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Abstract: This paper deals with the existence of positive solutions for the problem







(Φp(x
(n−1)(t)))′ + f(t, x, . . . , x(n−1)) = 0, 0 < t < 1,

x(i)(0) = 0, 0 ≤ i ≤ n − 3,

x(n−2)(0) − B0(x
(n−1)(0)) = 0, x(n−2)(1) + B1(x

(n−1)(1)) = 0,

where Φp(s) = |s|p−2s, p > 1. f may be singular at x(i) = 0, i = 0, . . . , n − 2. The proof is
based on the Leray-Schauder degree and Vitali’s convergence theorem.
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1. Introduction

Let J = [0, 1], R− = (−∞, 0), R+ = (0,∞), and R0 = R \ {0}.

We investigate the existence of positive solutions for singular boundary value problem (BVP)

(Φp(x
(n−1)(t)))′ + f(t, x(t), . . . , x(n−1)(t)) = 0, 0 < t < 1, (1.1)

x(i)(0) = 0, 0 ≤ i ≤ n−3, x(n−2)(0)−B0(x
(n−1)(0)) = 0, x(n−2)(1)+B1(x

(n−1)(1)) = 0, (1.2)

where n ≥ 2, and the nonlinear term f satisfies local Carathédory conditions on J × D(f ∈

Car(J × D)) with

D = R+ × · · · × R+
︸ ︷︷ ︸

n−2

×R,

and may be singular at x(i) = 0, i = 0, . . . , n − 2.

Definition 1.1 A function x ∈ ACn−1(J) (i.e. x has absolutely continuous (n− 1)st derivative

on J) is said to be a solution of BVP (1.1), (1.2), if x(i)(t) > 0 on (0, 1] for 0 ≤ i ≤ n− 2, and x

satisfies the boundary condition (1.2) and the equation (1.1) a.e. on J .
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This paper is mainly motivated by two aspects. On the one hand, when nonlinear term f

has no singularity, many excellent results have been obtained, please see [1],[5]. For example, He

and Ge in [5] studied the following boundary value problem

{
(g(u′))′ + e(t)f(u) = 0,

u(0) − B0(u
′(0)) = 0, u(1) + B1(u

′(1)) = 0,
(1.3)

where f ∈ C([0,∞), [0,∞)). They proved that, under some assumptions, BVP (1.3) has at least

one or two positive solutions. On the other hand, when nonlinearity f may be singular in phase

variables, there are few papers on the existence results for boundary value problem. So far,

singular boundary value problem for differential equations with Lidstone and (n, p) boundary

conditions have been studied by Agarwal et al., see [3], [4].

To the best of our knowledge, the solvability of boundary value problem (1.1), (1.2) has not

been studied till now. The purpose of this paper is to establish an existence result for problem

(1.1), (1.2). Our method is based on Leray-Schauder degree theory and Vitali’s convergence

theorem. The approaches to estimate a priori bound of the solutions to boundary value problem

(1.1), (1.2) are different from the corresponding ones of the past work [1], [2], [3] and [4].

From now on, ‖x‖0 = max{|x(t)| : t ∈ J} stands for the norm in C0(J). For any measurable

set M ⊂ R, µ(M) denotes the Lebesgue measure of M.

The following assumptions imposed upon the function in (1.1) will be used in the paper:

(H1) f ∈ Car(J × D) and there exist nonnegative functions ϕ ∈ L1(J), qi ∈ L∞(J), i =

0, . . . , n−2, ϕ(t) 6≡ 0, hj ∈ C(J×R), j = 0, . . . , n−1, and non-increasing nonnegative function

ωi ∈ L1(R+), 0 ≤ i ≤ n − 2 such that for (t, x) ∈ J × D,

f(t, x0, . . . , xn−1) = ϕ(t) +
n−2∑

i=0

qi(t)ωi(|xi|) +
n−1∑

i=0

hi(t, xi),

and hi satisfies

lim
|xi|→∞

sup
t∈[0,1]

hi(t, xi)

Φp(|xi|)
= αi ≥ 0, αi ∈ (0, 1), 0 ≤ i ≤ n − 1, (1.4)

ωi satisfies

ωi(xy) ≤ Λωi(x)ωi(y) for x, y ∈ (0,∞), Λ > 0 is a positive constant. (1.5)

∫ 1

0

ωi

(∫ t

0

(t − s)n−3−is(1 − s)ds

)

dt < ∞, 0 ≤ i ≤ n − 3,

∫ 1

0

ωn−2(s(1 − s))ds < ∞. (1.6)

(H2) Bi(v), i = 0, 1 are both nondecreasing, continuous, odd functions defined on (−∞,∞). At

least one of them satisfies the condition that there exists m > 0, such that 0 ≤ Bi(v) ≤ mv.

