Article ID: 1000-341X(2007)01-0098-09

Document code: A

Implicit Iteration Process with Errors for Common Fixed **Points of a Finite Family of Strictly Pseudocontractive** Maps

SU Yong-fu¹, LI Su-hong¹, SONG Yi-sheng¹, ZHOU Hai-yun²

(1. Department of Mathematics, Tianjin Polytechnic University, Tianjin 300160, China;

2. Department of Mathematics, Shijiazhuang Mechanical Engineering College, Hebei 050003, China) (E-mail: suyongfu@tjpu.edu.cn)

Abstract: Let E be a real Banach space and K be a nonempty closed convex subset of E. Let $\{T_i\}_{i=1}^N$ be N strictly pseudocontractive self-maps of K such that $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$, where $F(T_i) = \{x \in K : T_i x = x\}, \{\alpha_n\} \subset [0,1]$ be a real sequence, and $\{u_n\} \subset K$ be a sequence satisfying the conditions:

(i) $0 < a \leq \alpha_n \leq 1$;

(i) $\sum_{n=1}^{\infty} (1 - \alpha_n) = +\infty;$ (ii) $\sum_{n=1}^{\infty} ||u_n|| < +\infty.$ Let $x_0 \in K$ and $\{x_n\}_{n=1}^{\infty}$ be defined by

$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_n x_n + u_{n-1}, \quad n \ge 1,$$

where $T_n = T_{n \mod N}$, then

- (i) $\lim_{n\to\infty} ||x_n p||$ exists for all $p \in F$;
- (ii) $\lim_{n\to\infty} d(x_n, F)$ exists, where $d(x_n, F) = \inf_{p\in F} ||x_n p||$;
- (iii) $\liminf_{n \to \infty} \|x_n T_n x_n\| = 0.$

Another result is that if $\{\alpha_n\}_{n=1}^{\infty} \subset [1-2^{-n}, 1]$, then $\{x_n\}$ is convergent. This paper generalizes and improves the results of Osilike in 2004. The ideas and proof lines used in this paper are different from those of Osilike in 2004.

Key words: strictly pseudocontractive mappings; implicit iteration process with error; common fixed points; convergence theorems. MSC(2000): 47H05; 47H10; 47H15 **CLC number**: 0177.91

1. Introduction

Let E be a real Banach space and J denote the normalized duality mapping from E into 2^{E^*} given by $J(x) = \{f \in E^* : \langle x, f \rangle = \|x\|^2 = \|f\|^2\}$, where E^* denotes the dual space of E and $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. A mapping T with domain D(T) and range R(T) in E is called strictly pseudocontractive in the terminology of Browder and Petryshyn^[1] if there exists $\lambda > 0$ such that

$$\langle Tx - Ty, j(x - y) \rangle \le ||x - y||^2 - \lambda ||x - y - (Tx - Ty)||^2,$$
 (1)

Received date: 2005-04-01; Accepted date: 2005-07-19

Foundation item: the National Natural Science Foundation of China (10471033); Tianjin Construction of Course (100580204).

for all $x, y \in D(T)$ and some $j(x - y) \in J(x - y)$. Without loss of generality we may assume $\lambda \in (0, 1)$. If I denotes the identity operator, then (1) can be written in the form

$$\langle (I-T)x - (I-T)y, j(x-y) \rangle \ge \lambda ||(I-T)x - (I-T)y||^2.$$
 (2)

The class of strictly pseudocontractive mappings has been studied by various authors [1-7,10].

Let K be a nonempty convex subset of Banach space E, and T_i , $i = 1, 2, 3, \dots, N$, be a finite family of nonexpansive self-maps of K. In [9], Xu and Ori introduced the following implicit iteration process: For $x_0 \in K$ and $\{\alpha_n\} \subset (0, 1)$, the sequence $\{x_n\}$ is generated by

$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_n x_n, n \ge 1,$$
(3)

where $T_n = T_{n \mod N}$.

