On Sufficient Conditions for p－Valently Starlikeness and Strong Starlikness

XU Neng
（Department of Mathematics，Changshu Institute of Technology，Jiangsu 215500，China ）
（E－mail：xuneng11＠pub．sz．jsinfo．net）

Abstract

Let $A_{n}(p)(p, n \in N=\{1,2,3, \cdots\})$ denote the class of functions of the form $f(z)=z^{p}+a_{p+n} z^{p+n}+\cdots$ that are analytic in the unit disk $E=\{z:|z|<1\}$ ．By using the method of differential subordinations we give some sufficient conditions for a function $f(z) \in A_{n}(p)$ to be p－valently starlike or strong starlike．

Key words：analytic function；starlikeness；strongly starlikeness；subordination．
MSC（2000）：30C45
CLC number：O174．51

1．Introduction

Let $A_{n}(p)(p, n \in N=\{1,2,3, \cdots\})$ be the class of functions of the form

$$
f(z)=z^{p}+\sum_{m=n}^{\infty} a_{p+m} z^{p+m}
$$

that are analytic in the unit disk $E=\{z:|z|<1\}$ ．A function $f(z) \in A_{n}(p)$ is said to be p－valently starlike of order α in E if it satisfies

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>p \alpha \quad(z \in E)
$$

for some $\alpha(0 \leq \alpha<1)$ ．We denote by $S_{n}^{*}(p, \alpha)(0 \leq \alpha<1)$ the subclass of $A_{n}(p)$ consisting of functions $f(z)$ which are p－valently starlike of order α in E ．Clearly，$S_{n}^{*}(p, \alpha) \subset S_{n}^{*}(p, 0)$ for $0 \leq \alpha<1$ ．Also，we write $A_{1}(p)=A(p), A(1)=A, S_{1}^{*}(p, \alpha)=S^{*}(p, \alpha)$ and $S^{*}(1, \alpha)=S^{*}(\alpha)$ ．

A function $f(z)$ in $A(p)$ is said to be p－valently strong starlike of order α in E if it satisfies

$$
\frac{z f^{\prime}(z)}{f(z)} \prec p\left(\frac{1+z}{1-z}\right)^{\alpha}
$$

for some $\alpha(0<\alpha \leq 1)$ ，where the symbol \prec denotes subordination．We denote by $\widetilde{S}^{*}(p, \alpha)(0<$ $\alpha \leq 1)$ the subclass of $A(p)$ consisting of all functions which are p－valently strong starlike of order α in E ．It is clear that $\widetilde{S}^{*}(p, 1)=S^{*}(p, 0)^{[1]}$ ．

Recently，Owa et al．${ }^{[2,3]}$ ，Yang ${ }^{[4]}$ ，Silverman ${ }^{[5]}$ ，Ponnusamy and Singh ${ }^{[6]}$ and others have obtained various sufficient conditions for a function $f(z)$ to be in $S_{n}^{*}(p, \alpha)(0 \leq \alpha<1)$ and

[^0]$\widetilde{S}^{*}(p, \alpha)(0<\alpha \leq 1)$. In the present paper, using the method of differential subordinations, we give new criteria for $f(z)$ to be in the classes $S_{n}^{*}(p, \alpha)(0 \leq \alpha<1)$ and $\widetilde{S}^{*}(p, \alpha)(0<\alpha \leq 1)$.

To derive our results, we need the following lemmas.
Lemma $1^{[7]}$ Let $g(z)$ be analytic and univalent in E, and $\theta(w)$ and $\varphi(w)$ be analytic in a domain D containing $g(E)$, with $\varphi(w) \neq 0$ when $w \in g(E)$. Set

$$
Q(z)=z g^{\prime}(z) \varphi(g(z)), \quad h(z)=\theta(g(z))+Q(z)
$$

and suppose that
(i) $Q(z)$ is univalent and starlike in E, and
(ii) $\operatorname{Re} \frac{z h^{\prime}(z)}{Q(z)}=\operatorname{Re}\left\{\frac{\theta^{\prime}(g(z))}{\varphi(g(z))}+\frac{z Q^{\prime}(z)}{Q(z)}\right\}>0 \quad(z \in E)$.