2. Auxiliary results

Lemma 2.1 Let ϕ ∈ L1(J) be nonnegative and ϕ(t) 6≡ 0. Suppose that x ∈ ACn−1(J) satisfies

(1.2) and

0 ≤ −(Φp(x
(n−1)(t)))′, t ∈ J. (2.1)
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Then we have for t ∈ J ,

x(i)(t) ≥ ‖x(n−2)‖

∫ t

0

(t − s)n−3−is(1 − s)ds, 0 ≤ i ≤ n − 3, x(n−2)(t) ≥ ‖x(n−2)‖t(1 − t).

Lemma 2.2 Let ϕ ∈ L1(J) be nonnegative and ϕ(t) 6≡ 0. Then there exists a positive constant

c = c(ϕ) such that for each function x ∈ ACn−1(J) satisfying (1.2) and

ϕ(t) ≤ −(Φp(x
(n−1)(t)))′ for a.e. t ∈ J,

the estimate ‖x(n−2)‖ ≥ c holds.

Remark 2.1 Suppose (H1) and (H2) hold. It follows from Lemmas 2.1 and 2.2 that for any

solution of BVP (1.1), (1.2), there exists c = c(ϕ) such that

|x(i)(t)| ≥
c

(n − 3 − i)!

∫ t

0

(t − s)n−3−is(1 − s)ds, i = 0, . . . , n − 3, x(n−2)(t) ≥ ct(1 − t).

For each m ∈ N , define Xm and fm ∈ Car(J × Rn) by the formulas

Xm(u) =

{
u, for u ≥ 1

m
,

1
m

, for u < 1
m

,

and

fm(t, x0, x1, . . . , xn−1) = ϕ(t) +

n−2∑

i=0

qi(t)ωi(Xm(xi)) +

n−1∑

i=0

hi(t, xi) (2.2)

for (t, x0, . . . , xn−1) ∈ J × Rn. Hence

0 < ϕ(t) ≤ fm(t, x0, . . . , xn−1) ≤ ϕ(t) +

n−2∑

i=0

qi(t)ωi(|xi|) +

n−1∑

i=0

hi(t, xi) (2.3)

for a.e. t ∈ J and each (x0, . . . , xn−2, xn−1) ∈ Rn−1
0 × R.

Consider auxiliary regular differential equation

(Φp(x
(n−1)(t)))′ + fm(t, x(t), . . . , x(n−1)(t)) = 0 (2.4)

and

(Φp(x
(n−1)(t)))′ + λfm(t, x(t), . . . , x(n−1)(t)) = 0, λ ∈ [0, 1] (2.5)

depending on the parameter m ∈ N .

Lemma 2.3 Let x be a solution of the following BVP

{
(Φp(x

(n−1)(t)))′ + h(t) = 0, 0 < t < 1,

x(i)(0) = 0, 0 ≤ i ≤ n − 3, x(n−2)(0) − B0(x
(n−1)(0)) = 0, x(n−2)(1) + B1(x

(n−1)(1)) = 0.

(2.6)

Then x can be uniquely expressed as

x(t) =

∫ t

0

(t − s)n−3

(n − 3)!

{

B0(σx) +

∫ s

0

Φq

[

Φp(σx) −

∫ r

0

h(θ)dθ

]

dr

}

ds. (2.7)
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where σx satisfied

B0(σx) +

∫ 1

0

Φq

[

Φp(σx) −

∫ r

0

h(θ)dθ

]

dr + B1 ◦ Φq

[

Φp(σx) −

∫ 1

0

h(θ)dθ

]

= 0.

Lemma 2.4 Let m ∈ N . If there exists a positive constant K such that

‖x(j)‖0 ≤ K, 0 ≤ j ≤ n − 1 (2.8)

for any solution x of BVP (1.2), (2.5) with λ ∈ [0, 1], then BVP (1.2), (2.4) has a solution x

satisfying (2.8).

For convenience, we write

Γ :=

∫ 1

0

(

ϕ(s) + Λ

n−3∑

i=0

qi(s)ωi

(
c

(n − 3 − i)!

)

ωi

(∫ s

0

(s − θ)n−3−iθ(1 − θ)dθ

)

+

qn−2(s)Λωn−2(c)ωn−2(s(1 − s))) ds.

Lemma 2.5 Let assumptions (H1), (H2) be satisfied. Furthermore, suppose the following

inequality (H3)
∑n−2

i=0 αiΦp

(
m+1

(n−2−i)!

