Article ID: 1000-341X(2007)01-0075-06

Document code: A

Note on Convergence Theorems of Iterative Sequences for Asymptotically Non-Expansive Mapping in a Uniformly Convex Banach Space

TANG Yu-chao, LIU Li-wei

(Department of Mathematics, Nanchang University, Jiangxi 330047, China) (E-mail: hhaaoo1331@yahoo.com.cn)

Abstract: In this paper, we approximate fixed point of asymptotically nonexpansive mapping T on a closed, convex subset C of a uniformly convex Banach space. Our argument removes the boundedness assumption on C, generalizing theorems of Liu and Xue.

Key words: asymptotically nonexpansive mapping; modified Ishikawa iterative sequence; fixed points.
MSC(2000): 47H09; 47H10
CLC number: 0177.91; 0174.41

1. Introduction and preliminaries

Let *E* be a real normed linear space, E^* its dual, and $\langle \cdot, \cdot \rangle$ the generalized duality pairing between *E* and E^* . Let $J: E \to 2^{E^*}$ be the normalized duality mapping defined for each $x \in E$ by

$$J(x) = \{ f \in E^* : \langle x, f \rangle = \|x\|^2 = \|f\|^2 \}.$$

It is well known that if E is smooth then J is single-valued.

Definition 1.1 Let $T : D(T) \subset E \to E$ be a mapping. T is said to be asymptotically nonexpansive if there exists a sequence $\{k_n\} \subset [1, +\infty)$ with $\lim_{n\to\infty} k_n = 1$ such that

 $||T^n x - T^n y|| \le k_n ||x - y||, \quad \forall x, y \in D(T), n = 1, 2, 3, \cdots.$

It is well known that if T is nonexpansive, then T is asymptotically nonexpansive with a constant sequence $\{1\}$.

Definition 1.2 Let C be a nonempty convex subset of $E, T : C \to C$ be a mapping and $x_1 \in C$ be a given point. If sequences $\{x_n\}, \{y_n\} \subset C$ are defined by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n y_n,$$

$$y_n = (1 - \beta_n)x_n + \beta_n T^n x_n, n \ge 1,$$
(1.1)

Received date: 2005-09-13; Accepted date: 2007-07-02

Foundation item: the National Natural Science Foundation of China(10561007); the Natural Science Foundation of Jiangxi Province(0411036).

then $\{x_n\}$ is called the modified Ishikawa iterative sequence of T, where $\{\alpha_n\}, \{\beta_n\} \subset [0, 1]$, with $0 < \delta \le \alpha_n, \beta_n \le 1 - \delta < 1$.

In (1.1) if $\beta_n = 0$ for all $n \ge 0$, then $y_n = x_n$. The sequence $\{x_n\}$ defined by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n x_n, n \ge 1$$
(1.2)

is called the modified Mann iterative sequence of T, where $\{\alpha_n\} \subset [0,1]$, with $0 < \delta \leq \alpha_n \leq 1 - \delta < 1$.

The concept of asymptotically nonexpansive mapping was first introduced and studied by Goebel and Kirk^[1] in 1972. They proved that if D is a nonempty bounded closed convex subset of a uniformly convex Banach space E, then every asymptotically nonexpansive selfmapping T defined on D has a fixed point.

In 2000, Liu and Xue^[2] proved the convergence of iterative sequence in a uniformly convex Banach space for asymptotically nonexpansive mappings. They got the following main theorem.

Theorem LX Let T be a completely continuously asymptotically nonexpansive mapping with sequence $\{k_n\}$ in a bounded closed convex subset C of a uniformly convex Banach space and $k_n \geq 1, \sum_{n=1}^{\infty} (k_n - 1) < +\infty, x_1 \in C, \{x_n\}$ defined by (1.1), where $\{\alpha_n\}$ and $\{\beta_n\}$ satisfy $0 < \alpha \leq \alpha_n \leq \frac{1}{2}, 0 \leq \beta_n \leq \frac{1}{2}$ and $\lim_{n \to \infty} \beta_n = 0$, then the iterative sequence $\{x_n\}$ converges to a fixed point of T.

In this paper, our results generalize Theorem LX, in that we remove the assumption that C is bounded and we approximate fixed point of asymptotically nonexpansive mapping T on a closed, convex subset C of a uniformly convex Banach space.

We shall need the following results.

Lemma 1.1^[3,4] Let $\{a_n\}, \{b_n\}$ and $\{c_n\}$ be sequences of nonnegative real numbers satisfying the inequality

$$a_{n+1} \le (1+b_n)a_n + c_n, \quad \forall n \ge 1.$$

If $\sum_{n=1}^{\infty} b_n < +\infty$ and $\sum_{n=1}^{\infty} c_n < +\infty$, then $\lim_{n\to\infty} a_n$ exists. In particular, if $c_n \equiv 0$, then $\lim_{n\to\infty} a_n$ also exists.

