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Abstract: We propose a model-calibrated K-L relative entropy minimization (MKLEM)
approach to using complete auxiliary information from survey data. Our estimator is asymp-
totically equivalent to a model-calibration (MC) estimator in Wu and Sitter (2001) in the case
of estimating the finite population mean. One attractive advantage of our MKLEM approach
is the intrinsic properties of the resulting weights: p̂i > 0 and

∑

i∈s
p̂i = 1, which make this

approach generally applicable to the estimation of distribution functions and quantiles. The
resulting estimator F̂MKL(y) is asymptotically equivalent to a generalized regression estimator
and itself a distribution function.
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1. Introduction

In survey sampling, auxiliary information on the finite population is regularly used to in-

crease the precision of estimators. In the simplest settings, ratio and regression estimators

incorporate known finite population means of auxiliary variables. For more general situations,

there have been three main methods proposed in literatures which can be categorized as model-

assisted approaches: generalized regression estimators (GREG) (Cassel, Särndal and Wretman

(1976) and Särndal (1980)), calibration estimator (Deville and Särndal (1992)), empirical likeli-

hood methods (Chen and Qin (1993), Chen and Sitter (1999) and Zhong and Rao (2000)). All

of these methods have only been discussed in the context of a linear regression working model

and essentially incorporate the auxiliary variables through their known population means even

when the auxiliary variables are known for every unit in the population.

Suppose that the finite population consists of N identifiable units. Associated with the ith

unit are the study variable, yi, and a vector of auxiliary variables, xi. The values of x1, x2, · · · , xN

are known for the entire population (i.e., complete), but yi is known only if the ith unit is selected

in the sample. One of the fundamental questions is how to effectively use the complete auxiliary

information at the estimation stage. More recently, a unified model-assisted framework has been
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attempted to use a model-calibration technique proposed by Wu and Sitter (2001). The proposed

model-calibration estimator can handle any linear or nonlinear working models and reduces to the

conventional calibration estimators of Deville and Särndal (1992) or the generalized regression

estimators in the linear model case. They also discussed estimation of the finite population

distribution functions and showed that their approaches for the mean case also provide a unified

framework for the estimation of distribution function through the fitted values of the indicator

variable I[y≤t]. However, the proposed model-calibration estimator F̂MC(t) may take values out of

the range [0, 1] and it is not always a monotone function. They then extend the pseudo empirical

likelihood method to this situation. However, there are good reasons to explore alternatives

to pseudo empirical likelihood estimator. From the definitions (Chen and Qin (1993), Chen

and Sitter (1999)), we know that the defined empirical likelihood function under simple random

sampling is not the true likelihood function, and that it is only an approximation or a design

unbiased estimate of the true likelihood function when the entire finite population is viewed as

iid sample from some superpopulation. Although empirical likelihood approach has desirable

large sample properties, it may not be the best method. We argue that the K-L relative entropy

minimization (KLEM) estimator be more appealing than the empirical maximum likelihood

(EML) estimator or pseudo empirical maximum likelihood (PEML) estimator which has been

the focus of most researches. The first reason concerns the interpretation of both estimators

as minimizing a (directed) distance between the estimated probabilities pi and the empirical

frequencies 1
n

or di

N
. It seems appealing to weight the discrepancies using an efficient estimate of

these probabilities (i.e., p̂i), as in KLEM procedure, rather than an inefficient estimate of these

probabilities (i.e., 1
n

or di

N
), as in the EML or PEML procedure. The second reason concerns

the relative robustness of the two estimators. The KLEM estimator is affected to a much lesser

extent by perturbations in data (see Imbens, Spady and Johnson (1998)). The third, using

empirical likelihood approach, the optimization problem fails to have a proper solution in some

situations. However, the solution to our optimization problem exists and is unique. Furthermore,

our method is a computationally simple approach.

