C_{0} \tag{2.5}
\end{equation*}
$$

for any $0 \leq a<b \leq 1$, where $E=\{\lambda \in[0,1] \mid f(\lambda)>0\}, C_{0}=m(E)$, and $m(\cdot)$ is Lebesgue measurable.

Proof Fix any $x_{0}, x_{1} \in[0,1] \backslash E$. Then $f\left(x_{0}\right), f\left(x_{1}\right) \leq 0$. Now let

$$
x_{\lambda}=(1-\lambda) x_{0}+\lambda x_{1}, \quad \lambda \in[0,1] .
$$

It follows from the definition of midpoint quasi-convexity of f that

$$
\begin{equation*}
f\left(x_{\lambda}\right) \leq \max \left\{f\left(x_{0}\right), f\left(x_{2 \lambda}\right)\right\}, \quad \forall \lambda \in\left[0, \frac{1}{2}\right] \tag{2.6}
\end{equation*}
$$

Due to $f\left(x_{0}\right) \leq 0$, we have

$$
\begin{equation*}
f\left(x_{2 \lambda}\right)>0, \quad \text { if } f\left(x_{\lambda}\right)>0 \tag{2.7}
\end{equation*}
$$

Thus, the following holds

$$
\begin{equation*}
\left\{x_{2 \lambda} \mid x_{\lambda} \in E, \lambda \in\left[\frac{1}{2^{k+1}}, \frac{1}{2^{k}}\right]\right\} \subset E \bigcap\left\{x_{\mu} \left\lvert\, \mu \in\left[\frac{1}{2^{k}}, \frac{1}{2^{k-1}}\right]\right.\right\} \tag{2.8}
\end{equation*}
$$

for any $k=1,2,3, \cdots$. Therefore,

$$
m\left(\left\{x_{2 \lambda} \mid x_{\lambda} \in E, \lambda \in\left[\frac{1}{2^{k+1}}, \frac{1}{2^{k}}\right]\right\}\right) \leq m\left(E \bigcap\left\{x_{\mu} \left\lvert\, \mu \in\left[\frac{1}{2^{k}}, \frac{1}{2^{k-1}}\right]\right.\right\}\right)
$$

Since $m(A+z)=m(A)$ and $m(2 A)=2 m(A)$ hold for any measurable set $A \subset I R^{1}$ and $z \in I R^{1}$,

$$
2 m\left(E \bigcap\left\{x_{\lambda} \left\lvert\, \lambda \in\left[\frac{1}{2^{k+1}}, \frac{1}{2^{k}}\right]\right.\right\}\right) \leq m\left(E \bigcap\left\{x_{\mu} \left\lvert\, \mu \in\left[\frac{1}{2^{k}}, \frac{1}{2^{k-1}}\right]\right.\right\}\right)
$$

Sum up the both sides respectively with respect to k, then we have

$$
\begin{equation*}
m\left(E \bigcap\left\{x_{\lambda} \mid \lambda \in[0,1 / 2]\right\}\right) \leq m\left(E \bigcap\left\{x_{\lambda} \mid \lambda \in[1 / 2,1]\right\}\right) \tag{2.9}
\end{equation*}
$$

If interchange x_{0} with x_{1}, similarly we have

$$
m\left(E \bigcap\left\{x_{\lambda} \mid \lambda \in[1 / 2,1]\right\}\right) \leq m\left(E \bigcap\left\{x_{\lambda} \mid \lambda \in[0,1 / 2]\right\}\right)
$$

which together with (2.9) implies that

$$
\begin{equation*}
m\left(E \bigcap\left\{x_{\lambda} \mid \lambda \in[0,1 / 2]\right\}\right)=m\left(E \bigcap\left\{x_{\lambda} \mid \lambda \in[1 / 2,1]\right\}\right)=\frac{1}{2} m\left(E \bigcap\left[x_{0}, x_{1}\right]\right) \tag{2.10}
\end{equation*}
$$

holds for any $x_{0}, x_{1} \in[0,1] \backslash E$.

If take $x_{0}=0$ and $x_{1}=1$, then the above equality gives

$$
\begin{equation*}
\frac{m(E \bigcap[0,1 / 2])}{1 / 2}=\frac{m(E \bigcap[1 / 2,1])}{1 / 2}=m(E)=C_{0} \tag{2.11}
\end{equation*}
$$

Note that

$$
k / 2^{n} \in[0,1] \backslash E, \quad \forall n=0,1,2 \cdots, 0 \leq k \leq 2^{n}
$$

It follows from (2.10)-(2.11) by mathematical induction with respect to variable $n \geq 1$ that

$$
2^{n} m\left(E \bigcap\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right]\right)=m(E)=C_{0}, \quad 0 \leq k \leq 2^{n}
$$