If $p(z)$ is analytic in E, with $p(0)=g(0), p(E) \subset D$ and

$$
\theta(p(z))+z p^{\prime}(z) \varphi(p(z)) \prec \theta(g(z))+z g^{\prime}(z) \varphi(g(z))=h(z)
$$

then $p(z) \prec g(z)$ and $g(z)$ is the best dominant of the subordination.
Lemma $2^{[4]}$ Let $g(z)=b_{0}+b_{n} z^{n}+b_{n+1} z^{n+1}+\cdots(n \in N)$ be analytic in E and $h(z)$ be analytic and starlike (with respect to the origin) univalent in E with $h(0)=0$. If $z g^{\prime}(z) \prec h(z)$, then

$$
g(z) \prec b_{0}+\frac{1}{n} \int_{0}^{z} \frac{h(t)}{t} \mathrm{~d} t .
$$

2. Main results

Theorem 1 Let $0<\alpha \leq 1, \mu$ be an integer, and $-1 \leq \mu \alpha \leq 1$. If $f(z) \in A(p)$ satisfies $f(z) \neq 0$ in $0<|z|<1, f^{\prime}(z) \neq 0$ when $\mu \geq 0$, and

$$
\begin{equation*}
\left(\frac{f(z)}{z f^{\prime}(z)}\right)^{\mu}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \prec \frac{2 \alpha z}{p^{\mu}(1+z)^{1+\mu \alpha}(1-z)^{1-\mu \alpha}}=h(z) \tag{1}
\end{equation*}
$$

then $f(z) \in \widetilde{S}^{*}(p, \alpha)$ and the order α is sharp.
Proof Let us define the function $p(z)$ in E by

$$
p(z)=\frac{z f^{\prime}(z)}{p f(z)}
$$

Then $p(z)$ is analytic in E and

$$
\begin{equation*}
\left(\frac{f(z)}{z f^{\prime}(z)}\right)^{\mu}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)=\frac{1}{p^{\mu}} \frac{z p^{\prime}(z)}{p^{1+\mu}(z)} \tag{2}
\end{equation*}
$$

From (1) and (2) we have

$$
\begin{equation*}
\frac{1}{p^{\mu}} \frac{z p^{\prime}(z)}{p^{1+\mu}(z)} \prec h(z) \tag{3}
\end{equation*}
$$

Let $0<\alpha \leq 1, \mu$ be an integer, $-1 \leq \mu \alpha \leq 1$,

$$
D= \begin{cases}C & (\mu \leq-1) \\ C \backslash\{0\} & (\mu>-1),\end{cases}
$$

and choose

$$
\begin{equation*}
g(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}, \quad \theta(w)=0, \quad \varphi(w)=\frac{1}{p^{\mu}} \frac{1}{w^{1+\mu}} . \tag{4}
\end{equation*}
$$

Then $g(z)$ is analytic and univalent in $E, g(0)=p(0)=1, p(E) \subset D, \theta(w)$ and $\varphi(w)$ satisfy the conditions of Lemma 1. The function

$$
\begin{equation*}
Q(z)=z g^{\prime}(z) \varphi(g(z))=\frac{2 \alpha z}{p^{\mu}(1+z)^{1+\mu \alpha}(1-z)^{1-\mu \alpha}} \tag{5}
\end{equation*}
$$

is univalent and starlike in E because

$$
\operatorname{Re} \frac{z Q^{\prime}(z)}{Q(z)}=1+(1+\mu \alpha) \operatorname{Re}\left(-\frac{z}{1+z}\right)+(1-\mu \alpha) \operatorname{Re} \frac{z}{1-z}>0 \quad(z \in E) .
$$

Furthermore, we have

$$
\theta(g(z))+Q(z)=\frac{2 \alpha z}{p^{\mu}(1+z)^{1+\mu \alpha}(1-z)^{1-\mu \alpha}}=h(z)
$$

and

$$
\begin{equation*}
\operatorname{Re} \frac{z h^{\prime}(z)}{Q(z)}=\operatorname{Re} \frac{z Q^{\prime}(z)}{Q(z)}>0 \tag{6}
\end{equation*}
$$

for $z \in E$. The Inequality (6) shows that the function $h(z)$ is close-to-convex and univalent in E. Now it follows from (2)-(6) that

$$
\theta(p(z))+z p^{\prime}(z) \varphi(p(z)) \prec \theta(g(z))+z g^{\prime}(z) \varphi(g(z))=h(z) .
$$

Therefore, by virtue of Lemma 1, we conclude that $p(z) \prec g(z)$, that is, $f(z) \in \widetilde{S}^{*}(p, \alpha)$.
For the function

$$
f(z)=z^{p} \exp \int_{0}^{z} \frac{p}{t}\left(\left(\frac{1+t}{1-t}\right)^{\alpha}-1\right) \mathrm{d} t \in A(p),
$$

it is easy to verify that

$$
\left(\frac{f(z)}{z f^{\prime}(z)}\right)^{\mu}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)=h(z)
$$

and

$$
\left|\arg \frac{z f^{\prime}(z)}{p f(z)}\right|=\alpha\left|\arg \frac{1+z}{1-z}\right| \rightarrow \frac{\alpha \pi}{2} \quad \text { as } \quad z \rightarrow i .
$$

This completes the proof of the theorem.
Letting $\mu=\alpha=1$ in Theorem 1, we obtain
Corollary 1 If $f(z) \in A(p)$ satisfies $f(z) f^{\prime}(z) \neq 0(0<|z|<1)$ and

$$
\frac{f(z)}{z f^{\prime}(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec 1+\frac{2 z}{p(1+z)^{2}}=h_{1}(z),
$$

then $f(z) \in S^{*}(p, 0)$ and the order 0 is sharp.