In Section 2, we give a brief review of entropy and a justification for its use in finite popu-

lations, and explain how the usual KLEM approach relates to a linear model as the calibration

estimator. In Section 3, we propose the model-calibration K-L relative entropy minimization

(MKLEM) approach to incorporating auxiliary information into estimation of the population

mean under a very general working model that includes linear and nonlinear regression and

generalized linear models as special cases. We go on to show that the resulting estimator is

asymptotically as efficient as model-calibration (MC) estimator. Our method is model-assisted,

that is, the proposed estimators are asymptotically design unbiased irrespective of whether the

working model is correct or not, and are particularly efficient if a working model is correct. In

Section 4, we discuss estimation of the finite population distribution functions and show that our

approach for mean case can be directly applied to estimation of the distribution function. We

also show that our estimator be itself a distribution function and share the asymptotic efficiencies

of a generalized regression estimator. Some proofs are given in Appendix.
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2. The usual K-L relative entropy minimization approach

The importance of suitable measure of distance between probability distributions arises be-

cause of the role they play in the problems of inference and discrimination. The concept of

distance between two probability distributions was initially developed by Mahalanobis. Since

then various types of distance measures have been developed in literature. A concept closely

related to the one of distance measures is that of divergence measure based on the idea of

information-theoretic entropy first introduced in communication theory by Shannon (1949). Here

we consider Shannon’s concept of information-theoretic entropy and its generalization known as

the Kullback and Leibler relative entropy or the divergence measure between two probability

distributions. Any probability distribution pi, i = 1, 2, · · · , n (say), of a random variable taking

n values provides a measure of uncertainty regarding that random. In information theory lit-

erature, this measure of uncertainty is called entropy. Entropy is generally taken as a measure

of expected information, that is how much information we have in the probability distribution

pi, i = 1, 2, · · · , n. Intuitively, information should be a decreasing function of pi, i.e., the more

unlikely an event, the more interesting it is to know that it can happen. A simple choice for

such a function is − log pi. Entropy H(p) is defined as a weighted sum of the information

− log pi, i = 1, 2, · · · , n, with respective probabilities as weights, namely,

H(p) = −

n
∑

i=1

pi log pi. (1)

If pi = 0 for some i, the pi log pi is taken to be zero.

Following (1), the K-L relative entropy of one probability distribution p = (p1, p2, · · · , pn)′

with respect to another distribution q = (q1, q2, · · · , qn)′ can be defined as

C(p,q) =

n
∑

i=1

pi log(
pi

qi

), (2)

which is a measure of the distance between two distributions. It is easy to see the link between

C(p,q) and the Cressie and Read power divergence family (Bero and Bilias (2002)). If we choose

q = ( 1
n
, 1

n
, · · · , 1

n
)′ = 1

n
, where 1 is an n × 1 vector of ones, C(p,q) reduces to

C(p,1/n) =

n
∑

i=1

pi log pi − log n. (3)

Therefore, entropy maximization is a special case of K-L relative entropy minimization with

respect to the uniform distribution. If we try to find a probability distribution that maximizes the

entropy H(p) in (1) (or minimizes the K-L relative entropy C(p,1/n)in (3)), the optimal solution

is the uniform distribution, i.e., p = 1/n. From what said above, the K-L relative entropy can

then be used as an objective function in the estimation of finite population parameters.

Consider a finite population, S, consisting of N distinct units. Associated with the ith unit

are the study variable yi and a vector of auxiliary variables xi. The values x1, x2, · · · , xN are
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known for the entire population (i.e., complete), but yi is known only if the ith unit is selected

in the samples. Assume the inclusion probabilities πi = pr (i ∈ s) are strictly positive. For

the moment we restrict attention to estimating the population mean Ȳ = 1
N

∑N

i=1 yi. When no

auxiliary information can be used, the conventional estimator of the finite population distribution

function FN = N−1
∑N

i=1 δzi
is the Horvitz-Thompson estimator F̂HT = 1

N

∑

i∈s diδzi
, where

δzi
is the point measure at zi, and di = 1/πi are called the basic design weights. Now we know

the finite population mean X̄ of the auxiliary vector x, and the new estimator of FN should

be constructed as little as possible such that it modifies. A K-L relative entropy minimization

estimator (KLEME) of ȲN is then defined by ˆ̄Y KL =
∑

i∈s p̂iyi, where p̂i’s are obtained by

minimizing

C(p,d/N) =
∑

i∈s

pi log(Npi/di) (4)

subject to
∑

i∈s

pi = 1,
∑

i∈s

pixi = X̄, (0 ≤ pi ≤ 1). (5)

Using the Lagrange multiplier method, it is easily shown that

p̂i =
di exp {λui}

∑

j∈s dj exp {λuj}
, for i ∈ s (6)

with the lagrange multiplier, λ, is the solution to

∑

i∈s

diui exp {λui} = 0, (7)

where ui = xi − X̄ for i = 1, 2, · · · , N. We have a similar result as Theorem 1 of Chen and

Sitter (1999). For simplicity, we state results for a scalar x and y, though they hold generally.

