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1. Introduction

The iterated function system (IFS) has become a powerful tool for the construction as well

as the analysis of typically fractal sets. The idea of constructing such sets was first put forward

by Hutchinson[1], while its complete theory was set up by Barnsley and others[2,3]. So far the

IFS attractor has been studied more deeper than before and the theory of fractal is greatly

enriched in [4–6]. In 1982, MIFS was introduced by Dekking. In the years that followed, a great

deal of work has been done by Barnsley, Elton, Grigorescu, Vrscay, Lasotaa and Stenflo, etc.

Among the various aspects studied are Hausdorff-Besicovitch dimension, probability measures

and their moments, ergodic theory, dynamical systems, etc[7−12]. After 1991, Vrscay and the

author have made some research on the NIFS attractor[4,13]. This article extends the previous

work, mainly discussing the recursive computation of the balanced vector measures and moments,

and analyzing the characteristic of the NMIFS structure.

2. Theorem and methods

The Markov character was first put forward by the Russian mathematician Mapkob in 1906.

From the simple Markov character to the abstract concept of Markov process, decades of years

have passed[14]. Nowadays the Markov process has been widely studied and applied in modern
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physics, biology, mathematics and many other subjects and fields[15−17].

Definition 1 Let I denote a state space of random process {X(t), t ∈ T }. For n arbitrary

time values t1 < t2 < · · · < tn, n ≥ 3, ti ∈ T , if the conditional distribution function of

X(tn) under condition X(ti) = xi, xi ∈ I, i = 1, 2, . . . , n − 1 equals to the one under condition

X(tn−1) = xn−1, i.e.

P{X(tn) ≤ xn |X(t1) = x1, X(t2) = x2 , . . . , X(tn−1) = xn−1}
= P{X(tn) ≤ xn |X(tn−1) = xn−1}, xn ∈ R

or

Ftn|t1...tn−1
(xn, tn |x1 , x2, . . . , xn−1; t1, t2, . . . , tn−1) = Ftn|tn−1

(xn, tn |xn−1 , tn−1),

then we call the process {X(t), t ∈ T } has the Markov character, or call this process the Markov

process.

Let (X, ρ) be metric space and F (X) denote sets of the nonempty compact subset S =

(S1, . . . , SN ) of X where Si ⊂ wi(X). Then F (X) is the complete metric space with metric

hρ(A, B) = max
i

h(Ai, Bi),

where h(A, B) = supx∈A infy∈B d(x, y) + supx∈B infy∈A d(x, y) is the Hausdorff distance with

d(x, y) = ‖x − y‖.

Definition 2 A contractive NMIFS is constituted of a class of contractive mapping w = (wi :

i = 1, 2, . . . , N) on (X, ρ). Let

wi(x) = aix
n + bi, (1)

where ai, bi ∈ R or C, n is an integer, and n 6= 1. For every wi : X → X , if it satisfies

‖wi(x) − wi(y)‖ ≤ ci ‖x − y‖ (∀x, y ∈ X),

where 0 ≤ ci < 1, then we call c = max1≤i≤N{ci} the contraction ratio of the contractive NMIFS.

If a Markov transition probability matrix P = [pij ]N×N satisfies

pij ≥ 0 (i, j = 1, 2, . . . , N) and

N
∑

j=1

pij = 1 (i = 1, 2, . . . , N),

then we will refer the integers 1, 2, . . . , N as states and call {X, w, P} a nonlinear Markov iterated

function system, abbreviated as NMIFS.

Theorem 1 Let D(r, z0) denote a circle with center z0 and radius r in the complex plane C.

For complex mappings T (z) = a · zn + b, we have

(i) T (z) = a is a contractive mapping on D(r, z0), where

rn−1 =
1

n ‖a‖ ; (2)



No.2 WANG X Y, et al: A class of nonlinear Markov iterated function system attractors 243

(ii) If ‖a‖ · rn + ‖b‖ ≤ r, then T (D(r, 0)) ⊂ D(r, 0), and

‖b‖ ≤ n − 1

n
· 1

(n ‖a‖)1/(n−1)
. (3)

Proof Since d
dz

T (z) = n ·a ·zn−1, T (z) is a contractive mapping if ‖z‖n−1 < 1
n‖a‖ . Substituting

r, the radius of the discD(r, 0), for ||z|| leads to Equation (2).

