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Abstract: A graph G is called to be chromatic choosable if its choice number is equal to its
chromatic number. In 2002, Ohba conjectured that every graph G with 2χ(G) + 1 or fewer
vertices is chromatic choosable. It is easy to see that Ohba’s conjecture is true if and only
if it is true for complete multipartite graphs. But at present only for some special cases of
complete multipartite graphs, Ohba’s conjecture have been verified. In this paper we show
that graphs K6,3,2∗(k−6),1∗4 (k ≥ 6) is chromatic choosable and hence Ohba’s conjecture is
true for the graphs K6,3,2∗(k−6),1∗4 and all complete k-partite subgraphs of them.
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1. Introduction

For a graph G = (V, E) and each vertex u ∈ V (G), let L(u) denote a set (or a list) of colors

available for u. L = {L(u)|u ∈ V (G)} is said to be a list assignment of G. If |L(u)| = k for all

u ∈ V (G), L is called a k-list assignment of G. A list-coloring (or L-coloring for short) from a

given list assignment is a proper coloring c such that c(u) is chosen from L(u). We call a graph

G L-colorable if G admits an L-coloring. A graph G is called k-choosable if G is L-colorable for

every k-list assignment L. The choice number Ch(G) of a graph G is the smallest k such that G

is k-choosable. The concept of list coloring was introduced independently by V.G. Vizing[7], P.

Erdös, A.L. Rubin, and H. Taylar[2]. For a recent survey, we refer the interested reader to the

Ref. [8].

Clearly, Ch(G) ≥ χ(G) holds for every graph G, where χ(G) denotes the chromatic number

of G. On the other hand, Erdös et al[2] showed that bipartite graphs can have arbitrarily large

choice number. Therefore, it is significant to investigate the condition or give some graph classes,

in which each graph satisfies Ch(G) = χ(G). For convenience, a graph G is called chromatic

choosable, if Ch(G) = χ(G)[5]. About the chromatic choosable graph, a glamorous conjecture

was given by K. Ohba. K. Ohba showed that
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Conjecture 1.1[5] If |V (G)| ≤ 2χ(G) + 1, then Ch(G) = χ(G).

Because every χ-chromatic graph is a subgraph of complete χ-partite graph, Ohba’s con-

jecture is true if and only if it is true for complete χ-partite graph. Namely, Conjecture 1.1 is

equivalent to Conjecture 1.2 in the following.

Conjecture 1.2 If G is a complete k-partite graph with |V (G)| ≤ 2k+1, then Ch(G) = χ(G) =

k.

We use the notation Kr∗s for a complete s-partite graph in which each part is of size r.

Notations such as Kr∗s,t, etc. are used similarly.

For Conjecture 1.2, at present we know that only some special cases have been verified and

all of them were obtained from the results of choice number of some complete multipartite graphs

in the following.

Theorem 1.1[1] If k ≥ s + 1 and m ≤ 2s + 1, Ch(Km,2∗(k−s−1),1∗s) = k.

In Theorem 1.1, let m = s + 3, we know that Ch(Ks+3,2∗(k−s−1),1∗s) = k (k ≥ s + 1).

Namely Conjecture 1.2 is true for complete multipartite graphs with precisely one partite set of

size greater than 2 as a general situation.

Theorem 1.2[6] Ch(K3∗r,1∗t) = max(r + t, ⌈ 4r+2t−1
3 ⌉).

In Theorem 1.2, let r = t + 1 and k = r + t, we know that Ch(K3∗(t+1),1∗t) = k. Namely

Conjecture 1.2 is true for complete multipartite graphs K3∗(t+1),1∗t and all complete k-partite

subgraphs of them, where k = r + t.

Theorem 1.3[3] If k ≥ 3, Ch(K3∗2,2∗(k−2)) = k.

Theorem 1.3 showed that if k ≥ 3, Ch(K3∗2,2∗(k−3),1) = k. Namely Conjecture 1.2 is true

for complete multipartite graphs K3∗2,2∗(k−3),1 and all complete k-partite subgraphs of them.

Another partial result is that the authors have showed that Ch(K4,3,2∗(k−4),1∗2) = k (k ≥ 4)

and Ch(K5,3,2∗(k−5),1∗3) = k (k ≥ 5) in another paper. Namely Conjecture 1.2 is true for graphs

K4,3,2∗(k−4),1∗2 and K5,3,2∗(k−5),1∗3, and all complete k-partite subgraphs of them.