Theorem 1 Under conditions (i) and (ii) below, the KLEME of ȲN , when X̄ is known, is

asymptotically equivalent to a generalized regression estimator (GREG). That is

ˆ̄Y KL =
∑

i∈s

wi[1 −
(xi − x̄w)(x̄w − X̄)
∑

i∈s wi(xi − x̄w)2
]yi + op(n

− 1

2 ) = ȳGREG + op(n
− 1

2 ), (8)

where x̄w =
∑

i∈s wixi, wi = di/
∑

j∈s dj , for i ∈ s.

The conditions needed are:

(i) u∗ = maxi∈s |ui| = op(n
1

2 ) and (ii)
∑

i∈s diui/
∑

i∈s diu
2
i = Op(n

− 1

2 ).

The point we want to illustrate is that, it is the relationship between y and x, hopefully captured

by the working-model, that determines how the auxiliary information should best be used. In

Theorem 1 we show that ˆ̄Y KL, the KLEME of Ȳ , is asymptotically equivalent to the generalized

regression estimator, ȳGREG, and the GREG is motivated as a model-assisted estimator using

a linear working-model (Särndal, 1980). Thus, ˆ̄Y KL relies implicitly on a linear relationship

between y and x without explicitly stating so. Another point relates to the issue of complete

information on the x variable (i.e., known for all units in the population) versus only known the
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value of its population mean, X̄ . The GREG is motivated by using the predicted values from a

linear model for each xi, i = 1, · · · , N. However, the resulting estimator in (8) only needs X̄ to

be implemented. As we will see, this is related to the use of a linear model.

3. Estimation of mean under a general model

3.1. Model-calibration estimator

Let ui = u(xi) be any known function of xi. The usual calibration estimator (Deville and

Särndal, 1992) of Ȳ is constructed as ˆ̄Y C =
∑

i∈s wiyi, where the calibration weights wi ’s are

chosen to minimize their average distance Φs from the Horvitz-Thompson estimator ˆ̄Y HT =
1
N

∑

i∈s diyi, subject to the constraint

1

N

∑

i∈s

wi = 1,
∑

i∈s

wiui =
N

∑

i=1

ui. (9)

The distance measure Φs is the chi-squared distance given by

Φs =
∑

i∈s

(wi − di)
2/di. (10)

Now suppose the relationship between y and x can be described by a super-population model

through the first and second moments,

Eξ(yi|xi) = µ(xi, θ), Vξ(yi|xi) = v2
i σ2, i = 1, 2, · · · , N, (11)

where θ = (θ0, · · · , θp) and σ2 are unknown super-population parameters, µ(x, θ) is a known

function of x and θ, the vi is a known function of xi or µi = µ(xi, θ), and Eξ and Vξ denote

the expectation and variance with respect to the super-population model. We also assume that

(y1, x1), · · · , (yN , xN ) are mutually independent. The model structure (11) is quite general and

includes two very important cases: (I) the linear or nonlinear regression model,

yi = µ(xi, θ) + viεi, i = 1, 2, · · · , N, (12)

where εi’s are independently and identically distributed random variables with Eξ(εi) = 0 and

Vξ(εi) = σ2, and vi = v(xi) is a strictly positive known function of xi only; and (II) the

generalized linear model,

g(µi) = x′
iθ, Vξ(yi|xi) = v(µi), i = 1, 2, · · · , N, (13)

where µi = Eξ(yi|xi), and g(·) is a link function and v(·) is a variance function. The model-

calibration approach can be accomplished by first using (yi, xi) for i ∈ s to build the model

and then calibrating over fitted values from the model. Consider a design-based method for

estimating the model parameter θ. In this case, θ may be meaningless, and be replaced by