For part (ii), observe T (D(r, 0)) = D(‖a‖ · rn, b) ⊂ D(‖a‖ · rn + ‖b‖ , 0), so T (D(r, 0)) ⊂
D(r, 0) if ‖a‖ · rn + ‖b‖ ≤ r. By substituting equation (3) into ‖a‖ · rn + ‖b‖ ≤ r and solving for

‖b‖, Equation (3) is obtained.

Theorem 2 For NIFS: {Ti(z), i = 1, . . . , N}, Ti(z) = aiz
n + bi, if

‖amax‖ · rnmin

max + ‖bmax‖ ≤ rmin (4)

holds, then {Ti(z), i = 1, . . . , N} is a contractive NIFS on D(rmin, 0), where rmin = min{r1, . . . , rN}
and ri < 1.

Proof Since Tm(D(ri, 0)) ⊂ D(‖am‖ · rnm

i + ‖bm‖ , 0), if Equation (4) holds when ri < 1, then

Tm(D(ri, 0)) ⊂ D(rmin, 0) (1 ≤ i, m ≤ N).

So Theorem 2 holds.

Corollary for ‖am‖ = A, ‖bm‖ = B and nm = n, it can be infered from Equation (2) that

rm = r. So by Equation (4) we can get

A · rn + B ≤ r. (5)

By substituting Equation (2) into Equation (5), the relation between A and B will be:

A ≥ (n − 1)n−1

nn
· 1

Bn−1
, if n < 1; A <

(n − 1)n−1

nn
· 1

Bn−1
, if n > 1.

Theorem 3 Let {X, w, P} be contractive NMIFS on the complete metric space (X, ρ) with

contraction ratio c. Now we define W : F (X) → F (X) by W (B) = S, where

Sj =
⋃

i,pij 6=0

wj(Bi).

Then W is a contractive map on (F (X), hρ) with contraction ratio c, i.e.

hρ(W (B), W (C)) ≤ chρ(B, C) (∀B, C ∈ F (X)),

and there exists a unique fixed point A = (A1, . . . , AN ), A ∈ F (X), satisfying

A = W (A) =

N
⋃

n=1

wn(A),

and for ∀B ∈ F (X),

A = lim
n→∞

Wn(B).
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Proof We can get from Equation (1) that

hρ(W (B), W (C)) = max
j

h(
⋃

i,pij 6=0

wj(Bi),
⋃

i,pij 6=0

wj(Ci)),

and obviously,

h(
⋃

k

Bk,
⋃

k

Ck) ≤ max
k

h(Bk, Ck).

So we get

hρ(W (B), W (C)) ≤ max
j

max
i,pij 6=0

h(wj(Bi), wj(Ci)) ≤ c max
i

h(Bi, Ci) ≤ chρ(B,C). (6)

From Equation (6) we can see that if W (A) = A and W (B) = B, then A and B are invariant

sets. When hρ(A, B) = 0, we have A = B, namely, the invariant set is unique. Because

hρ(W (B), A) = hρ(W (B), W (A)) ≤ chρ(B, A) (∀B ∈ F (X)),

we can get

hρ(W
n(B), A) ≤ cnhρ(B, A).

So A = limn→∞ Wn(B). The proof is complete.

The fixed point A of Theorem 3 is called the attractor of the NMIFS. In general the attractor

of NMIFS is fractal, and always called deterministic fractal. With Theorem 3 we could set up the

algorithm constructing the NMIFS attractor as follows: Let {X, w, P} be a contractive NMIFS

with w = (wi : i = 1, 2, . . . , N) and the Markov transition probability matrix P = [pij ]N×N . First

select an initial point x0 ∈ X and an initial state i0 ∈ {1, 2, . . . , N}, then map x0 by a mapping

wi1 chosen from the set {wi : pioi > 0}, the choice being weighted according to the associated

probabilities pi0i1 but rather random, to obtain x1 = wi1(x0). Next, a mapping wi2 is chosen in

the same manner, subject to pi1i2 > 0, to obtain x2 = wi2 (x1). This process is continued, and a

sequence {xm} is produced. With an integer Mmax big enough the sequence {xm, m ≥ Mmax}
will converge to the NMIFS attractor A. However, limited to the actual resolution of computer

display, the number of iteration m should not be larger than a certain value. When m is larger

than this value, it will produce no better effects. But how is the difference between the fractal

set E and the NMIFS attractor A when m gets to this value? The following theorem which is

called collage theorem tells the evaluation under Hausdorff metric.