In this paper, we will show that Conjecture 1.2 is true for graphs K6,3,2∗(k−6),1∗4 and all

complete k-partite subgraphs of them, where k ≥ 6. In Section 2, we will introduce some

propositions as a preparation to prove our main result. In Section 3, using these propositions,

we will show that Ch(K6,3,2∗(k−6),1∗4) = k.

2. Some propositions

For a graph G = (V, E) and a subset X ⊂ V , let G[X ] denote the subgraph of G induced

by X . For a list assignment L of G, let L|X denote L restricted to X , and L(X) denote the

union
⋃

u∈X L(u). If A is a set of colors, let L\A denote the list assignment obtained from L by

removing the colors in A from each L(u) with u ∈ V (G). When A consists of a single color a,

we write L − a instead of L\{a}.

We say that G with L satisfies Hall’s condition in G, if |L(X)| ≥ |X | for every subset
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X ⊂ V (G). It is clear that if G with L satisfies Hall’s condition, then by Hall’s marriage

theorem, there exists an L-coloring for G, in which all vertices receive distinct colors.

The following proposition is proved in [4], which is the foundation of our proof. Here the

statement is slightly different.

Proposition 2.1[4] Let L be a list assignment for a graph G = (V, E). Then G is L-colorable

if G[X ] is L|X -colorable for a maximal non-empty subset X ⊂ V (G) such that |L(X)| < |X |.

Let G = Km1,m2,2∗r,1∗s be any complete k-partite graph with |V (G)| = 2k + 1, where

m1 ≥ m2 ≥ 3, r ≥ 0, s ≥ 1, 2 + r + s = k and m1 + m2 + 2r + s = 2k + 1. Write the k parts

of G with V1 = {x1, x2, . . . , xm1
}, V2 = {y1, y2, . . . , ym2

}, Ui = {ui, vi} for i = 1, 2, . . . , r, and

Wi = {wi} for i = 1, 2, . . . , s. Suppose that L is a k-list assignment of G such that G is not

L-colorable. Under the above assumption, we have the following propositions.

Proposition 2.2
⋂

xi∈V1
L(xi) = Φ,

⋂
yi∈V2

L(yi) = Φ.

Proof Suppose that there exists a color a ∈
⋂

xi∈V1
L(xi). Then, assign a to all vertices xi

for i = 1, 2, . . . , m1. Note that G′ = G − V1 = Km2,2∗r,1∗s with m2 = 2k + 1 − m1 − 2r − s ≤

2(2 + r + s)+ 1−m1− 2r− s = s + 5−m1 ≤ s + 2 ≤ 2s + 1, and L′ = L− a with |L′(u)| ≥ k− 1

for all u ∈ V (G′). By Theorem 1.1, G′ is (k − 1)-choosable. Hence we can obtain an L-coloring

of G, a contradiction. Similarly,
⋂

yi∈V2
L(yi) = Φ.

Proposition 2.3 If r = 0 or L(ui) ∩ L(vi) = Φ for i = 1, 2, . . . , r, r 6= 0, then there exist

xi1 , xi2 ∈ V1 and yi1 , yi2 ∈ V2 such that L(xi1 ) ∩ L(xi2 ) 6= Φ and L(yi1) ∩ L(yi2) 6= Φ.

Proof Without loss of generality, suppose that L(x1), L(x2), . . . , L(xm1
) are pairwise disjoint,

then there must exist two vertices yi1 , yi2 ∈ V2 such that L(yi1) ∩ L(yi2) 6= Φ. Otherwise, it

is obvious that G with L satisfies Hall’s condition. This is a contradiction to that G is not L-

colorable. Let A be a largest subset of V2 such that
⋂

y∈A L(y) 6= Φ. By Proposition 2.2, we know

that 2 ≤ |A| ≤ m2 − 1. Choose a color a ∈
⋂

y∈A L(y), and let G′ = G − A, L′ = L − a. Then

|L′(xi)∪L′(xj)| ≥ 2k−1 for every i, j = 1, 2, . . . , m1, i 6= j; |L′(yi)| = k for every yi ∈ V2\A; and

|L′(ui) ∪ L′(vi)| ≥ 2k − 1 for i = 1, 2, . . . , r. Since G is not L-colorable, G′ is not L′–colorable.