θN , an estimate of θ based on the data from the entire population. θN is then estimated by

θ̂, a design-based estimate from the sampled data through the general method of estimating



92 Journal of Mathematical Research and Exposition Vol.27

equations (Godmanbe and Thompson (1986), Wu and Sitter (2001)). The MC estimator ˆ̄Y MC is

obtained by replacing ui used in the constraint (9) with µ̂i = µ(xi, θ̂). Using Lagrange multiplier

approach, the resulting MC estimator is given by

ˆ̄Y MC = ˆ̄Y HT +
{

N−1
N

∑

i=1

µ̂i − N−1
∑

i∈s

diµ̂i

}

B̂N , (14)

where B̂N =
∑

i∈s di(µ̂i − µ̄)(yi − ȳ)/
∑

i∈s di(µ̂i − µ̄)2, ȳ =
∑

i∈s diyi/
∑

i∈s di and µ̄ =
∑

i∈s diµ̂i/
∑

i∈s di. If constraint N−1
∑

i∈s wi = 1 is dropped, the single calibration equation
∑

i∈s µ̂i =
∑

i∈s wiµ̂i yields

ˆ̄Y
∗

MC = ˆ̄Y HT +
{

N−1
N

∑

i=1

µ̂i − N−1
∑

i∈s

diµ̂i

}

B̂∗
N , (15)

where B̂∗
N =

∑

i∈s diµ̂iyi/
∑

i∈s diµ̂
2
i .

3.2. Model-calibrated K-L relative entropy minimization estimator of the mean

To extend the K-L relative entropy minimization approach to model (11), we define scalar

ui = u(yi, xi) = µ(xi, θ̂) − N−1
N
∑

i=1

µ(xi, θ̂). The model-calibrated K-L relative entropy mini-

mization estimator (MKLEME) of Ȳ is then defined as ˆ̄Y MKL =
∑

i∈s p̂iyi, where p̂i’s minimize

C(p,d/N) subject to
∑

i∈s

pi = 1,
∑

i∈s

piui = 0, (0 ≤ pi ≤ 1). (16)

Using the Lagrange multiplier method we can easily get p̂i = di exp {λui}
∑

j∈s
dj exp {λuj}

, for i ∈ s, and

the scalar Lagrange multiplier λ is the solution to
∑

i∈s di exp {λui} = 0. Note that with no

auxiliary information the resulting MKLEME of Ȳ is ˆ̄Y =
∑

i∈s diyi/
∑

i∈s di.

A theorem analogous to Theorem 2 of Wu and Sitter (2001) can then be proved. Assume

that there is a sequence of sampling designs and a sequence of finite populations, indexed by

ν. Both the sample size nν and the population size Nν go to infinity as ν → ∞. All limiting

processes are understood to be as ν → ∞, but the ν is suppressed to simplify notation. The

conditions needed are:

(i) 1
N

N
∑

i=1

|ui|
3 = O(1), 1

N

N
∑

i=1

|yi|
3 = O(1);

(ii)
∑

i∈s diui/
∑

i∈s diu
2
i = Op(n

− 1

2 ), 1
N

∑

i∈s di = 1 + op(n
− 1

2 );

(iii) θ̂ = θN + Op(n
− 1

2 ), and θN → θ;

(iv) For each xi, ∂µ(xi, t)/∂t is continuous in t and |∂µ(xi, t)/∂t| ≤ h(xi, θ) for t in a

neighborhood of θ, N−1
N
∑

i=1

h(xi, θ) = O(1) and h∗ = maxi∈s|hi| = op(n), where hi = h(xi, θN );

(v) The basic design weights, di = 1/πi, satisfy that the Horvitz-Thompson estimator for

certain population means is asymptotically normal distributed.
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Theorem 2 Under the same asymptotic framework and conditions (i)–(ii) above, we have

ˆ̄Y MKL = ˆ̄Y MC + op(n
− 1

2 ). (17)

From Theorem 2 above and Theorem 1 in Wu and Sitter (2001), we can summarize one

important property of ˆ̄Y MKL in the following corollary.