Theorem 4 Let (X, ρ) be a complete metric space. {X, w, P} is a contractive NMIFS with

contraction ratio c and w = (wi : i = 1, 2, . . . , N), if its fixed point (invariant set) is A, then

hρ(E, A) ≤ (1 − c)−1hρ(E,

N
⋃

n=1,0

wn(E)) (∀E ∈ F (x)). (7)

Proof Because A is invariant set, we have A = W (A), then

hρ(W (E), A) = max
j

h(
⋃

i,pij 6=0

wj(Ei),
⋃

i,pij 6=0

wj(Ai))≤ max
j

max
i,pij 6=0

h(wj(Ei), wj(Ai))

≤ c max
i

h(Ei, Ai) ≤ chρ(E,A).
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According to triangle inequality of the Hausdorff distance we can obtain

hρ(E, A) ≤ hρ(E,

N
⋃

n=1

wn(E)) + hρ(

N
⋃

n=1

wn(E), A) ≤ hρ(E,

N
⋃

n=1

wn(E)) + chρ(E, A), (8)

Equation (7) is an immediate result of Equation (8).

The collage theorem ensures that the produced image on computer is an approximation

to the attractor A. The Hausdorff distance between the two sets may be evaluated by the

Hausdorff distance between sets and its image. So the collage theorem gives a theoretical base

to the construction of the NMIFS attractors.

3. Experiment and result

3.1. Balanced vector measures

Let {X, w, P} be an NMIFS and let B ∈ B(X), where B(X) is Borel subsets of X . Asso-

ciated with each MIFS is a unique stationary probability measure µ = (µ1, µ2, . . . , µN ) whose

support that is the attractor A of the NMIFS, and for all Borel subsets B of X , it satisfies[3]

µ(B) =

∫

X

P (x, B)dµ(x).

Notice that the discrete Markov transition probability matrix P = [pij ]N×N in the above expres-

sion satisfies

pij(x, B) = pijδwj(x)(B),

where pij(x, B) is the transform probability from x ∈ X to the Borel subset B under the mapping

wj , and for some y ∈ X there exists x = wi(y). δz(B) satisfies the following condition:

δz(B) =

{

1, if z ∈ B
0, if z /∈ B

.

Theorem 5 For all the Borel subsets B of X , there exists a probability measure µ = (µ1, µ2, . . . , µN )

which satisfies

µj(B) =

N
∑

i=1

pij

∫

X

δwj(x)(B)dµi(x) (j = 1, 2, . . . , N). (9)

Proof Define the operator in the Banach space

(Tjf)(x) =

N
∑

i=1

pijf(wj(x)).

It can be drawn from the Schauder fixed point theorem that there exists a fixed point µj with

the operator T ∗[18]. And because

(T ∗
j v)(B) =

N
∑

i=1

pij(w
#
j ◦ v)(B) =

N
∑

i=1

pij

∫

X

δwj(x)(B)dv(x),
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where (w#
j ◦ v)(B) = v(w−1

i (B)), the fixed point µj satisfies

µj(B) =

N
∑

i=1

pij

∫

X

δwj(x)(B)dµj(x) =

∫

X

P (x, B)dµj(x).

Definition 3 The probability measure µ = (µ1, µ2, . . . , µN ) defined in Equation (9) is called

the balanced vector measure of {X, w, P}.

3.2. Recursive calculation of moments

If {X, w, P} is a contractive MIFS in Rd with attractorA, then we define the associated

invariant measure by the Lebesgue integrals[3]

gm =

∫

A

xmdµ. (10)

For convenience, the measure is assumed to be normalized, i.e., g0 =
∫

A
dµ = 1.

