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1. Introduction

The existence of periodic solution is an important topic in the theoretical research of func-

tional differential equations. The work for the existence of periodic solution is still challengeable

in theory meaning and application field. It had been paid high attention during the past two

decades, and many experts and scholars had made extensive and creative contribution, they ob-

tained some good and interesting results. In recent years, periodic retarded functional differential

equations with finite or infinite delay, and periodic neutral functional differential equations with

finite or infinite delay are discussed extensively, respectively. Among these works, we mention

[1], where Fan and Wang made a brief and complete discussion for weakening the conditions of

functional differential equations and widening the scopes of type of functional differential equa-

tions. They systematically summarized some important results made by other scholars in recent

half century. Details can be founded in [1] and the references therein.

Since the theory for phase space was built by Hale and Kato in 1978[6], for functional

differential equations with infinite delay, some new progress had been made on the existence

and uniqueness, periodic solutions, global stability and persistence etc. So far, the effective

phase space form are Ch space[5] and Cg space[2], The bounded continuous functions space

BC((−∞, 0];Rn) can also be found in recent literature. For functional differential equations

with infinite delay, different problems use different phase spaces. Therefore, choosing a suitable

phase space is a critical step for solving the problems. It will do for neutral type functional

Received date: 2005-03-28; Accepted date: 2006-07-02
Foundation item: the National Natural Science Foundation of China (10171010; 10201005)



68 Journal of Mathematical Research and Exposition Vol.27

differential equations with infinite delay. Consequently, we choose Cg space as our phase space

to investigate the problem given in [1], for D-operator type linear neutral functional differential

equations with infinite delay, we have shown that there is a periodic solution if and only if there

is a bounded solution. Moreover, our results are different from the ones given by [1]. They are

non-inclusive results. We will begin our discussion in the next section.

2. The existence of periodic solutions

We will consider neutral functional differential equations with infinite delay

dDxt

dt
= f(t, xt), (2.1)

where xt(s) = x(t + s), s ∈ (−∞, 0], f : R × Cg → Rn, Cg is phase space of (2.1). Let C :=

C(R−, Rn) represent all continuous functions mapping from R− to Rn and g : R− → [1,+∞) be

a continuous and nonincreasing function such that g(0) = 1, g(−∞) = +∞. Define Cg = {ϕ ∈

C : ϕ
g

uniformly continuous on R−, and sups≤0
|ϕ(s)|
g(s) <∞}. For any ϕ ∈ Cg, the norm is defined

by |ϕ|g = sups≤0
|ϕ(s)|
g(s) , where R− = (−∞, 0]. [2] had shown that | · |g is norm and (Cg, | · |g) is

a Banach space.

For any ϕ ∈ Cg, we denote ‖ϕ‖ = sups≤0 |ϕ(u)|. For any given α > 0, ϕ ∈ Cg, t0 ∈ R, A

denotes the set of all functions which satisfies x : (−∞, t0 + α] → Rn, xt0 = ϕ, x is continuous

function on [t0, t0 + α].

We claim that (Cg, | · |g) satisfies the assumptions (B1) − (B4) of space B[3]:

(1) For any ϕ ∈ Cg, then |ϕ(0)| ≤ |ϕ|g. By definition, |ϕ|g ≥ |ϕ(0)|/g(0) = |ϕ(0)|.

(2) For any t0 ∈ R,α ≥ 0, x ∈ A, t ∈ [t0, t0+α], it follows that xt ∈ Cg, and xt is continuous

on [t0, t0 + α] about t.

First to check that xt(s)
g(s) is a uniformly continuous function of s ∈ R− for fixed t ≥ t0.

x(t+ s) = x(t− t0 + t0 + s) =

{

ϕ(t− t0 + s), s ≤ −(t− t0),
x(t+ s), s > −(t− t0).

For fixed t = t0,
xt0

(s)

g(s) = ϕ(s)
g(s) . By the fact that ϕ

g
is a uniformly continuous function on

R−. Furthermore, xt(s)
g(s) is a uniformly continuous function on R− for fixed t = t0.

For fixed t > t0, set u = t− t0 > 0.

x(t+ s) =

{

ϕ(u + s), s ≤ −u,
x(t+ s), s > −u.