In [10], Osilike considered the scheme (3) for finite family of strictly pseudocontractive self-maps $T_i, i = 1, 2, 3, \dots, N$, of K and proved some convergence theorems for finite family of strictly pseudocontractive mappings which extended the results of Xu and Ori^[9].

In this paper, we will continue to investigate the problems of approximation of common fixed points of a finite family of strictly pseudocontractive mappings by implicit iteration process with errors. We generalize and improve the results of Osilike^[10]. The ideas and proof lines used in this paper are different from those of Osilike^[10].

If K is a nonempty convex subset of Banach space E and $T: K \to K$ is a strictly pseudocontractive mapping, then for every $u, v \in K$ and $\alpha \in (0, 1]$, the operator $S_{\alpha}: K \to K$ defined by

$$S_{\alpha}x = \alpha u + (1 - \alpha)Tx + v$$

satisfies

$$\langle S_{\alpha}x - S_{\alpha}y, j(x-y) \rangle = (1-\alpha)\langle Tx - Ty, j(x-y) \rangle \le (1-\alpha) \|x-y\|^2,$$

for all $x, y \in K$, thus S_{α} is a strongly pseudocontractive mapping. Since S_{α} is also Lipschitz, it follows from [1,10] that S_{α} has a unique fixed point $x_{\alpha} \in K$. Thus there exists a unique $x_{\alpha} \in K$ such that $x_{\alpha} = \alpha u + (1 - \alpha)Tx_{\alpha} + v$. This implies that the following implicit iteration scheme with errors

$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_n x_n + u_n \tag{4}$$

can be employed for the approximation of common fixed points of a finite family of strictly pseudocontractive mappings, where $\{u_n\} \subset K$ is a sequence, and (3) is special form of (4) when $u_n = 0$.

Lemma OAA^[8] Let $\{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty}$ and $\{\delta_n\}_{n=1}^{\infty}$ be three sequences of nonnegative real numbers satisfying the inequality

$$a_{n+1} \le (1+\delta_n)a_n + b_n, \quad n \ge 1.$$

If $\sum_{n=1}^{\infty} \delta_n < +\infty$ and $\sum_{n=1}^{\infty} b_n < +\infty$, then $\lim_{n \to \infty} a_n$ exists.

2. Main results

Theorem 1 Let E be a real Banach space and K be a nonempty closed convex subset of E. Let $\{T_i\}_{i=1}^N$ be N strictly pseudocontractive self-maps of K such that $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$, where $F(T_i) = \{x \in K : T_i x = x\}$, and let $\{\alpha_n\} \subset [0, 1]$ be a real sequence and $\{u_n\} \subset K$ be a sequence satisfying the conditions:

- (i) $0 < a \le \alpha_n \le 1;$
- (ii) $\sum_{n=1}^{\infty} (1 \alpha_n) = +\infty;$ (iii) $\sum_{n=1}^{\infty} ||u_n|| < +\infty.$

Let $x_0 \in K$ and $\{x_n\}_{n=1}^{\infty}$ be defined by (4). Then

- (i) $\lim_{n\to\infty} ||x_n p||$ exists for all $p \in F$;
- (ii) $\lim_{n\to\infty} d(x_n, F)$ exists, where $d(x_n, F) = \inf_{p\in F} ||x_n p||$.
- (*iii*) $\liminf_{n \to \infty} ||x_n T_n x_n|| = 0.$

Proof For any $p \in F$, we have that

$$\|x_{n} - p\|^{2} = \langle x_{n} - p, j(x_{n} - p) \rangle$$

$$= \alpha_{n} \langle x_{n-1} - p, j(x_{n} - p) \rangle + (1 - \alpha_{n}) \langle T_{n}x_{n} - p, j(x_{n} - p) \rangle + \langle u_{n}, j(x_{n} - p) \rangle$$

$$\leq \alpha_{n} \|x_{n-1} - p\| \|x_{n} - p\| + (1 - \alpha_{n}) \|x_{n} - p\|^{2} +$$

$$\|u_{n-1}\| \|x_{n} - p\| - (1 - \alpha_{n})\lambda \|x_{n} - T_{n}x_{n}\|^{2}$$

$$\|x_{n} - p\| \leq \|x_{n-1} - p\| + \frac{1}{\alpha_{n}} \|u_{n}\| - \frac{(1 - \alpha_{n})\lambda}{\alpha_{n} \|x_{n} - p\|} \|x_{n} - T_{n}x_{n}\|^{2}$$

$$\|x_{n} - p\| \leq \|x_{n-1} - p\| + \frac{1}{\alpha_{n}} \|u_{n-1}\|.$$
(5)