In particular, G′ with L′ does not satisfy Hall’s condition. Let X be a maximal subset of V (G′)

such that |L′(X)| < |X |. Clearly, |X ∩ V1| ≤ 1 and |X ∩ Ui| ≤ 1 for i = 1, 2, . . . , r. Otherwise,

2k − 1 ≤ |L′(X)| < |X | ≤ |V (G′)| ≤ 2k − 1, a contradiction. Hence |X\V2| ≤ k − 1. Note that

|L′(u)| ≥ k−1 for every u ∈ X\V2 and |L′(u)| = k for every u ∈ X ∩V2. It is obvious that G′[X ]

is L′|X -colorable. By Proposition 2.1, G′ is L′-colorable. This is a contradiction.

The following three propositions are all obvious (we omit the proof of them), but all of them

are very useful in the proof of our main result.

Proposition 2.4 Let G = K3,1 with two parts U = {u1, u2, u3} and V = {v}, and L be a list

assignment on the vertices of G with |L(u1)| ≥ 1, |L(u2)| ≥ 2, |L(u3)| ≥ 2 and |L(v)| ≥ 2. Then

G is L-colorable.
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Proposition 2.5 Let G = K3,1 with two parts U = {u1, u2, u3} and V = {v}, and L be a

list assignment on the vertices of G with |L(ui)| ≥ 2 for i = 1, 2, 3 and |L(v)| = 1. Then G is

L-colorable.

Proposition 2.6 Let G = K3,1 with two parts U = {u1, u2, u3} and V = {v}, and L be a list

assignment on the vertices of G with |L(u1)| = |L(u2)| = |L(u3)| = 1 and |L(v)| ≥ 4. Then G is

L-colorable.

3. Ch(K6,3,2∗(k−6),1∗4) = k

In order to prove Ch(K6,3,2∗(k−6),1∗4) = k by induction, we show Ch(K6,3,1∗4) = 6 first.

Theorem 3.1 Ch(K6,3,1∗4) = 6.

Proof For G = K6,3,1∗4, write its 6 parts with V1 = {x1, x2, x3, x4, x5, x6}, V2 = {y1, y2, y3},

Wi = {wi} for i = 1, 2, 3, 4. By contradiction, assume that L is a list assignment with |L(v)| = 6

for each v ∈ V (G) such that G is not L-colorable.

Let A be the largest subset of V1 such that
⋂

x∈A L(x) 6= Φ. Then we know that 2 ≤ |A| ≤ 5

by Propositions 2.2 and 2.3. Choose a color c1 ∈
⋂

x∈A L(x) to color all the vertices in A. Let

G′ = G − A, L′ = L − c1. As G is not L–colorable, G′ is not L′-colorable. In particular,

G′ with L′ does not satisfy Hall’s condition. Let X be a maximal subset of V (G′) such that

|L′(X)| < |X |. Clearly, (X ∩ V1) ⊂ V1\A and |X ∩ V1| ≤ 4. In the following, we will prove

that G′[X ] is L′|X -colorable. Then G′ is L′-colorable by Proposition 2.1. Thus we obtain a

contradiction.

By the maximality of A, we have |L′(x)| = 6 for every x ∈ V1\A. And from Proposition 2.2

we know that |L′(yi)| ≥ 5 for i = 1, 2, 3, and in {|L′(y1)|, |L
′(y2)|, |L

′(y3)|} there exists at least

one being of 6. Without loss of generality, let |L′(y1)| ≥ 5, |L′(y2)| ≥ 5 and |L′(y3)| = 6. We also

know |L′(wi)| ≥ 5 for i = 1, 2, 3, 4.

Case 1 |X ∩ V2| ≤ 1.

In this case, |X\V1| ≤ 5. As |L′(v)| ≥ 5 for every v ∈ X\V1, and |L′(x)| = 6 for every

x ∈ X ∩ V1, it is obvious that G′[X ] is L′|X -colorable.

Case 2 |X ∩ V2| = 2.

Let {yp, yq} ⊂ X , {p, q} ⊂ {1, 2, 3}, then yt /∈ X , where t = {1, 2, 3}\{p, q}. Clearly,

X ⊂ {yp, yq, w1, w2, w3, w4} ∪ (V1\A), then |X | ≤ 10.