Lemma 1.2^[5] Let $\{\rho_n\}_{n=1}^{\infty}$ and $\{\sigma_n\}_{n=1}^{\infty}$ be sequences of nonnegative real numbers satisfying the inequality

$$\rho_{n+1} \le \rho_n + \sigma_n, \quad n \ge 1.$$

If $\sum_{n=1}^{\infty} \sigma_n < +\infty$, then $\lim_{n\to\infty} \rho_n$ exists. In particular, if $\{\rho_n\}_{n=1}^{\infty}$ has a subsequence which converges strongly to zero, then $\lim_{n\to\infty} \rho_n = 0$.

Lemma 1.3^[6] Suppose that E is a uniformly convex Banach space and 0 $for all positive intergers n. Also suppose that <math>\{x_n\}$ and $\{y_n\}$ are two sequences of E such that $\limsup_{n\to\infty} \|x_n\| \le r$, $\limsup_{n\to\infty} \|y_n\| \le r$ and $\lim_{n\to\infty} \|t_n x_n + (1-t_n)y_n\| = r$ hold for some $r \ge 0$. Then $\lim_{n\to\infty} \|x_n - y_n\| = 0$.

2. Main results

Lemma 2.1 Let *E* be a real normed linear space, *C* be a nonempty convex subset of *E*, and $T: C \to C$ be an asymptotically nonexpansive mapping with a real sequence $\{k_n\}$ in $[1, +\infty)$ such that $\sum_{n=1}^{\infty} (k_n - 1) < +\infty$. Let $x_1 \in C$, $\{x_n\}$ be the modified Ishikawa iterative sequence defined by (1.1). If $F(T) \neq \emptyset$, then for any given $q \in F(T)$, $\lim_{n\to\infty} ||x_n - q||$ exists.

Proof For any given $q \in F(T)$, using iterates (1.1), we have

$$||x_{n+1} - q|| = ||(1 - \alpha_n)(x_n - q) + \alpha_n(T^n y_n - q)||$$

$$\leq (1 - \alpha_n)||x_n - q|| + \alpha_n k_n ||y_n - q||.$$
(2.1)

Otherwise,

$$||y_n - q|| = ||(1 - \beta_n)(x_n - q) + \beta_n(T^n x_n - q)||$$

$$\leq (1 - \beta_n)||x_n - q|| + \beta_n k_n ||x_n - q||$$

$$= [1 + (k_n - 1)\beta_n]||x_n - q||$$

$$\leq k_n ||x_n - q||.$$
(2.2)

Substituting (2.2) into (2.1), we have

$$||x_{n+1} - q|| \le (1 - \alpha_n) ||x_n - q|| + \alpha_n k_n^2 ||x_n - q||$$

= $[1 + \alpha_n (k_n^2 - 1)] ||x_n - q||.$ (2.3)

Set $a_n = ||x_n - q||, b_n = \alpha_n(k_n^2 - 1) = \alpha_n(k_n + 1)(k_n - 1)$. Then Inequality (2.3) is equal to

$$a_{n+1} \le (1+b_n)a_n.$$

Since $\sum_{n=1}^{\infty} (k_n - 1) < +\infty$, $\{k_n\}$ is a bounded sequence and $\alpha_n \in [0, 1]$, so $\sum_{n=1}^{\infty} b_n < +\infty$. By Lemma 1.1, we know $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \|x_n - q\|$ exists.

Lemma 2.2 Let *E* be a uniformly convex Banach space, *C* be a nonempty convex subset of *E*, and $T: C \to C$ be an asymptotically nonexpansive mapping with a real sequence $\{k_n\}$ in $[1, +\infty)$ such that $\sum_{n=1}^{\infty} (k_n - 1) < +\infty$. Let $x_1 \in C$, $\{x_n\}$ be the modified Ishikawa iterative sequence defined by (1.1). If $F(T) \neq \emptyset$, then $\lim_{n\to\infty} ||x_n - Tx_n|| = 0$.

Proof Since $F(T) \neq \emptyset$, let $q \in F(T)$. By Lemma 2.1, we know $\lim_{n\to\infty} ||x_n - q||$ exists. Let $\lim_{n\to\infty} ||x_n - q|| = c, c \ge 0$.

