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1. Introduction

The setting for this paper is n-dimensional Euclidean space IRn. We will denote by convex

figure a compact convex subset of IRn, and by convex body a convex figure with nonempty

interior. Let G(n) be the group of special motions in IRn. Each element, g : IRn −→ IRn, of

G(n) can be represented by

g : x −→ ex + b,

where b ∈ IRn and e is an orthogonal matrix of determinant 1. Let µ be the Haar measure on G(n)

normalized as follows: Let ϕ : IRn × SO(n) −→ G(n) be defined by ϕ(t, e)x = ex + t, x ∈ IRn,

where SO(n) is the rotation group of IRn. If ν is the unique invariant probability measure on

SO(n), η is the Lebesgue measure on IRn, then µ is chosen as the pull back measure of η ⊗ ν

under ϕ−1.

The inclusion measure of a convex figure L contained in a convex body K is defined by

mK(L) = m(L ⊆ K) =

∫

{g∈G(n):gL⊆K}

dµ(g).

It gives the measure of the set of copies congruent to convex figure L contained in a fixed convex

body K. We note that there had been not any breakthroughs on the problem of inclusion measure

of convex bodies until the eighties in the twentieth century. D. Ren did some original work on

this problem[4]. In this paper, we establish the inequalities of inclusion measures as follows: Let

Ki, i = 1, 2, · · · , s, s > 1, s ∈ N, be convex bodies and L be a convex figure in IRn, then there

holds

mK1+K2+···+Ks
(L) > mK1

(L) + mK2
(L) + · · · + mKs

(L).
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Specifically, when L is a line segment, then there holds

mα1K1+α2K2+···αsKs
(L) > αn

1 mK1
(
α1

L
) + αn

2 mK2
(
α2

L
) + · · · + αn

s mKs
(
αs

L
),

for αi ≥ 1. This means that for inclusion measure the linearity does not hold.

2. Notations and preliminaries

Let K be a convex figure in IRn. Associated with K is its support function hK defined on

IRn by

hK(x) = max{〈x, y〉 : y ∈ K},

where 〈x, y〉 is the usual inner product of x and y in IRn. The function hK is positively homoge-

neous of degree 1. We will be concerned with the restriction of the support function to the unit

sphere Sn−1.

The Minkowski addition of two convex figures K and L is defined as

K + L = {x + y : x ∈ K, y ∈ L}.

The scalar multiplication λK of K, where λ ≥ 0, is defined as

λK = {λx : x ∈ K}.

For convex figure λK + µL, the support function is

hλK+µL = λhK + µhL.

Its volume is a homogeneous polynomial in λ and µ given by

V (λK + µL) =
n

∑

i=0

(

n

i

)

Vi(K, L)λn−iµi.

The coefficients Vi(K, L) are called mixed volumes of K and L. If B is the unit ball, then the

Vi(K, B) are called the quermassintegrals of K. The inradius r(K, L) of K with respect to L

is defined by r(K, L) = sup{λ : x ∈ IRn and x + λL ⊂ K}. Let hK and hL be the support

functions of K and L respectivelly. First, we assume that L is a convex body. For a fixed

λ ∈ [0, r], we consider the function hλ = hK − λhL on the unit sphere, where r = r(K, L) is the

inradius of K with respect to L. In general, hλ is not the support function of a convex body.

Denote by C(K, L, λ) the intersection of halfspaces {x ∈ IRn : 〈x, u〉 ≤ hλ(u)}, u ∈ Sn−1. The

boundaries ∂C(K, L, λ) are pairwise disjoint and

⋃

0≤λ≤r(K,L)

∂C(K, L, λ) = K.

The following formula is known[1−3]:

d

dλ
V (C(K, L, λ)) = −nV1(C(K, L, λ), L). (2.1)
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By integrating both sides of (2.1), we get

V (K) − V (C(K, L, λ)) = n

∫ λ

0

V1(C(K, L, σ), L)dσ, (2.2)

and

V (C(K, L, λ)) = n

∫ r(K,L)

λ

V1(C(K, L, σ), L)dσ. (2.3)

By a limit process, (2.2) and (2.3) are seen to hold for any convex figure L. Lemma 1 below

implies that C(K, L, λ) = Φ if λ > r(K, L), and thus (2.2) and (2.3) hold for any λ ≥ 0. This

lemma contained in [8] is useful in our paper.

3. Main results

Lemma 1[8] The intersection C(K, L, λ) of halfspaces {x ∈ IRn : 〈x, u〉 ≤ hλ(u)} is equal to

the set {x ∈ IRn : x + λL ⊆ K}, i.e.,

C(K, L, λ) = {x ∈ IRn : x + λL ⊆ K}, λ ≥ 0.

Lemma 2[8] If K is a convex body and L is a convex figure in IRn, then the inclusion measure

of L contained in K is

mK(L) =

∫

SO(n)

V (C(K, eL, 1))dν(e),

where ν is the unique invariant probability measure on SO(n).

Lemma 3[7] Let K be a convex body and L be a line segment of length l in IRn. Then

msK(L) = snmK(
L

s
), for any s > 0.

Lemma 4 If K is a convex body and L a convex figure in IRn, then

C(αK, L, λ) = αC(K,
1

α
L, λ) = αC(K, L,

λ

α
), α > 0, λ ≥ 0.

In addition, if 0 < α < 1, then C(αK, L, λ) ⊂ αC(K, L, λ); if α > 1, then C(αK, L, λ) ⊃

αC(K, L, λ).