If L′(yp) ∩ L′(yq) = Φ, we have 10 ≤ |L(X)| < |X | ≤ 10. This is a contradiction.

If L′(yp) ∩ L′(yq) 6= Φ, choose a color b ∈ L′(yp) ∩ L′(yq). Note that |L′(x)| = 6 for every

x ∈ V1\A, |L′(yi)| ≥ 5 for i = 1, 2, 3, and |L′(wi)| ≥ 5 for i = 1, 2, 3, 4, we can color both verties

yp and yq with color b, and then color w1, w2, w3, w4, and every vertex x ∈ V1\A in that order.

Thus, G′[X ] is L′|X -colorable.

Case 3 |X ∩ V2| = 3.
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In this case, {y1, y2, y3} ⊂ X , and we have Claim 3.1 as follows.

Claim 3.1 |X ∩ V1| ≤ 3.

Otherwise, since 2 ≤ |A| ≤ 5, then |X ∩ V1| = 4 and |A| = 2. Without loss of generality, let

A = {x5, x6}, X ∩ V1 = {x1, x2, x3, x4}. Clearly, in this case, |X | ≤ 11. And |X | ≤ 11 implies

that |L′(xi) ∩ L′(xj)| ≥ 2 for i, j = 1, 2, 3, 4, i 6= j; and |L′(x1) ∪ L′(x2) ∪ L′(x3) ∪ L′(x4)| ≤ 10.

Otherwise, 11 ≤ |L(X)| < |X | ≤ 11, a contradiction. On the other hand, we have L′(xp) ∩

L′(xq) ∩ L′(xr) = Φ by the maximality of A and |A| = 2, where p, q and r are pairwise different

and {p, q, r} ⊂ {1, 2, 3, 4}. So we have |L′(x1) ∪L′(x2) ∪ L′(x3) ∪ L′(x4)| ≥ 12. This contradicts

to |L′(x1) ∪ L′(x2) ∪ L′(x3) ∪ L′(x4)| ≤ 10.

Since |X ∩ V1| ≤ 3, according to the size of X ∩ V1, we need to consider some subcases.

Subcase 3.1 |X ∩ V1| ≤ 1 (no matter |A| = 2, 3, 4 or 5).

|X ∩ V1| ≤ 1 implies that |X | ≤ 8. If L′(y1) ∩ L′(y2) = Φ, then 10 ≤ |L′(X)| < |X | ≤

|V (G′)| ≤ 8. This is a contradiction. If L′(y1) ∩ L′(y2) 6= Φ, choose a color b ∈ L′(y1) ∩ L′(y2).

Note that b /∈ L′(y3), we can color both y1 and y2 with color b, and then color w1, w2, w3, w4,

vertex x ∈ X ∩ V1(if there exists a vertex x in X ∩ V1), and y3 in that order. Thus, G′[X ] is

L′|X -colorable.

Subcase 3.2 |X ∩ V1| = 2 (no matter |A| = 2, 3 or 4).

|X∩V1| = 2 implies that |X | ≤ 2+3+4 = 9. Without loss of generality, say X∩V1 = {x1, x2}.

It is obvious that |L′(y1)∩L′(y2)| ≥ 2 and |L′(x1)∩L′(x2)| ≥ 4. Otherwise, 9 ≤ |L′(X)| < |X | ≤

9, a contradiction.

Subcase 3.2.1 L′(w1), L
′(w2), L

′(w3) and L′(w4) are not the same color lists.

Choose a color c2 ∈ L′(y1) ∩ L′(y2) and a color c3 ∈ L′(x1) ∩ L′(x2) such that c3 6= c2.

Assign c2 to both y1 and y2, and c3 to both x1 and x2. Since L′(w1), L
′(w2), L

′(w3) and L′(w4)

are not the same color lists, we know that |L′(wi)\{c2, c3}| ≥ 3 for i = 1, 2, 3, 4, and at the same

time L′(w1)\{c2, c3}, L′(w2)\{c2, c3}, L′(w3)\{c2, c3} and L′(w4)\{c2, c3} are not the same color

lists. Hence, for i = 1, 2, 3, 4, we can choose a color di from L′(wi)\{c2, c3} to color wi. Note

that c2 /∈ L′(y3), we can choose a color b from L′(y3)\{c3, d1, d2, d3, d4} to color y3 afterwards.