It is discussed from the following cases:

(i) As s1, s2 ∈ [−(u + 1), 0]; since x(t + s) is continuous on [−(u + 1), 0], then yields that
x(t+s)

g(s) is continuous on [−(u + 1), 0], so it is uniformly continuous. Thus, for any ε > 0, there

exists a δ1 > 0, such that for any s1, s2 ∈ [−(u+ 1), 0] : |s1 − s2| < δ1, it deduces that

∣

∣

∣

∣

x(t+ s1)

g(s1)
−
x(t+ s2)

g(s2)

∣

∣

∣

∣

< ε;
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(ii) As s1, s2 ∈ (−∞,−u]; it implies that

∣

∣

∣

∣

x(t+ s1)

g(s1)
−
x(t + s2)

g(s2)

∣

∣

∣

∣

=

∣

∣

∣

∣

xt0(t+ s1 − t0)

g(s1)
−
xt0(t+ s2 − t0)

g(s2)

∣

∣

∣

∣

=

∣

∣

∣

∣

ϕ(u + s1)

g(s1)
−
ϕ(u + s2)

g(s2)

∣

∣

∣

∣

≤

∣

∣

∣

∣

ϕ(u+ s1)

g(u+ s1)
·
g(u+ s1)

g(s1)
−
ϕ(u+ s2)

g(u+ s2)
·
g(u+ s2)

g(s2)

∣

∣

∣

∣

≤

∣

∣

∣

∣

ϕ(u+ s1)

g(u+ s1)
−
ϕ(u+ s2)

g(u+ s2)

∣

∣

∣

∣

·
g(u+ s1)

g(s1)
+

∣

∣

∣

∣

g(u+ s1)

g(s1)
−
g(u+ s2)

g(s2)

∣

∣

∣

∣

·

∣

∣

∣

∣

ϕ(u+ s2)

g(u+ s2)

∣

∣

∣

∣

.

Noting the fact that ϕ(u+s)
g(u+s) is uniformly continuous on (−∞,−u], then for any ε > 0, there

exists a δ2 > 0 such that for any s1, s2 ∈ (−∞,−u] : |s1 − s2| < δ2, one yields that

∣

∣

∣

∣

ϕ(u + s1)

g(u+ s1)
−
ϕ(u+ s2)

g(u+ s2)

∣

∣

∣

∣

< ε.

Since g(s+u)
g(s) is a uniformly continuous function of s for fixed u > 0, that is for any ε > 0,

there exists a δ̄ > 0, such that for any s1, s2 ∈ (−∞, 0] : |s1 − s2| < δ̄, it follows that

∣

∣

∣

∣

g(u+ s1)

g(s1)
−
g(u+ s2)

g(s2)

∣

∣

∣

∣

< ε.

Moreover, g(s+u)
g(s) is a bounded function of s for fixed u > 0. Let its boundary be M . So

∣

∣

∣

∣

x(t+ s1)

g(s1)
−
x(t+ s2)

g(s2)

∣

∣

∣

∣

< εM + ε |ϕ|g = (|ϕ|g +M) ε.

Taking δ = min{δ1, δ2, 1}. For any given t ≥ t0, for any ε > 0, there exists a δ > 0, such

that for any s1, s2 ∈ R−, |s1 − s2| < δ, it follows that

∣

∣

∣

∣

xt(s1)

g(s1)
−
xt(s2)

g(s2)

∣

∣

∣

∣

=

∣

∣

∣

∣

x(t+ s1)

g(s1)
−
x(t+ s2)

g(s2)

∣

∣

∣

∣

< ε.

This shows that for given t ≥ t0,
xt(s)
g(s) is a uniformly continuous function on R−.

Next for t ∈ [t0, t0 + α], and g(s) is monotonously nonincreasing function, then

|xt|g ≤ sup
s≤t0−t

|xt(s)|

g(s)
+ sup

t0−t≤s≤0

|xt(s)|

g(s)

≤ sup
s+t−t0≤0

|xt0(s+ t− t0)|

g(s+ t− t0)
+ sup

t0≤s+t≤t

|x(s+ t)| = |ϕ|g + sup
t0≤s+t≤t

|x(s+ t)|.

Since x is continuous on [t0, t0+α], then it is bounded. We denote |x(s+t)| ≤ b <∞, s+t ∈

[t0, t0 + α]. It follows that |xt|g ≤ |ϕ|g + b <∞, it proves that xt ∈ Cg, t ∈ [t0, t0 + α].