Step 1. We prove $\lim_{n\to\infty} ||x_n - T^n x_n|| = 0$. From (1.1), we have

$$||y_n - q|| = ||(1 - \beta_n)(x_n - q) + \beta_n(T^n x_n - T^n q)||$$

$$\leq [1 + (k_n - 1)\beta_n]||x_n - q||$$

$$\leq k_n ||x_n - q||.$$

Taking lim sup on both sides of the above inequality, we have

$$\limsup_{n \to \infty} \|y_n - q\| \le c. \tag{2.4}$$

Next, consider $||T^n y_n - q|| \le k_n ||y_n - q||$. Taking lim sup on both sides of the above inequality and then using (2.4), we get that

$$\limsup_{n \to \infty} \|T^n y_n - q\| \le c.$$

Furthermore, $\lim_{n\to\infty} ||x_{n+1} - q|| = c$ means that

$$\lim_{n \to \infty} \|(1 - \alpha_n)(x_n - q) + \alpha_n(T^n y_n - q)\| = c.$$

Hence applying Lemma 1.3, we obtain that

$$\lim_{n \to \infty} \|x_n - T^n y_n\| = 0.$$

Next,

$$||x_n - q|| \le ||x_n - T^n y_n|| + ||T^n y_n - q|| \le ||x_n - T^n y_n|| + k_n ||y_n - q||$$

gives that

$$c \leq \liminf_{n \to \infty} \|y_n - q\| \leq \limsup_{n \to \infty} \|y_n - q\| \leq c.$$

That is $\lim_{n\to\infty} ||y_n - q|| = c$. Now $\lim_{n\to\infty} ||y_n - q|| = c$ can be expressed as

$$\lim_{n \to \infty} \| (1 - \beta_n) (x_n - q) + \beta_n (T^n x_n - q) \| = c.$$

Observe that $||T^n x_n - q|| \le k_n ||x_n - q||$. Taking lim sup on both the sides in the above inequality, we have $\limsup_{n\to\infty} ||T^n x_n - q|| \le c$. So again by Lemma 1.3, we have $\lim_{n\to\infty} ||x_n - T^n x_n|| = 0$.

Step 2. We prove $\lim_{n\to\infty} ||x_n - Tx_n|| = 0$. For convenience, let $\rho_n = ||x_n - T^n x_n||$. Now consider

$$\begin{aligned} \|x_n - x_{n+1}\| &= \|\alpha_n (x_n - T^n y_n)\| \\ &\leq \alpha_n \|x_n - T^n x_n\| + \alpha_n \|T^n x_n - T^n y_n\| \\ &\leq \alpha_n \|x_n - T^n x_n\| + \alpha_n k_n \|x_n - y_n\| \\ &\leq \alpha_n \|x_n - T^n x_n\| + \alpha_n \beta_n k_n \|x_n - T^n x_n\| \\ &= \alpha_n \rho_n + \alpha_n \beta_n k_n \rho_n. \end{aligned}$$

That is

$$||x_n - x_{n+1}|| \le \alpha_n \rho_n + \alpha_n \beta_n k_n \rho_n$$

Next consider

$$\begin{aligned} \|x_{n+1} - Tx_{n+1}\| &\leq \|x_{n+1} - T^{n+1}x_{n+1}\| + \|T^{n+1}x_{n+1} - Tx_{n+1}\| \\ &\leq \rho_{n+1} + k_1\|T^nx_{n+1} - x_{n+1}\| \\ &\leq \rho_{n+1} + k_1\|T^nx_{n+1} - T^nx_n\| + k_1\|T^nx_n - x_n\| + k_1\|x_n - x_{n+1}\| \\ &\leq \rho_{n+1} + k_1k_n\|x_{n+1} - x_n\| + k_1\|T^nx_n - x_n\| + k_1\|x_n - x_{n+1}\| \\ &= \rho_{n+1} + k_1(k_n + 1)\|x_n - x_{n+1}\| + k_1\rho_n \\ &\leq \rho_{n+1} + k_1(k_n + 1)\alpha_n\rho_n + k_1k_n(k_n + 1)\alpha_n\beta_n\rho_n + k_1\rho_n. \end{aligned}$$

From Step 1, we have $\lim_{n\to\infty} \rho_n = 0$, $k_n \to 1(n \to \infty)$ and $0 \le \alpha_n, \beta_n \le 1$, so

$$\lim_{n \to \infty} \|x_n - Tx_n\| = 0.$$

Theorem 2.1 Let *E* be a uniformly convex Banach space and *C* its nonempty closed convex subset of *E*, and $T: C \to C$ be a completely continuously asymptotically nonexpansive mapping with a real sequence $\{k_n\}$ in $[1, +\infty)$ such that $\sum_{n=1}^{\infty} (k_n - 1) < +\infty$. Let $x_1 \in C$, $\{x_n\}$ be the modified Ishikawa iterative sequence defined by (1.1). If $F(T) \neq \emptyset$, then $\{x_n\}$ converges strongly to a fixed point of *T*.