Thus, G′[X ] is L′|X -colorable.

Subcase 3.2.2 L′(w1) = L′(w2) = L′(w3) = L′(w4).

Write {e1, e2, e3, e4, e5} ⊂ L′(wi) for i = 1, 2, 3, 4. Clearly, L′(y1) ∩ L′(y2) ⊂ {e1, e2, e3, e4,

e5}. Otherwise, it is easy to see that G′[X ] is L′|X -colorable similarly to Subcase 3.2.1.

As |L′(xi)| = 6, for i = 1, 2, there exists ai ∈ L′(xi)\{e1, e2, e3, e4, e5}, for i = 1, 2,

respectively. Since |L′(y1) ∩ L′(y2)| ≥ 2 and L′(y1) ∩ L′(y2) ⊂ {e1, e2, e3, e4, e5}, we have

L′(y3)\{e1, e2, e3, e4, e5} ≥ 3 by Proposition 2.2. Write {b34, b35, b36} ⊂ L′(y3)\{e1, e2, e3, e4,

e5}. Use colors in {e1, e2, e3, e4, e5} to color y1, y2, w1, w2, w3 and w4, and then color x1, x2, y3

with a1, a2 and a color in {b34, b35, b36}\{a1, a2}, respectively. Thus, G′[X ] is L′|X -colorable.
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Subcase 3.3 |X ∩ V1| = 3 and |A| = 2.

Without loss of generality, let A = {x5, x6}, X ∩ V1 = {x1, x2, x3}. Clearly, in this subcase,

|X | ≤ 10. And |X | ≤ 10 implies that |L′(xi)∩L′(xj)| ≥ 3 for i, j = 1, 2, 3, i 6= j; |L′(y1)∩L′(y2)| ≥

1, |L′(y1) ∩ L′(y3)| ≥ 2, |L′(y2) ∩ L′(y3)| ≥ 2, and |L′(x1) ∪ L′(x2) ∪ L′(x3)| ≤ 9. Otherwise,

10 ≤ |L(X)| < |X | ≤ 10, a contradiction. As |A| = 2, furthermore, we have Claim 3.2 as follows.

Claim 3.2 |L′(xi) ∩ L′(xj)| = 3 for i, j = 1, 2, 3, i 6= j.

Otherwise, suppose that there exist p, q ∈ {1, 2, 3}, such that |L′(xp)∩L′(xq)| ≥ 4. Without

loss of generality, say |L′(x1) ∩L′(x2)| ≥ 4. Note that |A| = 2, by the maximality of A, we have

|L′(x1)∩L′(x2)∩L′(x3)| = Φ. Therefore, |L′(x1)∩L′(x3)| ≤ 2 by |L′(x1)| = 6. This contradicts

to |L′(xi) ∩ L′(xj)| ≥ 3 for i, j = 1, 2, 3, i 6= j.

As |L′(y1) ∩ L′(y2)| ≥ 1, choose a color c2 to color both y1 and y2, choose color di ∈

L′(wi)−c2 to color wi for i = 1, 2, 3, 4, respectively. Now we consider the induced subgraph G′′ =

G′[x1, x2, x3, y3] = K3,1 and its list assignment L′′ = L′\{c2, d1, d2, d3, d4}. Since c2 /∈ L′(y3) by

Proposition 2.2, we have that |L′′(y3)| ≥ 2. Since |L′(xi) ∩ L′(xj)| = 3 for i, j = 1, 2, 3, i 6= j, by

Claim 3.2, we have that |L′′(xi)| ≥ 1 for i, j = 1, 2, 3, and in {|L′′(x1)|, |L
′′(x2)|, |L

′′(x3)|} there

exist at least two being of 3 or more. Without loss of generality, say |L′′(x1)| ≥ 1, |L′′(x2)| ≥ 3,

and |L′′(x3)| ≥ 3. Therefore, G′′ is L′′-colorable by Proposition 2.4. And hence G′[X ] is L′|X -

colorable.

Subcase 3.4 |X ∩ V1| = 3 and |A| = 3.