Finally, we will prove that xt is continuous on [t0, t0 + α]. Let t1, t2 ∈ [t0, t0 + α], without
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loss of generality, let t0 ≤ t1 < t2.

|xt1 − xt2 |g = sup
s≤0

|xt1 (s) − xt2 (s)|

g(s)
= sup

s≤0

|x(s+ t1) − x(s+ t2)|

g(s)

≤ sup
s≤t0−t2

|x(s + t1) − x(s+ t2)|

g(s)
+ sup

t0−t2<s≤0

|x(s+ t1) − x(s+ t2)|

g(s)

= sup
s−t0+t2≤0

|xt0 (s− t0 + t2 − t2 + t1) − xt0(s− t0 + t2)|

g(s)
+ sup

t0<s+t2≤t2

|x(s+ t1) − x(s+ t2)|

g(s)

≤ sup
r≤0

|ϕ(r + t1 − t2) − ϕ(r)|

g(r + t0 − t2)
+ sup

t0<s+t2<t0+α
|x(s+ t1) − x(s+ t2)|

= sup
r≤0

∣

∣

∣

∣

ϕ(r + t1 − t2)

g(r + t1 − t2)
·
g(r + t1 − t2)

g(r + t0 − t2)
−
ϕ(r)

g(r)
·

g(r)

g(r + t0 − t2)

∣

∣

∣

∣

+

sup
t0<s+t2<t0+α

|x(s+ t1) − x(s+ t2)|,

that is

|xt1 − xt2 |g ≤ sup
r≤0

{∣

∣

∣

∣

ϕ(r + t1 − t2)

g(r + t1 − t2)
−
ϕ(r)

g(r)

∣

∣

∣

∣

·
g(r + t1 − t2)

g(r + t0 − t2)
+

∣

∣

∣

∣

ϕ(r)

g(r)

∣

∣

∣

∣

·

∣

∣

∣

∣

g(r + t1 − t2)

g(r + t0 − t2)
−

g(r)

g(r + t0 − t2)

∣

∣

∣

∣

}

+

sup
t0<s+t2<t0+α

|x(s+ t1) − x(s+ t2)| := I1 + I2.

Noting the fact that ϕ
g

is uniformly continuous on R− and x is uniformly continuous on

[t0, t0 + α], then for any given ε > 0, there exists a δ3 > 0, such that as |t1 − t2| < δ3, it follows

that
∣

∣

∣

∣

ϕ(r + t1 − t2)

g(r + t1 − t2)
−
ϕ(r)

g(r)

∣

∣

∣

∣

< ε, |x(s+ t1) − x(s+ t2)| < ε.

Set v = r+ t0− t2 < 0. By the fact that g(s+u)
g(s) is a continuous function of u for fixed s ≤ 0.

For the above ε > 0, there exists a δ4 > 0, such that as |t1 − t2| < δ4, we get

∣

∣

∣

∣

g(r + t1 − t2)

g(r + t0 − t2)
−

g(r)

g(r + t0 − t2)

∣

∣

∣

∣

=

∣

∣

∣

∣

g(v − t0 + t1)

g(v)
−
g(v − t0 + t2)

g(v)

∣

∣

∣

∣

< ε.

Therefore, for any given ε > 0, there exists a δ = min{δ3, δ4}, such that as |t1 − t2| < δ,

one obtains that I1 ≤ ε ·M + |ϕ|g · ε = (M + |ϕ|g) ε, that is |xt1 − xt2 |g ≤ (M + |ϕ|g) ε + ε =

(M + |ϕ|g + 1) ε. It means that xt is continuous on [t0, t0 + α] about t.

(3) For any t0 ∈ R,α ≥ 0, x ∈ A, then |xt0+α|g ≤ |xt0 |g + sup
s∈[t0,t0+α]

|x(s)|.

In fact, since g(s) is a monotonously nonincreasing function, then

|xt0+α|g ≤ sup
s≤−α

|xt0+α(s)|/g(s) + sup
−α≤s≤0

|xt0+α(s)|/g(s)

≤ sup
s+α≤0

|xt0(s+ α)|/g(s+ α) + sup
0≤s+α≤α

|x(t0 + s+ α)|

= |xt0 |g + sup
u∈[t0,t0+α]

|x(u)|.
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Since (Cg, | · |g) satisfies the conditions (1)-(3), it easily proves that (Cg , | · |g) is the special case

of phase space defined by [4].