From condition (i), we have

$$||x_n - p|| \le ||x_{n-1} - p|| + \frac{1}{a} ||u_{n-1}||.$$
(6)

Since $\sum_{n=1}^{\infty} \|u_n\| < +\infty$, by Lemma OAA, we obtain that the limit $\lim_{n\to\infty} \|x_n - p\|$ exists. The proof of conclusion (i) is completed.

It follows from Inequality (6) that

$$0 \le d(x_n, F) \le d(x_{n-1}, F) + \frac{1}{\alpha} ||u_{n-1}||,$$

by Lemma OOA, we obtain conclusion (ii).

It follows from conclusion (i) that, $\{x_n\}$ is bounded, then there exists a constant M > 0, such that for any $n \ge 1$, we have $||x_n - p|| \le M$. Therefore, it follows from Inequality (5) and condition (i) that

$$\|x_n - p\| \le \|x_{n-1} - p\| + \frac{1}{a} \|u_n\| - \frac{1}{M} (1 - \alpha_n) \lambda \|x_n - T_n x_n\|^2$$
$$\frac{\lambda}{M} \sum_{j=1}^n (1 - \alpha_j) \|x_j - T_j x_j\|^2 \le \|x_0 - p\| - \|x_n - p\| + \frac{1}{a} \sum_{j=1}^n \|u_j\|$$

$$\frac{\lambda}{M} \sum_{n=1}^{\infty} (1 - \alpha_n) \|x_n - T_n x_n\|^2 \le \|x_0 - p\| + \frac{1}{a} \sum_{n=1}^{\infty} \|u_n\|$$

From condition (iii), we know that

$$\frac{\lambda}{M} \sum_{n=1}^{\infty} (1 - \alpha_n) \|x_n - T_n x_n\|^2 < +\infty.$$
(7)

By condition (ii), we know

$$\liminf_{n \to \infty} \|x_n - T_n x_n\| = 0.$$

This completes the proof of Theorem 1.

In Theorem 1, let $\{u_n\} = \{0\}$ and the condition (i) be substituted by the condition $\sum_{n=1}^{+\infty} (1 - \alpha_n)^2 < +\infty$, then the result of Theorem 1 is the theorem of Osilike-1^[10].

Theorem 2 Let *E* be a real Banach space and *K* be a nonempty closed convex subset of *E*. Let $\{T_i\}_{i=1}^N$ be *N* strictly pseudocontractive self-maps of *K* such that $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$, where $F(T_i) = \{x \in K : T_i x = x\}, \{\alpha_n\} \subset [0,1]$ be a real sequence, and $\{u_n\} \subset K$ be a sequence satisfying the conditions:

- (i) $0 < a \le \alpha_n \le \beta < 1;$
- (ii) $\sum_{n=1}^{\infty} \|u_n\| < +\infty.$

Let $x_0 \in K$ and $\{x_n\}_{n=1}^{\infty}$ be defined by (4). Then

- (i) $\lim_{n\to\infty} ||x_n p||$ exists for all $p \in F$;
- (ii) $\lim_{n\to\infty} d(x_n, F)$ exists, where $d(x_n, F) = \inf_{p\in F} ||x_n p||$;
- (*iii*) $\lim_{n \to \infty} ||x_n T_n x_n|| = 0.$

Proof It follows from Condition (i) and Inequality (7) that

$$\frac{\lambda}{M} \sum_{n=1}^{\infty} (1-\beta) \|x_n - T_n x_n\|^2 \le \frac{\lambda}{M} \sum_{n=1}^{\infty} (1-\alpha_n) \|x_n - T_n x_n\|^2 < +\infty.$$
(8)

Thus from Inequality (8) we have that $\lim_{n\to\infty} ||x_n - T_n x_n|| = 0$. The proofs of conclusions (i) and (ii) are the same as Theorem 1. This completes the proof of Theorem 2.