Without loss of generality, let A = {x4, x5, x6}, X ∩ V1 = {x1, x2, x3}. In this subcase,

similarly to Subcase 3.3, we also have that |X | ≤ 10. And |X | ≤ 10 implies that |L′(xi)∩L′(xj)| ≥

3 for i, j = 1, 2, 3, i 6= j, |L′(y1) ∩ L′(y2)| ≥ 1, |L′(y1) ∩ L′(y3)| ≥ 2, |L′(y2) ∩ L′(y3)| ≥ 2, and

|L′(x1) ∪ L′(x2) ∪ L′(x3)| ≤ 9.

If |L′(xi) ∩ L′(xj)| ≤ 4 for any i, j = 1, 2, 3 and i 6= j, it is easy to see that G′[X ] is

L′|X -colorable similarly to Subcase 3.3.

If there exist p, q ∈ {1, 2, 3}, such that |L′(xp) ∩ L′(xq)| ≥ 5, it is clear that |L′(x1) ∩

L′(x2) ∩ L′(x3)| ≥ 2. Otherwise, we have that |L′(x1) ∪ L′(x2) ∪ L′(x3)| ≥ 10. This contradicts

to |L′(x1) ∪ L′(x2) ∪ L′(x3)| ≤ 9.

Subcase 3.4.1 L′(w1), L
′(w2), L

′(w3) and L′(w4) are not the same color lists.

As |L′(y1) ∩ L′(y2)| ≥ 1, and |L′(x1) ∩ L′(x2) ∩ L′(x3)| ≥ 2, we can choose a color c2 ∈

L′(y1) ∩ L′(y2) and a color c3 ∈ L′(x1) ∩ L′(x2) ∩ L′(x3) such that c3 6= c2. Assign c2 to both

y1 and y2, and c3 to all vertices in {x1, x2, x3}. Since L′(w1), L
′(w2), L

′(w3) and L′(w4) are not

the same color lists, we know that |L′(wi)\{c2, c3}| ≥ 3 for i = 1, 2, 3, 4, and L′(w1)\{c2, c3},

L′(w2)\{c2, c3}, L′(w3)\{c2, c3} and L′(w4)\{c2, c3} are not the same color lists. Hence, for

i = 1, 2, 3, 4, we can choose a color di from L′(wi)\{c2, c3} to color wi. Note that c2 /∈ L′(y3),

we can choose a color b from L′(y3)\{c3, d1, d2, d3, d4} to color y3 afterwards. Thus, G′[X ] is

L′|X -colorable.

Subcase 3.4.2 L′(w1) = L′(w2) = L′(w3) = L′(w4).
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Without loss of generality, write {e1, e2, e3, e4, e5} ⊂ L′(wi) for i = 1, 2, 3, 4.

Claim 3.3 L′(y1)∩L′(y2) ⊂ {e1, e2, e3, e4, e5} and L′(x1)∩L′(x2)∩L′(x3) ⊂ {e1, e2, e3, e4, e5}.

Otherwise, it is easy to see that G′[X ] is L′|X–colorable similarly to subcase 3.4.1.

Since that |L′(x1) ∩ L′(x2) ∩ L′(x3)| ≥ 2 and L′(x1) ∩ L′(x2) ∩ L′(x3) ⊂ {e1, e2, e3, e4, e5},

without loss of generality, let {e1, e2} ⊂ L′(x1) ∩ L′(x2) ∩ L′(x3).

Subcase 3.4.2.1 c1 /∈ L(y1) and c1 /∈ L(y2).

In this subcase, we have that |L′(y1)| = |L′(y2)| = |L′(y3)| = 6, namely |L′(yi)\{e1,

e2, e3, e4, e5}| ≥ 1. It is obvious that we can use colors in {e1, e2, e3, e4, e5} to color the ver-

tices in {x1, x2, x3, w1, w2, w3, w4}, and colors bi ∈ L′(yi)\{e1, e2, e3, e4, e5} for i = 1, 2, 3, to

color vertices yi for i = 1, 2, 3, afterwards. Thus, G′[X ] is L′|X -colorable.

Subcase 3.4.2.2 c1 ∈ L(y1) and c1 ∈ L(y2).

In this subcase, we can show that G itself is L-colorable. This is a contradiction to the

hypothesis that G is not L-colorable.

