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Abstract: The multiple vector-valued wavelet packets are defined and investigated. A proce-
dure for constructing the multiple vector-valued wavelet packets is presented. The properties
of multiple vector-valued wavelet packets are discussed by using integral transformation and
operator theory. Finally, new orthogonal bases of L?(R, C***) is constructed from the orthog-
onal multiple vector-valued wavelet packets.
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1. Introduction

In order to improve the localization of the frequency field of wavelet bases, Coifman and
Meyer firstly introduced the notion of orthogonal univariate wavelet packets. They have been

2] Bl and so on.

applied to signal processing!!), image compression!?, solving integral equations
Yang!¥ constructed a-scale orthogonal multiwavelet packets which are more flexible in applica-
tions. Xia and Suter[’) introduced the notion of multiple vector-valued wavelets and investigated
the construction of multiple vector-valued wavelets. Multiple vector-valued wavelets are a class

(6]

of generalized multiwavelets!®l. However, multiwavelets and multiple vector-valued wavelets are

different in the following sense. For example, prefiltering is usually required for discrete multi-

[7l but not necessary for discrete multiple vector-valued wavelet transforms.

wavelet transforms
Video image and medical CT formation are nevertheless multiple vector-valued signals. Thus, it
is necessary to extend the notion of orthogonal wavelet packets to the case of orthogonal multi-
ple vector-valued wavelets. Inspired by [4] and [5], we shall give the definition of the orthogonal
multiple vector-valued wavelet packets and investigate their properties.

Throughout this paper, let R and C be sets of all real and complex numbers, respectively.
Let Z stand for all integers and Zy = {z: 2> 0, z € Z}. Assume s is a constant and 2 < s € Z.
Wiite by (2(2)* = {Q: Z — €, [Qll2 = (X% -y Yhes la, () )} < +oc}. By L,
and O, we denote the s x s identity matrix and zero matrix, respectively. The space L2(R, C***)

is defined as the set of all multiple vector-valued function H(t), i.e.,
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hi1(t) hia(t) -+ his(t)
L0y = ey = | O B0 a0 S R ult) € R,
hs1(t) hsa(t) -+ hss(t)

For any H € L2( ,C57S) || H|| denotes the norm of H, i.e., [ H|| := (35 1=y [ [hr, 1(8)[2dE) /2.
Its integration [, H(t)dt is defined as [, H(t)dt := ([ hx(t) dt )} ;—;, and the Fourier transform
of H(t) is defined as H =[x H exp{—zwt} dt, we R. For two multlple vector-valued func-
tions H, G € L*(R, C’SXS) their symbol inner product is defined to be ( H,G') fR )*dt.

*

Here and afterwards, * means the transpose and the complex conjugate.

Definition 1 A multiple vector-valued function H(t) € L*(R,C***) is said to be orthogonal, if

its integer translations satisfy
<H(')7H('_k)>:60,k187 ke Z, (1)
where dg, i is the Kronecker symbol, i.e., 6o, = 1 when k = 0 and ¢, , = 0 when k # 0.

Definition 2 We say a sequence of multiple vector-valued functions { Hy(t)}rez € U C
L3(R,C**®) is an orthogonal basis of U if it satisfies formula (1) and for any T'(t) € U, there

exists a unique sequence { Py }rcz, of which each element is an s X s matrix such that

D(t)=> PuHi(t), t€R.
keZ
This paper is organized as follows: In Section 2, we briefly recall the concept of vector-
valued multiresolution analysis. In Section 3, we give our main result, the definition of the
multiple vector-valued wavelet packets and their properties. In the final section, new orthogonal

bases of L?(R,C***) will be constructed.

2. Vector-valued multiresolution analysis

We begin with the generic setting of a vector-valued multiresolution analysis of L2(R, C***).
Let Y (t) € L?(R, C***) satisfy the following refinement equation:

Y(t)=4-) A4t —k), (2)
keZ
where {Ag}rez € (2(Z)%** is a finitely supported sequence of s X s matrices.

Without loss of generality, we assume Y (w) is continuous at the origin and 1 (0) = L.
Define a closed subspace V; C L?(R, C**¢) by

V; = clospz(g,coxe)(Span{ Y(47 - —k): k€ Z}), j€ Z. (3)

If the closed subspace sequence { V,},cz defined in (3) satisfies the following conditions:
(i). ---CV_1CVgCViC--
(iD). Njez Vi ={O0}; U,z Vj is dense in L*(R, C*%);
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(ii). H(-) e Vj«<=H(4) € V11, Vj € Z;

(iv). The families {Y (¢t — k), k € Z} forms an orthogonal basis for Vy;
then we say Y(¢) in (2) generates a vector-valued multiresolution analysis {{ V}cz, T(¢)} and
T(t) is called a multiple vector-valued scaling function.