Corollary Under the same conditions (i)–(v), we have

ˆ̄Y MKL = ˆ̄Y HT + Op(n
− 1

2 ), (18)

which is thus asymptotically design-unbiased estimators for Ȳ , irrespective of whether the model

is correct or not, and is approximately model-unbiased.

4. Estimation of the finite population distribution function

The finite population distribution function FY (y) = N−1
∑N

i=1 I(yi ≤ y) is also a finite

population mean of an indicator variable zi = I(yi ≤ y). Without using any auxiliary infor-

mation, estimation of the distribution function is a special case of the population mean and is

usually straightforward. In the presence of the auxiliary information, there exist several general

estimation procedures in recent literature to obtain more efficient estimators for the population

mean and total, which have been introduced in Section 1. If we try to directly apply these general

procedures to the estimation of the distribution function, however, due to the specific nature of a

distribution function, the resulting estimators often have some undesirable properties. The esti-

mation of the distribution function using auxiliary information differs from the estimation of the

population mean in several fundamental aspects (Chen and Wu, 2002). The distribution function

involves a dichotomous variable I(yi ≤ y). We need special treatment for the modelling process

to obtain efficient estimators for the distribution function. Also, it is desirable to require that

estimators of the distribution function are themselves distribution functions. Quantile estimates

can then be obtained by direct inversion of the estimated distribution function. An attractive

advantage of our KLEM approach is the intrinsic properties of the resulting weights: p̂i > 0

and
∑

i∈s p̂i = 1, which make this approach generally applicable to estimation of distribution

functions and quantiles.

To estimate FY (y) for a given y0 we need to replace yi by zi = I(yi ≤ y0). The optimal

choice of ui in (16) is given by ui = Eξ(zi|xi) = P (yi ≤ y0|xi). It is important to notice that

the optimal choice of ui depends on y0. No ui with a fixed y0 can be uniformly optimal for all

values of y.

A commonly used working model for the finite population is the regression model given in

(12): yi = µ(xi, θ) + viεi, i = 1, 2, · · · , N. Let θN and σN be the estimators of θ and σ based

on data from the entire finite population, respectively. Under model (12), Eξ(zi|xi) = P (yi ≤

y|xi) = G[{y − µ(xi, θ)}/vi], where G(·) is the cumulative distribution function (cdf) of the error

term. In many situations, it is reasonable to assume that the error term εi in model (12) are

normally distributed. In this case , let ui = ui(θN , σN , y) = Φ[{y − µ(xi, θN )}/viσN ], where Φ(·)



94 Journal of Mathematical Research and Exposition Vol.27

is the cdf of standard normal distribution. Note that θN , not θ, is used for defining ui. With this

treatment, ui is well defined over the finite population and this makes all design-based arguments

possible. Let θ̂ and σ̂ be design-based estimates for θN and σN , respectively.

The MKLEM estimator of FY (y) is defined as

F̂MKL(y) =
∑

i∈s

p̂izi =
∑

i∈s

p̂iI(yi ≤ y),

where the p̂i ’s minimize C(p,d/N) subject to

∑

i∈s

pi = 1,
∑

i∈s

piui(θ̂, σ̂, y0) = N−1
N

∑

i=1

ui(θ̂, σ̂, y0) (0 ≤ pi ≤ 1). (19)

The value of y0 is pre-specified.

Let z̄d = (
∑

i∈s di)
−1

∑

i∈s dizi, ūd = (
∑

i∈s di)
−1

∑

i∈s diui(θN , σN , y0) and ŪN = N−1

∑N

i=1 ui(θN , σN , y0). The following result is then established.

Theorem 3 Under the conditions below, we have

(1) the model-calibrated K-L relative entropy minimization estimator F̂MKL(y) is asymp-

totically equivalent to a generalized regression estimator, i.e.

F̂MKL(y) = z̄d + (ŪN − ūd)BN + op(n
− 1

2 ),

where BN =
∑N

i=1 {ui(θN , σN , y0) − ŪN}zi/
∑N

i=1 {ui(θN , σN , y0) − ŪN}
2
.