Theorem 3 Let *E* be a real Banach space and *K* be a nonempty closed convex subset of *E*. Let $\{T_i\}_{i=1}^N$ be *N* strictly pseudocontractive self-maps of *K* such that $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$, where $F(T_i) = \{x \in K : T_i x = x\}$, and let $\{\alpha_n\}_{n=1}^\infty$ be a real sequence satisfying the conditions:

- (i) $0 < \alpha < \alpha_n < 1;$
- (ii) $\sum_{n=1}^{\infty} (1-\alpha_n) = +\infty;$
- (iii) $\sum_{n=1}^{+\infty} \|u_n\| < +\infty.$

Let $x_0 \in K$ and $\{x_n\}_{n=1}^{\infty}$ be defined by (4). Then $\{x_n\}$ converges strongly to a common fixed point $p \in F$ if and only if $\liminf_{n\to\infty} d(x_n, F) = 0$.

Proof Suppose that $\{x_n\}$ converges strongly to a common fixed point $p \in F$. In view of the fact that $0 \le d(x_n, F) \le ||x_n - p||$, we see that

$$\liminf_{n \to \infty} d(x_n, F) = 0.$$

Conversely, assume that $\liminf_{n\to\infty} d(x_n, F) = 0$, by Theorem 1, then we have also $\lim_{n\to\infty} d(x_n, F) = 0$. Hence there must exist $p_n \in F$ such that $\lim_{n\to\infty} ||x_n - p_n|| = 0$. It follows from Inequality (6) that

$$\begin{aligned} \|x_{n+m} - x_n\| &\leq \|x_{n+m} - p_n\| + \|x_n - p_n\| \\ &\leq \|x_{n+m-1} - p_n\| + \frac{1}{\alpha} \|u_{n+m-2}\| + \|x_n - p_n\| \\ &\leq \frac{1}{\alpha} \sum_{i=n}^{n+m-2} \|u_i\| + 2\|x_n - p_n\| \to 0, \text{ as } n \to \infty. \end{aligned}$$

Thus $\{x_n\}$ is a Cauchy sequence. Suppose $\lim_{n\to\infty} x_n = q$, then it follows from $\lim_{n\to\infty} \|x_n - p_n\| = 0$ that $\lim_{n\to\infty} p_n = q$. Since strictly pseudocontractive mappings are Lipschitz mappings, we have

$$\|q - T_l q\| \le \|q - p_n\| + \|p_n - T_l q\| \le \|T_l p_n - T_l q\|$$

$$\le \|q - p_n\| + L\|p_n - q\| \to 0, \text{ as } n \to \infty$$

for all $l = 1, 2, 3, \dots, N$, that is $q \in F$. This completes the proof of Theorem 3.

Theorem 4 Let T_n , K, $\{\alpha_n\}$ and $\{x_n\}$ be as in Theorem 2. If $\{x_n\}$ converges strongly to a point $q \in K$, then q must be a common fixed point of $\{T_n\}_{n=1}^N$.

Proof If $\{x_n\}$ converges strongly to a point $q \in K$, then

$$||T_n x_n - T_n q|| \le L ||x_n - q|| \to 0$$
, as $n \to \infty$.

Thus it follows from $\lim_{n\to\infty} ||x_n - T_n x_n|| = 0$ that $||q - T_n q|| \to 0$, $(n \to \infty)$. That is, for any $l = 1, 2, 3, \dots, N$, we have $q = T_l q$. This completes the proof of Theorem 4.