Proof From Lemma 1, we can get

C(αK, L, λ) = {x ∈ IRn : x + λL ⊆ αK} = {x ∈ IRn :
1

α
(x + λL) ⊆ K}

= {x ∈ IRn :
1

α
x ∈ K −

λ

α
L} = {αx ∈ IRn : x ∈ K −

λ

α
L}

= αC(K,
1

α
L, λ) = αC(K, L,

λ

α
).

Furthermore, if 0 < α < 1, then

C(K, L,
λ

α
) ⊂ C(K, L, λ).
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So

αC(K, L,
λ

α
) ⊂ αC(K, L, λ).

Hence,

C(αK, L, λ) ⊂ αC(K, L, λ).

Similarly, if α > 1, then

C(K, L, λ) ⊂ C(K, L,
λ

α
).

So

αC(K, L, λ) ⊂ αC(K, L,
λ

α
).

Hence,

αC(K, L, λ) ⊂ C(αK, L, λ).

In the following, we write C(K) = C(K, L, λ), then we can get the following results.

Lemma 5 Let Ki, i = 1, 2, · · · , s, s ∈ N, be convex bodies and L be a convex figure in IRn.

Then for s > 1, there holds
s

∑

i=1

C(Ki) ⊂ C(
s

∑

i=1

Ki).

Proof For any x ∈
∑s

i=1 C(Ki), x can be expressed as

x = x1 + x2 + · · · + xs, xi ∈ C(Ki), i = 1, 2, · · · , s.

From the definition of C(Ki), we can get

〈x1, u〉 ≤ hK1
(u) − λhL(u),

〈x2, u〉 ≤ hK2
(u) − λhL(u),

· · · · · ·

〈xs, u〉 ≤ hKs
(u) − λhL(u),

for u ∈ Sn−1. So

〈
x1 + x2 + · · · + xs

s
, u〉 ≤

hK1
(u) + hK2

(u) + · · · + hKs
(u)

s
− λhL(u).

That is,

〈
x

s
, u〉 ≤

hK1+K2+···+Ks
(u)

s
− λhL(u),

1

s
〈x, u〉 ≤ hK1+K2+···+Ks

s

(u) − λhL(u).

Hence,
∑s

i=1 C(Ki)

s
⊆ C(

∑s

i=1 Ki

s
).
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Since 0 < 1
s

< 1, from Lemma 4, we can get

∑s

i=1 C(Ki)

s
⊆ C(

∑s

i=1 Ki

s
) ⊂

1

s
C(

s
∑

i=1

Ki).

So
s

∑

i=1

C(Ki) ⊂ C(
s

∑

i=1

Ki).

Theorem 1 Let Ki, i = 1, 2, · · · , s, s > 1, s ∈ N, be convex bodies and L be a convex figure in

IRn. Then

mK1+K2+···+Ks
(L) > mK1

(L) + mK2
(L) + · · · + mKs

(L).

Proof Firstly, we consider the case when s = 2. From Lemma 2, we can get

mK1+K2
(L) =

∫

SO(n)

V (C(K1 + K2, eL, λ))dν(e).

From Lemma 5 and Brunn-Minkowski inequality, there holds

V
1
n (C(K1 + K2)) ≥ V

1
n (C(K1) + C(K2)) ≥ V

1
n (C(K1)) + V

1
n (C(K2)).

So,

V (C(K1 + K2)) > V (C(K1)) + V (C(K2)).

Therefore,

mK1+K2
(L) =

∫

SO(n)

V (C(K1 + K2, eL, λ))dν(e)

>

∫

SO(n)

V (C(K1, eL, λ))dν(e) +

∫

SO(n)

V (C(K2, eL, λ))dν(e)

=mK1
(L) + mK2

(L).

By the finite induction, it can be easily gotten

mK1+K2+···+Ks
(L) > mK1

(L) + mK2
(L) + · · · + mKs

(L).

Corollary 1 Let Ki, i = 1, 2, · · · , s, s > 1, s ∈ N, be convex bodies and L be a convex figure in

IRn. Then

mα1K1+α2K2+···αsKs
(L) > αn

1 mK1
(L) + αn

2 mK2
(L) + · · · + αn

s mKs
(L),

for αi ≥ 1, i = 1, 2, · · · , s.

Proof Firstly, we consider the case when s = 2. From Lemmas 2 and 4, we can get

mα1K1
(L) =

∫

SO(n)

V (C(α1K1, eL, λ))dν(e)

≥ αn
1

∫

SO(n)

V (C(K1, eL, λ))dν(e) = αn
1mK1

(L).
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Similarly, we can get

mα2K2
(L) ≥ αn

2mK2
(L).

By the finite induction and Theorem 1, we have

mα1K1+α2K2+···αsKs
(L) > αn

1 mK1
(L) + αn

2 mK2
(L) + · · · + αn

s mKs
(L),

for αi ≥ 1, i = 1, 2, · · · , s.

Corollary 2 Let Ki, i = 1, 2, · · · , s, s > 1, s ∈ N, be convex bodies and L be a line segment of

length l. Then

mα1K1+α2K2+···αsKs
(L) > αn

1 mK1
(
α1

L
) + αn

2 mK2
(
α2

L
) + · · · + αn

s mKs
(
αs

L
),

for αi > 0, i = 1, 2, · · · , s.

Proof From Theorem 1 and Lemma 3, we have

mα1K1+α2K2+···αsKs
(L) > mα1K1

(L) + mα2K2
(L) + · · · + mαsKs

(L)

= αn
1 mK1

(
α1

L
) + αn

2 mK2
(
α2

L
) + · · · + αn

s mKs
(
αs

L
),

for αi > 0, i = 1, 2, · · · , s.
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