Definition 2.1 We called the operator D of (2.1) uniformly g-stable, if there exist constants

k1 > 0, k2 > 0 such that the solution xt(t0, ϕ) of general difference equation Dxt = e(t), t ≥

t0, xt0 = ϕ satisfies

|x(t0, ϕ)(t)| ≤ k1 sup
θ∈[t0,t]

|e(θ)| + k2|xt0 |g, ϕ ∈ Cg, xt ∈ Cg, e ∈ C([t0,+∞), Rn).

We assume that D : Cg → Rn is linear, continuous, g-uniformly stable; f : R×Cg → Rn is

continuous and it is linear about ϕ, and f(t + ω, ϕ) = f(t, ϕ) in (2.1). We denote the solution

of (2.1) through (t0, ϕ) ∈ R×Cg by xt(t0, ϕ). The basic theory of neutral functional differential

equation with infinite delay was builded in [4]. Under the above assumptions, by [4], one gets

that for any (t0, ϕ) ∈ R× Cg, (2.1) exists a unique solution xt(t0, ϕ), and it satisfies continuous

dependence of the initial condition. In addition, if the solution is bounded, then it can be

extended to infinity.

Lemma 2.1
[5] For any constants a, c > 0, L ≥ 0, the set

S := {ϕ ∈ Cg : |ϕ|g ≤ c, ‖ϕ‖ ≤ a, |ϕ(θ1) − ϕ(θ2)| ≤ L|θ1 − θ2|, θ1, θ2 ∈ R−}

is convex and | · |g compact.

Lemma 2.2 Let D be linear, continuous, g- uniformly stable; for e ∈ C([α,+∞), Rn)(α > −∞),

there exists a constant E > 0 such that for any t1, t2 ∈ [α,+∞) it follows that |e(t1) − e(t2)| ≤

E|t1 − t2|; If xt(t0, ϕ) is the solution of Dxt = e(t), t ≥ 0, xt0 = ϕ,ϕ ∈ Cg, then there exists a

constant N(E) > 0 such that for any t1, t2 ∈ [t0,+∞)(t0 ≥ α) then

|x(t0, ϕ)(t1) − x(t0, ϕ)(t2)| ≤ N(E)|t1 − t2|, N(E) = k1(1 + k2)E.

Proof For any t ∈ [t0,+∞),∆ > 0, by the linearity of D, we have

D(xt+∆(t0, ϕ) − xt(t0, ϕ)) = Dxt+∆(t0, ϕ) −Dxt(t0, ϕ) = e(t+ ∆) − e(t).

By g-uniform stability of D yields that

|x(t0, ϕ)(t+ ∆) − x(t0, ϕ)(t)| ≤ k1 sup
θ∈[t0,t]

|e(θ + ∆) − e(θ)| + k2|xt0+∆ − xt0 |g

≤ k1E∆ + k2|xt0+∆ − xt0 |g. (2.2)

Furthermore, for any s ∈ [t0, t], by g- uniform stability of D thus implies that

|x(t0, ϕ)(s) − x(t0, ϕ)(t0)| ≤ k1 sup
τ∈[t0,s]

|e(τ) − e(t0)| + k2|xt0 − xt0 |g ≤ k1E|s− t0|.

By (3), |xs(t0, ϕ) − xt0 (t0, ϕ)|g ≤ sup
τ∈[t0,s]

|x(t0, ϕ)(τ) − x(t0, ϕ)(t0)| + |xt0(t0, ϕ) − xt0(t0, ϕ)|g ≤

k1E|s− t0|, then

|xt0+∆ − xt0 |g ≤ k1E∆. (2.3)
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From (2.2) and (2.3), |x(t0, ϕ)(t + ∆) − x(t0, ϕ)(t)| ≤ k1E∆ + k1k2E∆ := N(E)∆. So, for any

t1, t2 ∈ [t0,+∞), there exists a constant N(E) > 0 such that

|x(t0, ϕ)(t1) − x(t0, ϕ)(t2)| ≤ N(E)|t1 − t2|,

where N(E) = k1(1 + k2)E. The proof is completed.