Lemma Let $a_1, a_2, a_3, \dots, a_n$ be real numbers, then

$$(\sum_{i=1}^{n} a_i)^2 \le \sum_{i=1}^{n-1} 2^i a_i^2 + 2^{n-1} a_n^2$$

Proof If n = 2, then $(a_1 + a_2)^2 \le 2a_1^2 + 2a_2^2$. If n = 3, then $(a_1 + a_1 + a_3)^2 \le 2a_1^2 + 2(a_2 + a_3)^2 \le 2a_1^2 + 2(a_2^2 + 2a_3^2) \le 2a_1^2 + 2^2a_2^2 + 2^2a_3^2$, which leads to

$$(\sum_{i=1}^{n} a_i)^2 \le \sum_{i=1}^{n-1} 2^i a_i^2 + 2^{n-1} a_n^2, \quad \forall n \ge 2.$$

The proof is done.

Theorem 5 Let *E* be a real Banach space and *K* be a nonempty closed convex subset of *E*. Let $\{T_i\}_{i=1}^N$ be *N* strictly pseudocontractive self-maps of *K* such that $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$, where $F(T_i) = \{x \in K : T_i x = x\}$, and let $\{\alpha_n\}_{n=1}^{\infty} \subset [1 - 2^{-n}, 1]$ be a real sequence. Let $x_0 \in K$ and let $\{x_n\}_{n=1}^{\infty}$ be defined by

$$x_n = \alpha_n x_{n-1} + \beta_n T_n x_n + \gamma_n u_n, \ \alpha_n + \beta_n + \gamma_n = 1.$$
(9)

Here $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\} \subset [0,1]$ are real sequences and $\{u_n\} \in K$ is bounded. Then $\{x_n\}$ is convergent.

Note It is easy to prove that the implicit iteration processes (4) and (9) are equivalent.

Proof It is now well known that

$$\|x+y\|^{2} \le \|x\|^{2} + 2\langle y, j(x+y) \rangle, \tag{10}$$

for all $x, y \in E$ and for all $j(x+y) \in J(x+y)$. Let $p \in F$, it follows from Inequality (10) that

$$\|x_{n} - p\|^{2} = \|\alpha_{n}(x_{n-1} - p) + \beta_{n}(T_{n}x_{n} - p) + \gamma_{n}(u_{n} - p)\|^{2}$$

$$\leq [\|\alpha_{n}(x_{n-1} - p) + \beta_{n}(T_{n}x_{n} - p)\| + \|\gamma_{n}(u_{n} - p)\|]^{2}$$

$$\leq \alpha_{n}^{2}\|x_{n-1} - p\|^{2} + 2\beta_{n}\langle T_{n}x_{n} - p, j(x - y)\rangle +$$

$$2\gamma_{n}\|u_{n} - p\|\|\alpha_{n}(x_{n-1} - p) + \beta_{n}(T_{n}x_{n} - p)\| + \gamma_{n}^{2}\|u_{n} - p\|^{2}.$$
(11)

Since $T_i: K \to K, I = 1, 2, 3, \dots, N$ is strictly pseudocontractive, we have

$$\langle T_i x - T_i y, j(x-y) \rangle \le ||x-y||^2 - \lambda_i ||x-T_i x - (y-T_i y)||^2 (\lambda_i \in (0,1)).$$

Let $\lambda = \min_{1 \le i \le N} \{\lambda_i\}$, then

$$\langle T_i x - T_i y, j(x-y) \rangle \le ||x-y||^2 - \lambda ||x-T_i x - (y-T_i y)||^2 (\lambda \in (0,1))$$

Thus, it follows from (11) that

$$\|x_n - p\|^2 \le \alpha_n^2 \|x_{n-1} - p\|^2 + 2\beta_n \|x_n - p\|^2 - 2\lambda\beta_n \|x_n - T_n x_n\|^2 + 2\gamma_n \|u_n - p\| \|\alpha_n (x_{n-1} - p) + \beta_n (T_n x_n - p)\| + \gamma_n^2 \|u_n - p\|^2.$$
(12)