Proof Since $F(T) \neq \emptyset$, by Lemma 2.2, we know

$$\lim_{n \to \infty} \|x_n - Tx_n\| = 0.$$
 (2.5)

Since T is completely continuous, by Lemma 2.1, we have $\{x_n\}$ is bounded and C is a closed subset, so there must exist $\{Tx_{n_k}\}_{k=1}^{+\infty} \subset \{Tx_n\}_{n=1}^{+\infty}$. Set

$$\lim_{k \to +\infty} T x_{n_k} = q. \tag{2.6}$$

It follows from (2.5) and (2.6), we get

$$\lim_{k \to +\infty} x_{n_k} = q. \tag{2.7}$$

Since T is completely continuous, T is obviously continuous. It follows from (2.6) and (2.7) that so ||q - Tq|| = 0. Thus q is a fixed point of T.

From (1.1), we have

$$||x_{n+1} - q|| = ||(1 - \alpha_n)x_n + \alpha_n T^n y_n - q|| = ||(1 - \alpha_n)(x_n - q) + \alpha_n (T^n y_n - q)||$$

$$\leq (1 - \alpha_n)||x_n - q|| + \alpha_n k_n ||y_n - q||.$$
(2.8)

Next, consider

$$||y_n - q|| = ||(1 - \beta_n)x_n + \beta_n T^n x_n - q|| = ||(1 - \beta_n)(x_n - q) + \beta_n (T^n x_n - q)||$$

$$\leq (1 - \beta_n)||x_n - q|| + \beta_n k_n ||x_n - q|| = [1 + (k_n - 1)\beta_n]||x_n - q||.$$
(2.9)

Using (2.9) in (2.8), we obtain

$$||x_{n+1} - q|| \le (1 - \alpha_n) ||x_n - q|| + \alpha_n k_n [1 + (k_n - 1)\beta_n] ||x_n - q||$$

= $||x_n - q|| + (k_n - 1)(1 + k_n\beta_n)\alpha_n ||x_n - q||.$ (2.10)

By Lemma 2.1, for all $n \ge 0$, $||x_n - q||$ is bounded, $k_n \to 1(n \to \infty)$ and $0 \le \alpha_n, \beta_n \le 1$, so there exists M > 0 such that

$$(1+k_n\beta_n)\alpha_n \|x_n-q\| \le M. \tag{2.11}$$

Submitting it into (2.10), we have

$$||x_{n+1} - q|| \le ||x_n - q|| + M(k_n - 1).$$

Since $\sum_{n=1}^{\infty} (k_n - 1) < +\infty$, by Lemma 1.2, we also know $\lim_{n\to\infty} ||x_n - q||$ exists. Again by (2.7) and Lemma 1.2, we know $\{x_n\}$ converges strongly to q.

Corollary 2.1 Let E be a uniformly convex Banach space and C its nonempty closed convex subset of E, and $T: C \to C$ be a completely continuously asymptotically nonexpansive mapping with a real sequence $\{k_n\}$ in $[1, +\infty)$ such that $\sum_{n=1}^{\infty} (k_n - 1) < +\infty$. Let $x_1 \in C$, $\{x_n\}$ be the modified Mann iterative sequence defined by (1.2). If $F(T) \neq \emptyset$, then $\{x_n\}$ converges strongly to a fixed point of T.

Proof Taking $\beta_n = 0$ in Theorem 2.1, we know Corollary 2.1 is true.

References:

- GOEBEL K, KIRK W A. A fixed point theorem for asymptotically nonexpansive mappings [J]. Proc. Amer. Math. Soc., 1972, 35(1): 171–174.
- [2] LIU Qi-hou, XUE Li-xia. Convergence theorems of iterative sequences for asymptotically non-expansive mapping in a uniformly convex Banach space [J]. J. Math. Res. Exposition, 2000, 20(3): 331–336.
- HU Liang-gen, LIU li-wei. Convergence problems of p-strictly asymptotically Demicontractive mappings in Banach spaces [J]. Acta. Anal. Funct. Appl., 2004, 6(2): 132–139. (in Chinese)
- [4] XIAO Jian-zhong, ZHU Xing-hua. A note on iterative approximation of fixed point for asymptotically quasinonexpansive operators [J]. Acta. Math. Appl. Sinica., 2004, 27(4): 608–616. (in Chinese)
- [5] LIU Qi-hou. Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings [J]. Nonlinear Anal., 1996, 26: 1835–1842.
- SCHU J. Weak and strong convergence to fixed points of asymptotically nonexpansive mappings [J]. Bull. Austral. Math. Soc., 1991, 43: 153–159.

关于一致凸的 Banach 空间上的渐近非扩张映象的 迭代序列的收敛性定理的注记

唐玉超, 刘理蔚 (南昌大学数学系, 江西 南昌 330047)

摘要:本文研究了在一致凸 Banach 空间中定义在闭凸集 C 上渐近非扩张映象 T 不动点的迭代问题,我们的讨论去掉了在刘和薛^[2] 中 C 是有界的假设.

关键词: 渐近非扩张映射; 修改的 Ishikawa 迭代序列; 不动点.