In fact, let c(y1) = c(y2) = c1, c(x1) = c(x2) = c(x3) = e1, c(w1) = e2, c(w2) = e3, c(w3) =

e4, c(w4) = e5. And then we consider the induced subgraph G′′ = G[x4, x5, x6, y3] = K3,1 and its

list assignment L′′′ = L\{c1, e1, e2, e3, e4, e5}. Since c1 /∈ L′(y3) by Proposition 2.2, we have that

|L′′′(y3)| ≥ 1. Since {e1, e2} ⊂ L′(x1) ∩ L′(x2) ∩ L′(x3), and {e1, e2} ∩ L(xi) = Φ for i = 4, 5, 6,

by the maximality of A and |A| = 3, we have that |L′′′(xi)| ≥ 2 for i = 4, 5, 6. Therefore, G′′ is

L′′′-colorable by Proposition 2.5. And hence G is L-colorable.

Subcase 3.4.2.3 c1 ∈ L(y1) but c1 /∈ L(y2), or c1 ∈ L(y2) but c1 /∈ L(y1).

Without loss of generality, say c1 ∈ L(y1) but c1 /∈ L(y2). Namely, |L′(y1)| = 5 and

|L′(y2)| = |L′(y3)| = 6.

Claim 3.4 L′(y1) = {e1, e2, e3, e4, e5}.

Otherwise, it is obvious that |L′(yi)\{e1, e2, e3, e4, e5}| ≥ 1. And we can use colors in

{e1, e2, e3, e4, e5} to color the vertices in {x1, x2, x3, w1, w2, w3, w4}, and colors bi ∈ L′(yi)\{e1,

e2, e3, e4, e5} for i = 1, 2, 3, to color vertices yi for i = 1, 2, 3, afterwards. Thus, G′[X ] is L′|X -

colorable.

Subcase 3.4.2.3.1 1 ≤ |L′(y1) ∩ L′(y2)| ≤ 2.

As L′(y1) = {e1, e2, e3, e4, e5} and |L′(y1) ∩ L′(y2)| ≤ 2, we have that |L′(y2)\{e1, e2,

e3, e4, e5}| ≥ 4. On the other hand, since |L′(y1) ∩ L′(y3)| ≥ 2 and L′(y1) = {e1, e2, e3, e4, e5},

we have L′(y1) ∩ L′(y3) ⊂ {e1, e2, e3, e4, e5}. Therefore, we can use colors in {e1, e2, e3, e4, e5}

to color the vertices in {y1, y3, w1, w2, w3, w4}. Now we consider the induced subgraph G′′ =

G′[x1, x2, x3, y2] = K3,1 and its list assignment L′′ = L′\{e1, e2, e3, e4, e5}. Clearly, |L′′(y2)| ≥ 4.

Since |L′(xi)| = 6 for i = 1, 2, 3, we have that |L′′(xi)| ≥ 1 for i = 1, 2, 3. Therefore, G′′ is

L′′-colorable by Proposition 2.6. And hence G′[X ] is L′|X -colorable.

Subcase 3.4.2.3.2 |L′(y1) ∩ L′(y2)| ≥ 3.
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From Claim 3.3, L′(y1) ∩ L′(y2) ⊂ {e1, e2, e3, e4, e5}, so in this subcase we have |L′(y3)

\{e1, e2, e3, e4, e5}| ≥ 4 by Proposition 2.2. Firstly, we use colors in {e1, e2, e3, e4, e5} to

color the vertices in {y1, y2, w1, w2, w3, w4}. Secondly, we consider the induced subgraph G′′ =

G′[x1, x2, x3, y3] = K3,1 and its list assignment L′′ = L′\{e1, e2, e3, e4, e5}. Clearly, |L′′(y3)| ≥ 4.

Since |L′(xi)| = 6 for i = 1, 2, 3, we have that |L′′(xi)| ≥ 1 for i = 1, 2, 3. Therefore, G′′ is

L′′-colorable by Proposition 2.6. And hence G′[X ] is L′|X -colorable.

Combine all discussions above, we have shown that Theorem 3.1 holds.

Theorem 3.2 Ch(K6,3,2∗(k−6),1∗4) = k, where k ≥ 6.