Now we prove that $\{x_n\}$ is bounded. For $x_0 = y_0 \in K$, $\{y_n\}$ is defined by

$$y_n = \alpha_n y_{n-1} + (\beta_n + \gamma_n) T_n y_n.$$

It follows from [10] that $\{y_n\}$ is bounded. Since $\{y_n\}$ and $\{u_n\}$ are bounded, we have

$$||y_n - x_n|| \le \alpha_n ||y_{n-1} - x_{n-1}|| + \beta_n ||T_n y_n - T_n x_n|| + \gamma_n ||T_n y_n - u_n||$$

$$\le \alpha_n ||y_{n-1} - x_{n-1}|| + L\beta_n ||y_n - x_n|| + \gamma_n M,$$

which leads to

$$||y_n - x_n|| \le \frac{\alpha_n}{1 - L\beta_n} ||y_{n-1} - x_{n-1}|| + \frac{\gamma_n M}{1 - L\beta_n}$$

$$\le [1 + \sigma_n] ||y_{n-1} - x_{n-1}|| + \gamma_n M_1.$$

Using the assumptions of theorem and Lemma OAA, we know that $\lim_{n\to\infty} ||y_n - x_n||$ exists. Since $\{y_n\}$ is bounded, it follows that $\{x_n\}$ is bounded. Therefore, it follows from (12) that

$$\|x_n - p\|^2 \le \alpha_n^2 \|x_{n-1} - p\|^2 + 2\beta_n \|x_n - p\|^2 - 2\lambda\beta_n \|x_n - T_n x_n\|^2 + 2\gamma_n M_2 + \gamma_n^2 M_2, \quad (13)$$

where M_2 is a constant. Since $\lim_{n\to\infty} \alpha_n = 1$, $\lim_{n\to\infty} \beta_n = 0$, there exists a positive integer N such that $\beta_n < (1-\lambda)/2$, $\forall n \ge N$. Thus $1 - 2\beta_n \ge \lambda$, $\forall n \ge N$. Hence it follows from (13) that for all $n \ge N$

$$\begin{aligned} \|x_{n} - p\|^{2} &\leq \frac{\alpha_{n}^{2}}{1 - 2\beta_{n}} \|x_{n-1} - p\|^{2} - \frac{2\lambda\beta_{n}}{1 - 2\beta_{n}} \|x_{n} - T_{n}x_{n}\|^{2} + \frac{2\gamma_{n}M_{2} + \gamma_{n}^{2}M_{2}}{1 - 2\beta_{n}} \\ &= [1 + \frac{\alpha_{n}^{2} + 2\beta_{n} - 1}{1 - 2\beta_{n}}] \|x_{n-1} - p\|^{2} - \frac{2\lambda\beta_{n}}{1 - 2\beta_{n}} [\alpha_{n}\|x_{n-1} - T_{n}x_{n}\| + \gamma_{n}\|u_{n} - T_{n}x_{n}\|]^{2} + \frac{2\gamma_{n}M_{2} + \gamma_{n}^{2}M_{2}}{\lambda} \\ &\leq [1 + \frac{2\beta_{n}}{\lambda}] \|x_{n-1} - p\|^{2} - \lambda\beta_{n}\|x_{n-1} - T_{n}x_{n}\|^{2} + \frac{2\gamma_{n}M_{2} + \gamma_{n}^{2}M_{2}}{\lambda}. \end{aligned}$$
(14)

Since $\alpha_n \in [1-2^{-n}, 1]$ and $\alpha_n + \beta_n + \gamma_n = 1$, we have $\sum_{i=1}^{\infty} \frac{2\beta_n}{\lambda} < \infty$ and $\sum_{i=1}^{\infty} \frac{2\gamma_n M_2 + \gamma_n^2 M_2}{\lambda} < \infty$. It follows from Lemma OAA that $\lim_{n\to\infty} ||x_n - p||$ exists. Therefore, $\{||x_n - p||\}$ is bounded. Thus, there exists a positive integer number R such that $||x_n - p||^2 \le R, \forall n \ge 1$. From (14) we have

$$\lambda \sum_{i=N+1}^{n} \beta_i \|x_{i-1} - T_i x_i\|^2 \le \|x_N - p\|^2 + R \sum_{i=N+1}^{n} \sigma_i + \sum_{i=N+1}^{n} \frac{2\gamma_i M_2 + \gamma_i^2 M_2}{\lambda}.$$