It can be seen from Equation (9) that if C(X) denotes the continuous function space on X ,

then we can get the following equation when f ∈ C(X),

∫

C

f(z)dµi(z) =

N
∑

j=1

pji

∫

C

f(wi(z))dµj(z) (j = 1, 2, . . . , N). (11)

We define the mth moment M̂ (m) by

M̂ (m) = (g
(m)
1 , g

(m)
2 , . . . , g

(m)
N ) = (M

(m)
1 , M

(m)
2 , . . . , M

(m)
N ), (12)

where

g
(m)
i = M

(m)
i =

∫

C

zmdµi(z).

And so, by Equation (11)

M
(m)
i =

N
∑

j=1

pji

∫

C

(wi(z))mdµj(z).

For Equation (11), we can get

M
(m)
i =

N
∑

j=1

pji

∫

C

(aiz
n + bi)

mdµj(z). (13)

In case of n = 1, we have

M
(m)
i =

N
∑

j=1

pji

∫

C

(aiz + bi)
mdµj(z) (i = 1, 2, . . . , N). (14)

Theorem 6 Let {X, w, P} be an MIFS, with X a compact subset of C and wi = aiz + bi (i =

1, 2, . . . , N). Define the matrix A(n,k) as follows

A(m,k) =
[

a
(m,k)
ij

]

=

[(

m
k

)

pjia
k
i bm−k

i

]

(m = 1, 2, . . . ; k = 0, 1, 2, . . . , m).
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Given M̂ (0), the moments M̂ (m) can be calculated recursively as follows

(I − A(m,m))M̂ (m) =

m−1
∑

k=0

A(m,k)M̂ (k). (15)

Proof From Equation (14), we can obtain

M
(m)
i =

N
∑

j=1

pji

m
∑

k=0

ak
i bm−k

i

(

m

k

) ∫

C

zkdµj(z) =

m
∑

k=0





N
∑

j=1

(

(

m

k

)

)pjia
k
i bm−k

i



 M
(k)
j

=
m

∑

k=0

N
∑

j=1

a
(m,k)
ij M

(k)
j .

Or, in matrix form,

M̂ (m) =

m
∑

k=0

A(m,k)M̂ (k),

from which Equation (15) holds.

When n 6= 1, with Equations (10) and (11) we can obtain

g
(m)
i =

d
∑

j=1

pji

∫

A

(aiz
n + bi)

mdµj(z). (16)

Setting g
(0)
i = 1, the first three equations corresponding to n = 1, 2, 3 in Equation (16) are

g
(1)
i = g

(n)
i

∑

j

pjiai +
∑

j

pjibi, (17)

g
(2)
i = g

(2n)
i

∑

j

pjia
2
i + 2g

(n)
i

∑

j

pjiaibi +
∑

j

pjib
2
i , (18)

g
(3)
i = g

(3n)
i

∑

j

pjia
3
i + 3g

(2n)
i

∑

j

pjia
2
i bi + 3g

(n)
i

∑

j

pjiaib
2
i +

∑

j

pjib
3
i . (19)

Define matrix A(s,t) = [αija
s
i b

t
i] =

∑

i

∑

j pija
s
i b

t
j (i, j = 1, 2, . . . , d), then we can obtain the

following three equations according to Equations (17), (18) and (19).

g(1) = A(0,0)g(n) + A(0,1), (20)

g(2) = A(2,0)g(2n) + 2A(1,1)g(n) + A(0,2), (21)

g(3) = A(3,0)g(3n) + 3A(2,1)g(2n) + 3A(1,2)g(n) + A(0,3). (22)

It is obvious that Equations (20), (21) and (22) do not satisfy the recursive calculation of mo-

ments. In fact, we can obtain from Equation (16) that

g
(m)
i =

d
∑

j=1

pji

∫

A

(aiz
n + bi)

mdµj(z) =

d
∑

j=1

pji

∫

A

(

m

k

)

ak
i zknb

(m−k)
i dµj(z)

=
d

∑

j=1

pji

(

m

k

)

ak
i b

(m−k)
i

∫

A

zkndµj(z),
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namely,

g(m) =

(

m
k

)

A(k,m−k)g(kn). (23)

It can be seen from Equation (23) that a new set of moments gk
i or g(k) is involved for every

m (m + 1 ≤ k ≤ mn). So we can not calculate moments recursively. However, the following can

be obtained after analysis that

g(p) = G(g(1), . . . , g(m)) (m = 1, 3, . . . , [p/n] and m is not the multiple of n), (24)

where [x] denotes the integer part of x. Equation (24) means that g(p) is a linear combination of

g(1), . . . , g(m). According to Ref. [13], the sequence of unknown odd moments g(i) (i = 1, 2, . . .)

will be referred as missing moments. We now proceed to find approximations to these unknown

variables.