Proof For G = K6,3,2∗(k−6),1∗4, write its k parts with V1 = {x1, x2, x3, x4, x5, x6}, V2 =

{y1, y2, y3}, Ui = {ui, vi} for i = 1, 2, . . . , k − 6, Wi = {wi} for i = 1, 2, 3, 4. We will use

induction on k. If k = 6, by Theorem 3.1, we are done. Suppose that k ≥ 7, and Theorem 3.2 is

true for smaller value of k. By contradiction, assume that Ch(K6,3,2∗(k−6),1∗4) 6= k, and L is a

list assignment of G such that G is not L-colorable.

Claim 3.5 L(ui) ∩ L(vi) = Φ for every 1 ≤ i ≤ k − 6.

Otherwise, suppose that there exists a color a ∈ L(ui) ∩ L(vi). Then assign a to both ui

and vi, and apply induction to G − Ui and L − a. Thus we can obtain an L-coloring of G, a

contradiction.

Let A be the largest subset of V1 such that
⋂

x∈A L(x) 6= Φ. Then we know that 2 ≤ |A| ≤ 5

by Propositions 2.2 and 2.3. Choose a color c1 ∈
⋂

x∈A L(x) to color the vertices in A. Let

G′ = G − A, L′ = L − c1. As G is not L-colorable, G′ is not L′-colorable. In particular,

G′ with L′ does not satisfy Hall’s condition. Let X be a maximal subset of V (G′) such that

|L′(X)| < |X |. In the following, we will prove that G′[X ] is L′|X -colorable. Then G′ is L′-

colorable by Proposition 2.1. Thus we obtain a contradiction.

By the maximality of A, we have |L′(x)| = k for every x ∈ V1\A. And by Proposition

2.2 we know that |L′(yi)| ≥ k − 1 for i = 1, 2, 3, and in {|L′(y1)|, |L
′(y2)|, |L

′(y3)|} there exists

at least one being of k. Without loss of generality, let |L′(y1)| ≥ k − 1, |L′(y2)| ≥ k − 1 and

|L′(y3)| = k. And we know |L′(ui)| ≥ k − 1, |L′(vi)| ≥ k − 1 and |L′(ui) ∪ L′(vi)| ≥ 2k − 1, for

i = 1, 2, . . . , k − 6, by Claim 3.5. We also know |L′(wi)| ≥ k − 1 for i = 1, 2, 3, 4.

Claim 3.6 |X ∩ Ui| ≤ 1 for every i = 1, 2, . . . , k − 6.

Otherwise, by Claim 3.5, 2k − 1 ≤ |L′(X)| < |X | ≤ |V (G′)| ≤ 2k − 1, a contradiction.

By Claim 3.6, for every zi ∈
⋃

1≤i≤k−6(X ∩ Ui), choose a color bi from L′(zi) and assign it

to zi such that b1, b2, . . . , bt are pairwise different, where t = |
⋃

1≤i≤k−6(X ∩Ui)|, 0 ≤ t ≤ k− 6.

Let G′′ = G′ − (
⋃

1≤i≤k−6 Ui), X ′ = X\(
⋃

1≤i≤k−6(X ∩ Ui)), L′′ = L′ − {b1, b2, . . . , bt}. We

only need to prove G′′[X ′] is L′′|X′ -colorable. Note that in V (G′′), |L′′(x)| ≥ k − t ≥ 6 for

every x ∈ V1\A, |L′′(y1)| ≥ k − 1 − t ≥ 5, |L′′(y2)| ≥ k − 1 − t ≥ 5, |L′′(y3)| ≥ k − t ≥ 6, and

|L′′(wi)| ≥ k − 1 − t ≥ 5 for i = 1, 2, 3, 4.

Finally, in the proof of Theorem 3.1, replace G′[X ] by G′′[X ′] and L′ by L′′, we can show

that G′′[X ] is L′′|X′ -colorable similarly.
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Remark Though we have only proved that Ch(Ks+2,3,2∗(k−s−2),1∗s) = k in this paper for

s = 4, and in another paper for s = 2, 3 (from Theorem 1.3 we know that the above equality

holds for s = 1), we believe that Ohba’s conjecture can be proved for complete multipartite

graphs Ks+2,3,2∗(k−s−2),1∗s (s ≥ 1) and Km1,m2,2∗(k−s−2),1∗s (m1 + m2 + 2r + s ≤ 2k + 1) by

using the same method of this paper.
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