It follows from the continuity of the Lebesgue measure that

$$
\frac{m(E \bigcap[a, b])}{b-a}=C_{0}
$$

holds for any $0 \leq a<b \leq 1$.
Lemma 2.3 Let G be a measurable subset of $I R^{1}$ and $0 \neq m(G)<\infty$. If $0<\alpha<1$, then there exists (a, b) such that

$$
\frac{m(G \cap[a, b])}{b-a} \geq \alpha
$$

Proof By the measurability of the set G, there exist a sequence of open intervals $\left\{\left(a_{i}, b_{i}\right) \mid i=\right.$ $1,2, \cdots\}$ such that

$$
G \subseteq \bigcup_{i=1}^{\infty}\left(a_{i}, b_{i}\right) ; \quad m(G)>\alpha \sum_{i=1}^{\infty}\left[b_{i}-a_{i}\right]
$$

for any given $0<\alpha<1^{[2]}$. It follows that

$$
\begin{aligned}
\alpha & <\frac{m(G)}{\sum_{i}\left[b_{i}-a_{i}\right]}=\sum_{j} \frac{m\left(G \cap\left(a_{j}, b_{j}\right)\right)}{\sum_{i}\left[b_{i}-a_{i}\right]}=\sum_{j}\left\{\frac{m\left(G \cap\left(a_{j}, b_{j}\right)\right)}{b_{j}-a_{j}} \cdot \frac{b_{j}-a_{j}}{\sum_{i}\left[b_{i}-a_{i}\right]}\right\} \\
& \leq\left[\sup _{j} \frac{m\left(G \cap\left(a_{j}, b_{j}\right)\right)}{b_{j}-a_{j}}\right] \sum_{j} \frac{b_{j}-a_{j}}{\sum_{i}\left[b_{i}-a_{i}\right]}=\sup _{j} \frac{m\left(G \cap\left(a_{j}, b_{j}\right)\right)}{b_{j}-a_{j}} .
\end{aligned}
$$

Therefore, there exists a j such that $\frac{m\left(G \cap\left[a_{j}, b_{j}\right]\right)}{b_{j}-a_{j}} \geq \alpha$.
Now, we present the following main result.
Theorem 2.4 Let $f(\cdot)$ be measurable on $[0,1]$. If $f(\cdot)$ is midpoint quasi-convex on $[0,1]$, then f is either a quasi-convex function or a constant function almost everywhere.

Proof Without loss of generality, we still assume that $\max \{f(0), f(1)\} \leq 0$. It follows by Lemmas 2.2 and 2.3 that

$$
C_{0}=0, \quad \text { or } \quad C_{0}=1
$$

（1）If $C_{0}=0$ ，we claim that $E=\emptyset$ ．To see this，suppose there exists an $x_{0} \in E$ ，i．e．， $f\left(x_{0}\right)>0$ ．If $x_{0} \in\left[0, \frac{1}{2}\right]$ ，it follows from the fact $f(z) \leq 0$ almost everywhere on $\left[0, x_{0}\right]$ and

$$
0<f\left(x_{0}\right) \leq \max \left\{f(z), f\left(2 x_{0}-z\right)\right\}
$$

that

$$
f(x) \geq 0 \quad \forall x \in\left[x_{0}, 2 x_{0}\right]
$$

which contradicts the fact $C_{0}=0$ ．Thus $[0,1 / 2] \cap E=\emptyset$ ．Similarly，$[1 / 2,1] \cap E=\emptyset$ ．Therefore， $E=\emptyset$ ，that is，f is a quasi－convex function．
（2）If $C=1$ ，we claim that there exists $\beta>0$ such that $f(\cdot)$ equals β almost everywhere on $[0,1]$ ．To see this，fix a $\tau>0$ and write

$$
f_{\tau}(\cdot)=f(\cdot)-\tau, \quad \text { and } \quad E_{\tau}=\left\{x \in[0,1] \mid f_{\tau}(x)>0\right\}
$$

Since $\max \left\{f_{\tau}(0), f_{\tau}(1)\right\} \leq 0$ holds，it follows by Lemmas 2.2 and 2.3 that $m\left(E_{\tau}\right)=0$ or 1 ．Note function $m\left(E_{\tau}\right)$ is monotone increasing with respect to τ ．Hence there exists β such that：

$$
m\left(E_{\tau}\right)= \begin{cases}0, & \tau<\beta \\ 1, & \tau \geq \beta\end{cases}
$$

Therefore，$f(\cdot)=\beta$ almost everywhere on $[0,1]$ ．We obtain the result．
Remark The above result can be extended to high dimensional Euclidean space by the same method．Precisely，let convex set $\Omega \subset I R^{n}$ and suppose $f(\cdot)$ is measurable on $\Omega \times[0,1]$ ．If $f(\cdot)$ is mid－point quasi－convex and satisfies $f(x, 0) \leq 0, f(x, 1) \leq 0$ ，for all $x \in \Omega$ ，then one of the following two results holds，either $f(x, y) \leq 0, \forall(x, y) \in \Omega \times[0,1]$ holds or f is a constant function almost everywhere．

References：

［1］AUBIN J P．Optima and Equilibria．An Introduction to Nonlinear Analysis［M］．Translated from the French by Stephen Wilson，Springer－Verlag，Berlin， 1993.
［2］MUKHERJEA A，POTHOVEN K．Real and Functional Analysis．Part A．Real Analysis［M］．Second edition． Mathematical Concepts and Methods in Science and Engineering，27．Plenum Press，New York， 1984.
［3］YANG Xin－min．Quasi－convexity of upper semicontious functions［J］．Chinese Journal of Operations Research， 1999，3（1）：48－51．

拟凸函数的若干充分条件

许亚善

（复旦大学数学科学学院，上海200433）
摘要：本文提出了中点拟凸函数的概念，在可测函数空间中，给出了中点拟凸函数拟凸的若干个充分条件．
关键词：拟凸函数；中点拟凸；可测函数．