Theorem 7 Let g(n) (n = 0, 1, 2, . . .) denote an infinite sequence of real numbers. A necessary

and sufficient condition for the existence of a unique invariant measure µ on [0, 1] such that

g(n) =

∫ 1

0

zndµ

is that the g(n) satisfies the following inequalities (The equality holds only when µ consists of

point masses at z = 0 and / or 1)

I(m, n) =

n
∑

k=0

(

n
k

)

(−1)kg(m+k) ≥ 0 (m, n = 0, 1, 2, . . .). (25)

Theorem 7 has been proved in Ref. [13] for IFS. For NMIFS, the theorem can also be proved

easily and thus the proof is omitted. Theorem 7 shows that g(n) (n = 0, 1, 2, . . .) is nonincreasing.

Now we only consider the first n (n > 0) missing moments. Denote these missing moments as x̂

with form:

x̂ = (x(1), . . . , x(m))T = (g(1), . . . , g(m))T.

For Equation (1), the vector define a unique time series Kj (j = 0, 1, . . . , nm).

Example 1 Consider NMIFS

w1(x) =
1

2
x2, w2(x) =

1

2
x2 +

1

2
, P = (pij) =

(

0.5 0.5
1 0

)

.

With the means put forward, it can be seen that the sequence of odd moments can be considered

as independent variables while all the even moments may be written as linear functions of the

odd ones. The first five even moments are given by (including g(1))

g(2) = g(1) − 1

4
, g(4) =

3

2
g(1) − 5

8
, g(6) = 4g(3) − 15

8
g(1) +

13

32
, g(8) = −4g(3) +

85

8
g(1) +

143

32
.
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m
n 1 2 3 4

0 1 − g(1) 1
2 − 1

2 + 3g(1) − g(3) −4 + 14g(1) − 4g(3)

1 1
2 − g(1) 1 − 3g(1) + g(3) − 7

2 − 11g(1) + 3g(3)

2 − 1
2 + 2g(1) − g(3) − 5

2 + 8g(1) − 2g(3)

3 2 − 6g(1) + g(3)

Table 1. Hausdorff inequalities I(m,n) of Equation (14) for 0 ≤ m ≤ 3, 1 ≤ n ≤ 4,

in terms of the missing moments g(1) and g(3)

Some values are calculated and presented in Table 1. From Theorem 7 we can see that

g(1) > g(2) > g(4). It can be easily computed that

5

12
< g(1) <

3

4
. (26)

So the upper limit and the lower limit of g(i) (i = 1, 2, . . . , 8) can be obtained by Equations (25),

(26) and Table 1.

According to the work of Bessis and Demko on
∫ √

xdµ of attractor A[19], we can see that

T (n)f(x) →
∫

fdµi, x ∈ µi (27)

holds. Thus the somewhat accurate approximation of g(2k−1) (k = 1, 2, . . .) can be calculated

with Equation (27). Notice that µ in Equation (27) is the invariant measure of the NMIFS

{X, w, P}, and the operator T : C(X) → C(X) is defined as

T (f)(x) =
∑

i

N
∑

j=1

pij(f ◦ wj)(x), (28)

where C(X) denotes the continuous functions space on X . With Equation (13) we can deduce

that

T (n)f(x) =
∑

i

· · ·
∑

i





N
∑

j1=1

· · ·
N

∑

jn=1

pij1 · · · pijn
f(wj1 ◦ · · · ◦ wjn

)(x)



. (29)

Given f(x) = x2k−1, a better result of g(2k−1) can be calculated with Equation (29).