Remark 1 Because

$$
h_{1}(E)=\left\{w:\left|\arg \left(w-\left(1+\frac{1}{2 p}\right)\right)\right|>0\right\}
$$

hence Corollary 1 coincides with the result of Owa et al. ${ }^{[2]}$. Furthermore we see that the result of [2] is sharp.

Letting $\mu=0,0<\alpha \leq 1$ in Theorem 1 , and noting

$$
h(z)=\frac{2 \alpha z}{1-z^{2}}, \quad h\left(e^{i \theta}\right)=\frac{2 \alpha e^{i \theta}}{1-e^{2 i \theta}}=\frac{\alpha i}{\sin \theta}
$$

we have $\operatorname{Re} h\left(e^{i \theta}\right)=0$ and $\left|\operatorname{Im} h\left(e^{i \theta}\right)\right| \geq \alpha$, and
Corollary 2 If $f(z) \in A(p)$ satisfies $f(z) f^{\prime}(z) \neq 0(0<|z|<1)$ and

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)} \neq i b
$$

where b is a real number and $|b| \geq \alpha(0<\alpha \leq 1)$, then $f(z) \in \widetilde{S}^{*}(p, \alpha)$ and the order α is sharp.
Letting $\mu=-1$ in Theorem 1, we have
Corollary 3 If $f(z) \in A(p)$ satisfies $f(z) \neq 0(0<|z|<1)$ and

$$
\frac{z f^{\prime}(z)}{f(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \prec \frac{2 p \alpha z}{(1+z)^{1-\alpha}(1-z)^{1+\alpha}}
$$

where $0<\alpha \leq 1$, then $f(z) \in \widetilde{S}^{*}(p, \alpha)$ and the order α is sharp.
Letting $p=\alpha=1$ in Corollary 3, we have
Corollary 4 If $f(z) \in A$ satisfies $f(z) \neq 0(0<|z|<1)$ and

$$
\frac{z f^{\prime}(z)}{f(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \prec \frac{2 z}{(1-z)^{2}}=h_{2}(z)
$$

then $f(z) \in S^{*}(0)$ and the order 0 is sharp.
Remark 2 Owa and Obradovic ${ }^{[3]}$ have proved that if $f(z) \in A$ satisfies

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)\right\}>-\frac{1}{2} \quad(z \in E),
$$

then $f(z) \in S^{*}(0)$. Since

$$
h_{2}(E)=\left\{w:\left|\arg \left(w+\frac{1}{2}\right)\right|<\pi\right\}
$$

we see that Corollary 4 improves the result in [3].
Theorem 2 If $f(z) \in A_{n}(p)$ satisfies $f(z) f^{\prime}(z) \neq 0(0<|z|<1)$ and

$$
\begin{equation*}
\left(\frac{f(z)}{z f^{\prime}(z)}\right)^{\mu}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \prec a z \tag{7}
\end{equation*}
$$

where $0<\mu \leq 1,0<a \leq \frac{n}{p^{\mu}}$. Then $f(z) \in S_{n}^{*}\left(p, 1 /\left(1+\frac{\mu p^{\mu} a}{n}\right)^{\frac{1}{\mu}}\right)$ and the order $1 /\left(1+\frac{\mu p^{\mu} a}{n}\right)^{\frac{1}{\mu}}$ is sharp.

Proof Let

$$
\begin{equation*}
g(z)=\frac{z f^{\prime}(z)}{p f(z)} . \tag{8}
\end{equation*}
$$

Then $g(z)=1+b_{n} z^{n}+\cdots$ is analytic in E and

$$
z\left(\frac{1}{g^{\mu}(z)}\right)^{\prime}=-\mu p^{\mu}\left(\frac{f(z)}{z f^{\prime}(z)}\right)^{\mu}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) .
$$

From (7) and (8), we have

$$
\begin{equation*}
z\left(\frac{1}{g^{\mu}(z)}\right)^{\prime} \prec-\mu p^{\mu} a z . \tag{9}
\end{equation*}
$$

For $0<\mu \leq 1$ and $0<a \leq \frac{n}{p^{\mu}}$, applying Lemma 2 to (9) we have

$$
\frac{1}{g^{\mu}(z)} \prec 1-\frac{\mu p^{\mu} a}{n} z,
$$

which implies that

$$
\begin{equation*}
g(z) \prec\left(\frac{1}{1-\frac{\mu p^{\mu}}{n} z}\right)^{\frac{1}{\mu}}=h_{3}(z) . \tag{10}
\end{equation*}
$$