Theorem 2.1 Equation (2.1) has an ω periodic solution if and only if there is a bounded

solution which defined on R (its norm is super norm).

Proof Since periodic solution itself is a bounded solution, we just need to prove that the

existence of bounded implies the existence of periodic solution. For simplicity, without loss of

generality, we assume that t0 = 0.

Let xt be the bounded solution of (2.1), which is defined on R and its boundedness is B, that

is ‖xt‖ ≤ B, then |xt|g = sups≤0 |xt(s)|/g(s) ≤ B. By the linearity and periodicity of f , there

exists a constant E ≥ 0 such that for any ϕ ∈ Cg and |ϕ|g ≤ B, it follows that |f(t, ϕ)| ≤ E.

The set

Ω := {ϕ ∈ Cg : |ϕ|g ≤ B, ‖ϕ‖ ≤ B, (a)

|ϕ(s1) − ϕ(s2)| ≤ N(E)|s1 − s2|, s1, s2 ∈ R−, (b)

‖xt(0, ϕ)‖ ≤ B, t ≥ 0}, (c)

where xt(0, ϕ) is the unique solution of (2.1) through (0, ϕ), N(E) = k1(1 + k2)E.

First to prove Ω is not empty. We consider the bounded solution xt, and define ϕ0(s) :=

x0(s) = x(s), s ∈ R−, by the definition we get xt = xt(0, ϕ0), so ϕ0 satisfies the conditions (a)

and (c) in Ω. Next to prove ϕ0 satisfies (b). For any given s1, s2 ∈ R−, we can choose η > 0 such

that s1, s2 > −η. Let ϕ−η := x−η(s) = x(s− η), s ∈ R−, then xt = xt(0, ϕ0) = xt(−η, ϕ−η). The

bounded solution xt of (2.1) satisfies

Dxt = Dxt(−η, ϕ−η) = Dϕ−η +

∫ t

−η

f(s, xs(−η, ϕ−η))ds := e(t),

then from the boundedness of xt and the linearity of f , for any t1, t2 ∈ [−η,+∞), we have

|e(t1) − e(t2)| =
∣

∣

∣

∫ t2

t1

f(s, xs(−η, ϕ−η))ds
∣

∣

∣
≤

∣

∣

∣

∫ t2

t1

|f(s, xs(−η, ϕ−η))|ds
∣

∣

∣
≤ E|t1 − t2|.

Thus by Lemma 2.2, we get

|x(−η, ϕη)(t1) − x(−η, ϕ−η)(t2)| ≤ N(E)|t1 − t2|, t1, t2 ∈ [−η,+∞).

So

|ϕ0(s1) − ϕ0(s2)| = |x0(−η, ϕ−η)(s1) − x0(−η, ϕ−η)(s2)|

= |x(−η, ϕ−η)(s1) − x(−η, ϕ−η)(s2)| ≤ N(E)|s1 − s2|.
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Since s1, s2 are arbitrary, ϕ0 satisfies the condition (b) in Ω, then ϕ0 ∈ Ω, Ω is not empty.

Next to prove Ω is convex and compact. In fact, it easily verifies that Ω is closed set, by

Lemma 2.1, Ω is compact. For any ϕ1, ϕ2 ∈ Ω, α ∈ [0, 1], we get

‖αϕ1 + (1 − α)ϕ2‖ ≤ α‖ϕ1‖ + (1 − α)‖ϕ2‖, |αϕ1 + (1 − α)ϕ2|g ≤ α|ϕ1|g + (1 − α)|ϕ2|g ≤ B,

|αϕ1(s1) + (1 − α)ϕ2(s1) − (αϕ1(s2) + (1 − α)ϕ2(s2))| ≤ N(E)|s1 − s2|, s1, s2 ∈ R−.

From ϕ1, ϕ2 ∈ Ω, then xt(0, ϕ1) and xt(0, ϕ2) are the solutions of (2.1). For any α ∈ [0, 1], by the

linearity of f and D, αxt(0, ϕ1) + (1 − α)xt(0, ϕ2) is still a solution of (2.1), by the uniqueness

of solution, xt(0, αϕ1 + (1 − α)ϕ2) = αxt(0, ϕ1) + (1 − α)xt(0, ϕ2), therefore

‖xt(0, αϕ1 + (1 − α)ϕ2)‖ = ‖αxt(0, ϕ1) + (1 − α)xt(0, ϕ2)‖ ≤ B.