(2) F̂MKL(y) is asymptotically design-consistent estimator of FY (y) and is also approxi-

mately model-unbiased under (12) at y = y0.

The conditions needed are:

(a) |θ̂ − θN | = Op(n
− 1

2 ) and σ̂ − σN = Op(n
− 1

2 );

(b) maxi∈sndi/N = O(1);

(c) For each xi, µ(xi, θ) is twice differentiable,

N−1
N

∑

i=1

{µ′(xi, θN )/vi}
2 = O(1), N−1

N
∑

i=1

{µ(xi, θN)/vi}
2 = O(1)

and N−1
∑N

i=1 v−2
i = O(1).

Note that y0 used in (19) is fixed, the weights p̂′is are independent of y. It is easy to

see that F̂MKL(y) is itself a distribution function. F̂MKL(y) will be most efficient at y in the

neighborhood of y0. The value of y0 can be easily specified according to efficiency considerations.

Appendix: Some proofs

Proof of Theorem 1 It is easy to show that the solution λ of Equation (7) exists. Then we

have

0 =
∑

i∈s

diui exp {λui} =
∑

i∈s

diui[1 + λui + o(λui)]

=
∑

i∈s

diui + λ ·
∑

i∈s

diu
2
i + λ · o(

∑

i∈s

diu
2
i ). (A.1)
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Therefore, we have

λ = −

∑

i∈s wiui
∑

i∈s wiu2
i

+ op(n
− 1

2 ) = Op(n
− 1

2 ). (A.2)

Using the Taylor expansion, (A.2) and conditions (i) and (ii), we have

∑

i∈s

di exp {λui} =
∑

i∈s

[di(1 + λui + o(λui))] = (
∑

i∈s

di)[1 + λūw + op(n
− 1

2 )]. (A.3)

Note that here ui = xi − X̄, it is easy to find that

ˆ̄Y KL =
∑

i∈s

p̂iyi = (
∑

i∈s

di exp {λui})
−1(

∑

i∈s

diyi exp {λui})

= [
∑

i∈s

wiyi + λ
∑

i∈s

wiyiui + op(n
− 1

2 )][1 + λūw + o(λūw)]−1

= [
∑

i∈s

wiyi + λ
∑

i∈s

wiyiui + op(n
− 1

2 )][1 − λūw + op(n
− 1

2 )]

=
∑

i∈s

wi[1 −
(xi − x̄w)(x̄w − X̄)
∑

i∈s wi(xi − x̄w)2
]yi + op(n

− 1

2 )

= ȳGREG + op(n
− 1

2 ).

Proof of Theorem 2 Similar to the proof of Theorem 1, we must have

λ = −

∑

i∈s diui
∑

i∈s diu2
i

+ op(n
− 1

2 ) = Op(n
− 1

2 ). (A.4)

Using the Taylor expansion, (A.4) and condition (i), we have

∑

i∈s

di exp {λui} =
∑

i∈s

[di(1 + λui + o(λui))] = (
∑

i∈s

di)[1 + λ

∑

i∈s diui
∑

i∈s di

+ op(n
− 1

2 )]. (A.5)

From (A.4) and the conditions in Theorem 2 we get

ˆ̄Y MKL =
∑

i∈s

p̂iyi = (
∑

i∈s

di exp {λui})
−1(

∑

i∈s

diyi exp {λui})

= [
1

N

∑

i∈s

diyi + λ
1

N

∑

i∈s

diyiui + op(n
− 1

2 )][1 + λūw + o(λūw)]−1

= [
1

N

∑

i∈s

diyi + λ
1

N

∑

i∈s

diyiui + op(n
− 1

2 )][1 − λ

∑

i∈s diui
∑

i∈s di

+ op(n
− 1

2 )]

= ˆ̄Y HT + {
1

N

N
∑

i=1

ui −
1

N

∑

i∈s

diui}

∑

i∈s di(yi − ȳw)(ui − ūw)
∑

i∈s di(ui − ūw)2
+ op(n

− 1

2 )

= ˆ̄Y MC + +op(n
− 1

2 ). (A.6)

Then, we obtain the result of Theorem 2.