)

+ αn−1 < 1 holds. Then there exists a positive constant

P (independent of m) such that ‖x(j)‖0 ≤ P, 0 ≤ j ≤ n−1 for any solution x of BVP (1.2), (2.5)

with m ∈ N .

Proof Let x be a solution of BVP (1.2), (2.5) for some m ∈ N .

Step 1. It follows from (H2) that at least one of Bi satisfies Bi(x) ≤ mx. Without loss of

generality, we suppose B0(x) ≤ mx holds, so

x(n−2)(t) = B0(x
(n−1)(0)) +

∫ t

0

x(n−1)(s)ds ≤ (m + 1)‖x(n−1)‖0, t ∈ J.

x(i)(t) =

∫ t

0

(t − θ)n−3−i

(n − 3 − i)!
x(n−2)(θ)dθ ≤

m + 1

(n − 2 − i)!
‖x(n−1)‖0, t ∈ J, 0 ≤ i ≤ n − 2. (2.9)

Step 2. There exists a positive constant P such that ‖x(n−1)‖0 ≤ P.

Let ε > 0 be sufficiently small such that
∑n−2

i=0 (αi +ε)Φp

(
m+1

(n−2−i)!

)

+(αn−1 +ε) < 1. Then

for this ε > 0, there is a δ > 0 such that

|hi(t, xi)| < (αi + ε)Φp(|xi|) uniformly for t ∈ [0, 1], and |xi| > δ, 0 ≤ i ≤ n − 2. (2.10)

Let, for i = 0, . . . , n − 1,

∆1,i = {t : t ∈ [0, 1], |xi(t)| ≤ δ}, ∆2,i = {t : t ∈ [0, 1], |xi(t)| > δ}, hδ,i = max
t∈[0,1],|xi|≤δ

hi(t, xi).

There exists ξ ∈ [0, 1] such that x(n−1)(ξ) = 0 since −(Φp(x
(n−1)(t)))′ ≥ ϕ(t) ≥ 0 and boundary

condition (1.2).
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On the one hand, integrating on both sides of (2.5) from t to ξ, (t ∈ [0, ξ]), using (2.3),

Remark 2.1, (2.9) and (2.10) one obtains

Φp

(

x(n−1)(t)
)

≤Γ +
n−1∑

i=0

hδ,i +
n−2∑

i=0

(αi + ε)Φp

(
m + 1

(n − 2 − i)!

)

Φp(‖x
(n−1)‖0)+

(αn−1 + ε)Φp(‖x
(n−1)‖0) for t ∈ [0, ξ]. (2.11)

The assumptions of this theorem now imply the result.

On the other hand, integrating both sides of (2.5) from ξ to t (t ∈ [ξ, 1]), similar to the

above process, we obtain (2.11) for t ∈ [ξ, 1]. Thus ‖x(n−1)‖0 ≤ P. By (H1) we have P < ∞.

Step 3. By Step 1 and Step 2, it is clear that ‖x(i)‖0 ≤ P , i = 0, 1, . . . , n − 1. The proof is

complete.

Lemma 2.6 Let assumptions (H1), (H3) be satisfied. Suppose that {xm} is a sequence of

solutions to BVP (2.4), (1.2) for each m ∈ N . Then the sequence

{fm(t, xm(t), . . . , x(n−1)
m (t))} ⊂ L1(J)

is uniformly absolutely continuous on J , that is, for each ε > 0 there exists δ > 0 such that

∫

M

fm(t, xm(t), . . . , x(n−1)
m (t))dt < ε

for any measurable set M ⊂ J , µ(M) < δ.

3. Existence results

Theorem 3.1 Suppose that the assumptions (H1), (H2) and (H3) are satisfied. Then there

exists at least one positive solution for BVP (1.1), (1.2).

Proof For each m ∈ N , there exists a solution xm of BVP (1.2), (2.4) by Lemmas 2.4 and 2.5.

Consider the solution sequence {xm}. Lemma 2.5 shows that {xm} is bounded in Cn−1(J). We

will show {xm} is equi-continuous on J . For t1, t2 ∈ J, t1 < t2, we have

∣
∣
∣Φp(x

(n−1)
m (t2)) − Φp(x

(n−1)
m (t1))

∣
∣
∣ ≤

∫ t2

t1

fm(s, xm(s), . . . , x(n−1)
m (s))ds.

Lemma 2.6 implies that {fm(t, xm(t), . . . , x
(n−1)
m (t))} is uniformly absolutely continuous on J .