Hence

$$\sum_{n=1}^{\infty} \beta_n \|x_{n-1} - T_n x_n\|^2 < \infty.$$
(15)

From implicit iteration process (9), we obtain that

$$\|x_n - x_{n-1}\| \le \beta_n \|T_n x_n - x_{n-1}\| + \gamma_n \|u_n - x_{n-1}\|.$$

$$||x_n - x_{n-1}||^2 \le \beta_n^2 ||T_n x_n - x_{n-1}||^2 + 2\beta_n \gamma_n ||T_n x_n - x_{n-1}|| ||u_n - x_{n-1}|| + \gamma_n^2 ||u_n - x_{n-1}||^2.$$
(16)

Since $\{x_n\}$ is bounded, it follows from (16) that

$$||x_n - x_{n-1}||^2 \le \beta_n^2 ||T_n x_n - x_{n-1}||^2 + \gamma_n M_3 + \gamma_n^2 M_3.$$
(17)

Since

$$||x_{n+m} - x_{n-1}|| \le \sum_{i=n-1}^{n+m-1} ||x_{i+1} - x_i||,$$

it follows from Lemma OAA that

$$\|x_{n+m} - x_{n-1}\|^2 \le \sum_{i=n-1}^{n+m-2} 2^i \|x_{i+1} - x_i\|^2 + 2^{n+m-1} \|x_{n+m} - x_{n+m-1}\|^2.$$
(18)

Combining (17) and (18), we obtain that

$$\|x_{n+m} - x_{n-1}\|^{2} \leq \sum_{i=n-1}^{n+m-2} 2^{i} \beta_{i+1}^{2} \|x_{i+1} - x_{i}\|^{2} + \sum_{i=n-1}^{n+m-2} (\gamma_{i+1}M_{3} + \gamma_{i+1}^{2}M_{3}) + 2^{n+m-1} \beta_{n+m}^{2} \|T_{n+m}x_{n+m} - x_{n+m-1}\|^{2} + \gamma_{n+m}M_{3} + \gamma_{n+m}^{2}M_{3}.$$
(19)

Since $\beta_n \leq 2^{-n}$, from (19) we obtain

$$\|x_{n+m} - x_{n-1}\|^{2} \leq \sum_{i=n}^{n+m-1} \beta_{i} \|x_{i-1} - T_{i}x_{i}\|^{2} + \sum_{i=n-1}^{n+m-2} (\gamma_{i+1}M_{3} + \gamma_{i+1}^{2}M_{3}) + 2^{n+m-1}\beta_{n+m}^{2} \|T_{n+m}x_{n+m} - x_{n+m-1}\|^{2} + \gamma_{n+m}M_{3} + \gamma_{n+m}^{2}M_{3}.$$
(20)

It follows from (15) and $\lim_{n\to\infty}\beta_n = 0$, $\lim_{n\to\infty}\gamma_n = 0$, $\sum_{n=1}^{\infty}(\gamma_n M_3 + \gamma_n^2 M_3) < \infty$ that

$$\lim_{n \to \infty} \|x_{n+m} - x_{n-1}\| = 0.$$

Thus $\{x_n\}$ is a Cauchy sequence, and $\{x_n\}$ converges strongly to a point $p \in E$. This completes the proof of Theorem 5.

Theorem 6 Let the assumptions of Theorem 5 hold and $\{x_n\}$ be defined by (9). Then $\{x_n\}$ converges strongly to a common fixed point $p \in F$ if and only if $\lim_{n\to\infty} d(x_n, F) = 0$.