So we prove Ω is convex and compact.

Now define P : Ω → Ω as follows Pϕ := xω(0, ϕ), that is

Pϕ(s) := xω(0, ϕ)(s) = x(0, ϕ)(s+ ω), s ∈ R−.

From the continuous dependence of solution on initial condition, obviously, P is continuous. In

fact, for any ε > 0, there exists a δ > 0 such that as |ϕ − ϕ̄|g < δ, it follows that |x(t; 0, ϕ) −

x(t; 0, ϕ̄)| < ε, taking t = ω, that is |xω(0, ϕ) − xω(0, ϕ̄)| < ε.

Next to show P maps Ω to Ω. Since ϕ satisfies the condition (c) in Ω, we easily know that

Pϕ satisfies the condition (a) in Ω. For t ≥ 0, by the periodicity of f and the uniqueness of

solution,

‖xt(0, Pϕ)‖ = ‖xt(0, xω(0, ϕ))‖ = ‖xt+ω(ω, xω(0, ϕ))‖ = ‖xt+ω(0, ϕ)‖ ≤ B.

We say Pϕ satisfies the condition (c) in Ω. And we notice that the initial value problem of (2.1)

with x0 = ϕ equivalent to Dxt = Dϕ+
∫ t

0 f(s, xs(0, ϕ))ds := e(t), t ≥ 0. For any t1, t2 ∈ [0,+∞),

by ϕ ∈ Ω and xt(0, ϕ) is bounded, one obtains that

|e(t1) − e(t2)| =
∣

∣

∣

∫ t2

t1

f(s, xs(0, ϕ))
∣

∣

∣
≤

∣

∣

∣

∫ t2

t1

|f(s, xs(0, ϕ))|ds
∣

∣

∣
≤ E|t1 − t2|.

From Lemma 2.2, we have

|x(0, ϕ)(t1) − x(0, ϕ)(t2)| ≤ N(E)|t1 − t2|, t1, t2 ∈ [0,+∞). (2.4)

By ϕ ∈ Ω, we get

|x(0, ϕ)(t1) − x(0, ϕ)(t2)| = |ϕ(t1) − ϕ(t2)| ≤ N(E)|t1 − t2|, t1, t2 ∈ R−. (2.5)

So far, we can claim that:

|Pϕ(s1) − Pϕ(s2)| ≤ N(E)|s1 − s2|, s1, s2 ∈ R−.
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If s1, s2 ∈ [−ω, 0] (or s1, s2 ∈ (−∞,−ω]), by (2.4) (or (2.5)), then

|Pϕ(s1)−Pϕ(s2)| ≤ |xω(0, ϕ)(s1)−xω(0, ϕ)(s2)| = |x(0, ϕ)(s1+ω)−x(0, ϕ)(s2+ω)| ≤ N(E)|s1−s2|;

If s1(−∞,−ω], s2 ∈ [−ω, 0], obviously, s1 ≤ −ω ≤ s2, by (2.4) and (2.5), we have

|Pϕ(s1) − Pϕ(s2)| = |xω(0, ϕ)(s1) − xω(0, ϕ)(s2)| = |x(0, ϕ)(s1 + ω) − x(0, ϕ)(s2 + ω)|

≤ |x(0, ϕ)(s1 + ω) − x(0, ϕ)(0)| + |x(0, ϕ)(0) − x(0, ϕ)(s2 + ω)|

≤ N(E)|s1 + ω| +N(E)|s2 + ω| = −N(E)(s1 + ω) +N(E)(s2 + ω) = N(E)|s1 − s2|.

Thus, Pϕ satisfies the condition (b) in Ω. So, P maps Ω to Ω. By Schauder fixed theorem,

P has a unique fixed point in Ω, i.e. there exists a ψ ∈ Ω such that Pψ = ψ, that is to say

xω(0, ψ) = x0(0, ψ). From the periodicity of f and the uniqueness of the solution,

xt+ω(0, ψ) = xt(0, ψ), t ≥ 0.

Therefore, xt(0, ψ) is an ω periodic solution of (2.1). The proof is completed.
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