This implies that the sequence
{

Φp

(

x
(n−1)
m

)}

m∈N0

is equi-continuous on J , that is, {x
(n−1)
m } is

equi-continuous on J . Thus, Arzelà-Ascoli theorem guarantees the existence of a subsequence

(we still denote it as {x
(i)
m }) converging in Cn−1(J), i = 0, . . . , n − 1 to x ∈ Cn−1(J). Clearly, x

satisfies the boundary condition (1.2). Lemmas 2.1 and 2.2 mean that

x(i)
m (t) ≥

c

(n − 3 − i)!

∫ t

0

(t − s)n−3−is(1 − s)ds, 0 ≤ i ≤ n − 3,

x(n−2)
m (t) ≥ ct(1 − t), t ∈ J.

(3.1)
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Lemma 2.2 means that c is independent of m, so (3.1) gives that

x(i)(t) ≥
c

(n − 3 − i)!

∫ t

0

(t − s)n−3−is(1 − s)ds, 0 ≤ i ≤ n − 3, x(n−2)(t) ≥ ct(1 − t), t ∈ J.

Finally, let us show that x ∈ ACn−1(J) fulfills (1.1) a.e. on J .

From fm ∈ Car(J × Rn), and their construction, it follows that there exists M ∈ J ,

µ(M) = 0 such that fm(t, ·, . . . , ·) is continuous on Rn for each t ∈ J \M, which implies that

lim
k→∞

fm(t, xm(t), . . . , x(n−1)
m (t)) = f(t, x(t), . . . , x(n−1)(t))

for t ∈ J\M∪{′}. By Lemma 2.6 {fm(t, xm(t), . . . , x
(n−1)
m (t))} is uniformly absolutely continuous

on J . By the Vitali’s Convergence theorem, f ∈ L1(J) and for t ∈ J ,

lim
m→∞

∫ t

0

fm(s, xm(s), . . . , x(n−1)
m (s))ds =

∫ t

0

f(s, x(s), . . . , x(n−1)(s))ds.

Define the operator L : Cn−1([a, b]) → Cn−1([a, b]) by

(Lu(n−2)
m )(t) = u(n−2)

m (a) +

∫ t

a

Φq

(

σum
−

∫ s

0

fm(r, um(r), . . . , u(n−1)
m (r))dr

)

ds,

where σum
satisfies

∫ b

a

Φq

(

σum
−

∫ s

0

fm(r, um(r), . . . , u(n−1)
m (r))dr

)

ds = u(n−2)
m (b) − u(n−2)

m (a).

Let um → u uniformly on [a, b]. If we show limm→∞ σum
= σu, then this together with the

continuity of Φq implies that L : C[a, b] → C[a, b] is continuous. First notice

∫ b

a

Φq

(

σum
−

∫ s

0

fm(r, um(r), . . . , u(n−1)
m (r))dr

)

ds−

∫ b

a

Φq

(

σu −

∫ s

0

f(r, u(r), . . . , u(n−1)(r))dr

)

ds

= u(n−2)
m (b) − u(n−2)

m (a) − u(n−2)(b) + u(n−2)(a).

The mean value theorem for integrals then implies that there exists ηm ∈ [a, b] with

(b − a)

[

Φq

(

σum
−

∫ ηm

0

fm(r, um(r), . . . , u(n−1)
m (r))dr

)

ds −

Φq

(

σu −

∫ ηm

0

f(r, u(r), . . . , u(n−1)(r))dr

)

ds

]

= u(n−2)
m (b) − u(n−2)

m (a) − u(n−2)(b) + u(n−2)(a).

Since u
(i)
m → u(i) uniformly on [a, b], i = 0, . . . , n − 1, we have limm→∞ σum

= σu.

Now u
(i)
m → u(i) uniformly on [a, b], i = 0, . . . , n − 2, and Lum = um, yields Lu = u, i.e.

(Φp(u
(n−1)(t)))′ + f(t, u(t), . . . , u(n−1)(t)) = 0, a ≤ t ≤ b.
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We can do this argument for each t ∈ (0, 1) and so

(Φp(u
(n−1)(t)))′ + f(t, u(t), . . . , u(n−1)(t)) = 0,

for a.e. t ∈ (0, 1). Therefore, u is a solution of BVP (1.1), (1.2). 2

Remark 3.1 If we replace boundary condition (1.2) by

x(i)(0) = 0, 0 ≤ i ≤ n − 3, x(n−1)(0) = 0, x(n−2)(1) + B1(x
(n−1)(1)) = 0, (3.2)

or

x(i)(0) = 0, 0 ≤ i ≤ n − 3, x(n−2)(0) − B0(x
(n−1)(0)) = 0, x(n−1)(1) = 0, (3.3)

under the assumptions (H1)–(H3), there exists at least one positive solution to BVP (1.1), (3.2)

and BVP (1.1), (3.3), respectively.
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