The region $h_{3}(E)$ is symmetric with respect to the real axis and $h_{3}(z)$ is convex univalent in E because

$$
\operatorname{Re}\left\{1+\frac{z h_{3}^{\prime \prime}(z)}{h_{3}^{\prime}(z)}\right\}=\operatorname{Re}\left\{\frac{1+\frac{p^{\mu} a}{n} z}{1-\frac{\mu p^{\mu} a}{n} z}\right\}>\frac{1-\frac{p^{\mu} a}{n}}{1+\frac{\mu \mu^{\mu} a}{n}} \geq 0 \quad(z \in E) .
$$

Hence $\operatorname{Re} h_{3}(z) \geq h_{3}(-1) \geq 0$ for $z \in E$ and it follows from (8) and (10)

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{p f(z)}>\left(\frac{1}{1+\frac{\mu p^{\mu} \mu}{n}}\right)^{\frac{1}{\mu}} \quad(z \in E) .
$$

This shows that $f(z) \in S_{n}^{*}\left(p, 1 /\left(1+\frac{\mu \mu^{\mu} a}{n}\right)^{\frac{1}{\mu}}\right)$.
If we take

$$
f(z)=z^{p} \exp \int_{0}^{z} \frac{p}{t}\left(\left(\frac{1}{1-\frac{\mu \rho^{\mu} a}{n} t^{n}}\right)^{\frac{1}{\mu}}-1\right) \mathrm{d} t,
$$

then it is easy to see $f(z) \in A_{n}(p)$ satisfies (7) and

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{p f(z)} \rightarrow\left(\frac{1}{1+\frac{\mu p^{\mu} a}{n}}\right)^{\frac{1}{\mu}} \text { as } z \rightarrow e^{i \pi / n} .
$$

Thus the order $1 /\left(1+\frac{\mu p^{\mu} a}{n}\right)^{\frac{1}{\mu}}$ is sharp.
Letting $\mu=n=p=1$ in the Theorem 2 yields
Corollary 5 Let $f(z) \in A$ satisfy $f(z) f^{\prime}(z) \neq 0(0<|z|<1)$ and

$$
\frac{f(z)}{z f^{\prime}(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \prec a z \quad(z \in E),
$$

where $0<a \leq 1$. Then $f(z) \in S^{*}\left(\frac{1}{1+a}\right)$ and the order $\frac{1}{1+a}$ is sharp.

Remark 3 Silverman ${ }^{[5, ~ T h e o r e m ~ 1] ~ h a s ~ p r o v e d ~ i f ~} f(z) \in A, 0<a \leq 1$ ，and

$$
G_{a}=\left\{f:\left|\left(\frac{\frac{1+z f^{\prime \prime}(z)}{f^{\prime}(z)}}{\frac{z f^{\prime}(z)}{f(z)}}\right)-1\right|<a, z \in E\right\}
$$

then $G_{a} \subset S^{*}(2 /(1+\sqrt{1+8 a}))$ ．Because $2 /(1+\sqrt{1+8 a})<1 /(1+a)(0<a<1)$ ，we see that Corollary 5 improves the result in［5］．

Acknowledgement The author would like to express deep appreciation to Professor YANG Ding－gong for enlightening discussions．

References：

［1］DUREN P L．Univalent Functions［M］．Springer－Verlag，New York， 1983.
［2］OWA S，NONOKAWA M，SAITON H．Sufficient conditions for multivalent starlikeness［J］．Ann．Polon． Math．，1995，62（1）：75－78．
［3］OWA S，OBRADOVIC M．An application of differential subordinations and some criteria for univalency［J］． Bull．Austral．Math．Soc．，1990，41（3）：487－494．
［4］YANG Ding－gong．On sufficient conditions for multivalent starlikeness［J］．Bull．Korean Math．Soc．，2000， 37（4）：659－668．
［5］SILVERMAN H．Convex and starlike criteria［J］．Int．J．Math．Math．Sci．，1999，22（1）：75－79．
［6］PONNUSAMY S，SINGH V．Criteria for strongly starlike functions［J］．Complex Variables Theory Appl．， 1997，34（3）：267－291．
［7］MILLER S S，MOCANU P T．On some classes of first order differential subordinations［J］．Michigan Math． J．，1985，32：185－195．

关于 p－叶星形性和强星形性的充分条件

徐能

（常熟理工学院数学系，江苏 常熟 215500）
摘要：本文利用微分从属的方法得到了单位圆盘内 p－叶星形函数和强星形函数的某些充分条件。

关键词：解析函数；星形函数；强星形函数；从属．

[^0]: Received date：2004－12－06；Accepted date：2005－09－01