Proof of Theorem 3 Proof of part (1): Suppose that θN and σN are known, and use ui =
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ui(θN , σN , y0) in the constraint (19) to construct F̂MKL(y). Let gi = ui(θN , σN , y0) − ŪN . It

follows from the proof of Theorem 1 that

p̂i =
di exp {λgi}

∑

j∈s dj exp {λgj}
=

wi

1 + λgi

+ op(n
− 1

2 ) = wi(1 − λgi) + op(n
− 1

2 )

and

λ = −s−2
wgḡw + +op(n

− 1

2 ),

with wi = di/
∑

i∈s di, ḡw =
∑

i∈s wigi, s2
wg =

∑

i∈s wig
2
i . Hence, it follows from the above

expansion that

F̂MKL(y) = z̄d + (ŪN − ūd)BN + op(n
− 1

2 ).

When ui = ui(θN , σN , y0) is replaced by ûi = ui(θ̂, σ̂, y0), we need only to show that

1

N

N
∑

i=1

ûi − (
∑

i∈s

di)
−1

∑

i∈s

diûi =
1

N

N
∑

i=1

ui − (
∑

i∈s

di)
−1

∑

i∈s

diui + op(n
− 1

2 ). (A.7)

Condition (b) implies that N−1
∑

i∈s dici − N−1
∑N

i=1 ci = Op(n
− 1

2 ) if N−1
∑N

i=1 c2
i = O(1).

Let ai(θ, σ) = (∂/∂θ)ui(θ, σ), bi(θ, σ) = (∂/∂σ)ui(θ, σ). It follows from a Taylor series expansion

that

ûi = ui + [ai(θN , σN )]
′

(θ̂ − θN ) + bi(θN , σN )(σ̂ − σN ) + Op(‖θ̂ − θN‖) + Op((σ̂ − σN )2).

Under the regularity conditions, we have

1

N

N
∑

i=1

ai − (
∑

i∈s

di)
−1

∑

i∈s

diai = Op(n
− 1

2 ),
1

N

N
∑

i=1

bi − (
∑

i∈s

di)
−1

∑

i∈s

dibi = Op(n
− 1

2 ).

This together with (a) proves the first part of Theorem 3.

Proof of part (2): From part (1), F̂MKL(y) = FHT (y)+Op(n− 1

2 ), so F̂MKL(y) is asymptot-

ically design-consistent. Assume (xi, yi), i = 1, · · · , N , are iid random variates from the super-

population. Then we have θN = θ + Op(n
− 1

2 ). To prove that F̂MKL(y) is approximately model-

unbiased at y = y0, we substitute ûi = ui(θ̂, σ̂, y0) used in constraint (19) by u∗
i = ui(θ, σ, y0),

and denote the resulting estimator by F̂ ∗
MKL(y) =

∑

i∈s p∗i I(yi ≤ y). Under model (12), we have

Eξ{F̂
∗
MKL(y0)} =

∑

i∈s

p∗i Eξ{I(yi ≤ y0)} =
∑

i∈s

p∗i u
∗
i =

1

N

N
∑

i=1

u∗
i =

1

N

N
∑

i=1

u∗
i = Eξ{FY (y0)}.

Hence F̂ ∗
MKL(y0) is exactly model-unbiased for FY (y0). However, there is a conceptual gap

between θ̂ and θ: It is usually true that θ̂ = θN + Op(n
− 1

2 ) under the design-based framework

and θN = θ + Op(n
− 1

2 ) under the superpopulation model. To conclude that θ̂ = θ + Op(n
− 1

2 )

we need to consider the joint expectation under both the design and the model. Suppose that

θ̂ = θ + Op(n
− 1

2 ) under the model. It is then straightforward to show that ûi = u∗
i + op(1),

with the uniform term op(1) over i. Similarly, gi = g∗i + op(1) uniformly over i, where gi =
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ûi−N−1
∑N

i=1 ûi and g∗i = u∗
i −N−1

∑N

i=1 u∗
i . It now follows that p̂i = wi/(1+λgi)+op(n

− 1

2 ) =

wi/(1+λg∗i )+op(1) = p∗i +op(1). The approximate model unbiasedness follows from F̂MKL(y0) =

F̂ ∗
MKL(y0) + op(1).
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