Proof Suppose that $\{x_n\}$ converges strongly to a common fixed point $p \in F$. In view of fact that $0 \le d(x_n, F) \le ||x_n - p||$, we see that $\lim_{n \to \infty} d(x_n, F) = 0$.

Conversely, assume that $\lim_{n\to\infty} d(x_n, F) = 0$. By Theorem 2.1, we have $x_n \to p$. Hence d(p, F) = 0. It is easy to prove that the set of fixed points of strictly pseudocontractive mappings is closed, so F is closed and $p \in F$, that is, $\{x_n\}$ converges strongly to a common fixed point $p \in F$. This completes the proof of Theorem 6.

References:

- BROWDER F E, PETRYSHYN W V. Construction of fixed points of nonlinear mappings in Hilbert spaces [J]. J. Math. Anal. Appl., 1967, 20: 197–228.
- [2] HICKS T L, KUBICEK J R. On the Mann iterative process in Hilbert spaces [J]. J. Math. Anal. Appl., 1977, 59: 4179–4208.
- [3] MARUSTER S. The solution by iteration of nonlinear equations [J]. Proc. Amer. Math. Soc., 1977, 66: 69-73.
- [4] OSILIKE M O, UDOMENE A. Demiclosedness principle and convergence results for strictly pseudocontractive mappings of Browder-Petryshyn type [J]. J. Math. Anal. Appl., 2001, 256: 431–445.
- [5] OSILIKE M O. Strong and weak convergence of the Ishikawa iteration methods for a class of nonlinear equations [J]. Bull. Korean Math. Soc., 2000, 37: 117–127.
- [6] RHOADES B E. Comments on two fixed point iteration methods [J]. J. Math. Anal. Appl., 1997, 56: 741–750.
- [7] RHOADES B E. Fixed point iterations using infinite matrices [J]. Trans. Amer. Math. Soc., 1974, 196: 741-750.
- [8] OSILIKE M O, ANIAGBOSOR S C, AKUCHU B G. Fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces [J]. Pan. Amer. Math. J., 2002, 12: 77–88.
- [9] XU Hong-kun, ORI R G. An implicit iteration process for nonexpansive mappings [J]. Numer. Funct. Anal. Optim., 2001, 22: 767–773.
- [10] OSILIKE M O. Implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps [J]. J. Math. Anal. Appl., 2004, 294: 73–81.

具误差隐格式迭代逼近严格伪压缩映像族公共不动点

苏永福1,李素红1,宋义生1,周海云2 (1. 天津工业大学理学院数学系, 天津 300160; 2. 石家庄军械工程学院数学系, 河北 石家庄 050003)

摘要: 设 K 是实 Banach 空间 E 中非空闭凸集, $\{T_i\}_i = 1^N \in \mathbb{N}$ 个具公共不动点集 F 的严 格伪压缩映像, $\{\alpha_n\} \subset [0,1]$ 是实数列, $\{u_n\} \subset K$ 是序列, 且满足下面条件 (i) $0 < \alpha \le \alpha_n \le 1$; (ii) $\sum_{n=1}^{\infty} (1 - \alpha_n) = +\infty$; (iii) $\sum_{n=1}^{\infty} ||u_n|| < +\infty$.

设 $x_0 \in K$, $\{x_n\}$ 由下式定义

 $x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_n x_n + u_{n-1}, \quad n \ge 1,$

其中 $T_n = T_n \mod N$,则有下面结论

(i) $\lim_{n\to\infty} ||x_n - p||$ 存在,对所有 $p \in F$;

(ii) $\lim_{n \to \infty} d(x_n, F)$ 存在,当 $d(x_n, F) = \inf_{p \in F} ||x_n - p||;$

(iii) $\liminf_{n \to \infty} \|x_n - T_n x_n\| = 0.$

文中另一个结果是,如果 $\{x_n\} \subset [1-2^{-n},1], 则 \{x_n\}$ 收敛. 文中结果改进与扩展了 Osilike(2004) 最近的结果,证明方法也不同.

关键词: 严格伪压缩映像; 具误差隐格式迭代; 公共不动点; 收敛定理.