3.3. Construction of a class NMIFS

Based on the algorithm of constructing NMIFS attractor, the proper transition probability
matrix P = [pij ] is selected listed in table 2, and proper w = (wi : i = 1, 2, . . . , N) are selected
as follows according to Equation (1).
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Figure M = (mij)4×4 Figure M = (mij)4×4 Figure M = (mij)4×4 Figure M = (mij)4×4

number number number number

1(a)









1 0 1 1

1 1 1 1

1 1 1 0

0 1 0 1









1(b)









1 1 0 1

1 1 1 1

1 1 0 1

0 1 0 0









1(c)









0 1 1 1

0 0 1 1

1 0 0 1

1 1 1 1









1(d)









0 0 1 0

1 1 0 0

1 1 1 1

0 1 1 1









2(a)









1 1 1 0

0 0 1 1

1 1 1 1

1 1 0 0









2(b)









1 1 0 1

0 1 1 0

0 1 1 1

1 0 0 1









2(c)









1 1 1 0

1 1 1 1

1 1 0 0

1 0 0 1









2(d)









0 1 0 1

1 1 1 1

1 0 1 1

1 1 1 0









3(a)









1 1 1 0

0 0 1 1

1 1 1 1

1 1 0 0









3(b)









1 1 0 1

0 1 3 0

0 1 1 1

3 1 0 0









3(c)









1 1 1 0

1 1 1 1

0 1 1 0

1 0 1 0









3(d)









0 1 0 1

1 1 1 1

1 0 1 1

1 1 0 0









Table 2. The transition probability matrix of the NMIFSP = [pij ]
(the relation between P and M is pij = mij/ni, ni =

∑4

j=1
mij)

w =

(

1

2
z2 +

1

2
,
i

2
z2 +

2

5
+

1

2
i,−1

2
z2 +

1

2
+

2

5
i,− i

2
z2 +

i

2

)

, (30)

w =

(

3

5
z2,

3i

5
z2 +

1

2
,
1

2
z2 +

1

2
,
i

2
z2 +

1

2
+

i

2

)

, (31)

w =

(

− i

2
z2,

1

2
z2 +

1

2
,
1

2
z2 +

i

2
,−1

2
z2 +

1

2
+

i

2

)

. (32)

Depending on the choice for the initial point the first few points produced during the iteration may

not yet be close to the attractor. Therefore they should be eliminated from the approximating

point set. As an example, the first 1000 points in our computation are abandoned and the

following iteration lasts 500000 times. Many interesting images are produced in this way. Fig.1-

Fig.3 are some representative ones.

Figure 1: The NMIFS attractor of Equation (30)

From Fig.1–Fig.3 we can see that different transition probability matrices may cause different

images. In addition, we can set up the continuous dependent relation between the contractive
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Figure 2: The NMIFS attractor of Equation (31)

Figure 3: The NMIFS attractor of Equation (32)

NMIFS attractor and its parameters, that is, for a contractive NMIFS, a small change of the

parameters will cause a small change of the attractor’s structure. This is important because of

its practical application. For example, we could adjust the parameters continuously to control

the NMIFS attractor in image compression. Meanwhile, this makes it possible to interpolate to

the attractor which is fairly favourable to the computer simulation.

4. Conclusion

In this article, the theory of NMIFS, the balanced vector measure and the computation of

moments are discussed. The NMIFS attractor is also introduced and some images are presented.

The major point of MIFS is that every point in the orbit generated by IFS is associated with a

“state” and the change of the state is controlled by the Markov process. The balanced vector

measures and the moments can be treated as vectors. It has been showed in our work that the

moments M̂ (i) (i = 1, 2, . . .) can be calculated by recursion for MIFS, while for a NMIFS, it

is another thing. For NMIFS, the value of M̂ (i) depends on the value of M̂ (j) (j ≥ i). So we

cannot calculate its value directly but only its approximate value can be gotten. Here we only

discussed the map wi(x) = aix
n + bi (i = 1, 2, . . . , N), but it can be analogously reasoned to
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other kinds easily like wi(z) = ain
zn + ain−1

zn−1 + · · · + ai1z + bi, so the methods we adopted

and the conclusions we took are of general meanings.
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