Let W3, j € Z, be the orthocomplementary space of V; in V;; and there exist three
multiple vector-valued function T, (t) € L?(R,C**%),v = 1,2, 3, such that their translations and

dilations form a Riesz basis of W, i.e.,
W; = clospzg,cexs)(Tw(4 - —k): k€ Z, v=1,2,3), j€ Z (4)

Since I',(t) € W C V1, 1 = 1,2, 3, there exist three finitely supported sequences of s X s
matrices {B](;)}kez € (%(Z)%** such that T',(t) =4 -3, B,(CZ)TZ(ALt —k),v=1,2,3.
If Y(t) € L?(R,C%*%) is an orthogonal multiple vector-valued scaling function, then by
Definition 1, we have
(Y(), T(-=n)) =100,n1s, neZz (5)

We say that T',(t) € L?(R,C**%),2 = 1,2, 3, are orthogonal multiple vector-valued wavelet

functions associated with the orthogonal multiple vector-valued scaling function Y (¢) if
(Y(), T(-—=n))=0, 1=1,23, neZ, (6)
and {T,(t — k), k € Z,2=1,2,3} is an orthogonal basis of Wg. Then, we have
(T.(1), T,)(- = n)) = do.nls, 2, 7€ {1,2,3}, n € Z. (7)

Lemma 1 Let H(t) € L*(R,C**®). Then H(t) is an orthogonal multiple vector-valued function
if and only if
> H(w+20m)H(w + 2I7)* =1, (8)
ez

Proof If H(t) is an orthonormal function, then we get from (1) that

ol = (HC) L G =) = 5 [ @) explibw)de
1 [ 5 ~ . .

=5 ; IGZZ H(w+ 2lm)H (w + 2I7)* - exp{ikw}dw
which implies (8). The converse is obvious. O
By Lemmal, Formulas (5)—(7) and Fourier transformation, we can obtain the following

Lemma 2.

Lemma 25! Let Y(t) € L?(R,C***) be an orthogonal multiple vector-valued scaling function.
Assume T,(t) € L?(R,C**®), 1 = 1,2,3, are orthogonal multiple vector-valued wavelet functions
associated with Y (t). Then

3

> Alw+ (om)/2] Alw+ (om)/2]" =1,, wER. (9)

o=0
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3
> Alw+(om)/2| B w+ (o7)/2]" =0, 1=1,2,3, weE R. (10)
o=0
3
> BYw+ (om)/2) BV [w + (om)/2]* =6, ,Te,1, 7 =1,2,3. (11)
o=0

We now present multiple vector-valued Meyer wavelets as a special family of multiple vector-

valued wavelets. For details on scalar-valued Meyer wavelets, see [8]. Let

157 |w| < 2?#’
T(w) =14 cos[Tf(Ew|—1)]AW), 2 <|w| <4, (12)
0, otherwise,

where A(w) is paraunitary and A(2F) = A(—2F) = I, and f(t) is a scalar-valued smooth function
such that

f®) = and f(t)+ f(1—¢t)=1, for ¢t€(0,1).
Then, after computation, for w € R, we obtain that }°, _, T(w + 2km) T (w + 2km)* = I,.
By Lemmal, Y(t) is orthogonal. This implies that the multiple vector-valued functions
T(t), defined in (12), is a multiple vector-valued scaling function. Similar to the scalar-valued

[8,p138]

Meyer wavelets the corresponding lowpass filter A(w) is

Aw) =" T(2w+2kr)), weR.

keZ

By using paraunitary vector filter theory!®!| we can obtain three filter functions BM® (w), B (w),
B®(w) satisfying (10) and (11). Let T',(w) = B®(w/4)Y (w/4), 1 = 1,2,3. Then, T,(t), 1= 1,2, 3,

are multiple vector-valued Meyer wavelets!®!.

3. The properties of multiple vector-valued wavelet packets

Xia and Suterl® introduced the multiple vector-valued wavelets and studied the construction
of the multiple vector-valued wavelets. In this section, we shall define the multiple vector-valued

wavelet packets and discuss their properties. First, we set
To(t) =Y(t), @,()=T,0t); P”=4, PY=BY =123 keZ

Definition 3 The family of multiple vector-valued functions { Wy, (t), n = 0,1,2,..., A =
0,1,2,3} is called a multiple vector-valued wavelet packets with respect to the orthogonal mul-

tiple vector-valued scaling function Y (t) where

Tia(t)=4-> PV, (4t — k), A=0,1,2,3. (13)
keZ
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By implementing the Fourier transform for the both sides of (13), we have

Uy (w) = PV (w/4) ¥, (w/4), A=0,1,2,3, (14)
where
PV (w) =" PV - exp{~ikw}, weR. (15)
keZ

Then PO (w) = A(w), PW(w) = BY(w), » = 1,2,3. Formulas (9)-(11) can jointly be written

as

3
ZP<1>(M+%)P<>( +%) =6, 1 7€{0,1,2,3}, weR. (16)

It is evident that Formula (16) is equivalent to
2 1
ST P (P = 2000kl 1,0€{0,1,2.3}, k€2 (17)
ocZ

In the following, we will discuss properties of the multiple vector-valued wavelet packets.

Theorem 1 If { W, (t), n € Z,} are multiple vector-valued wavelet packets with respect to the

orthogonal multiple vector-valued scaling function Y (t), then for every n € Z,, we have
<‘Iln(_])7‘11n(_k)>: J'-,k]:sv jvkEZ' (18)

Proof (i) Formula (18) follows from (5) for the case of n = 0. (ii) Assume that Formula (18)
holds, for the case of 0 < n < 4%, where L is a positive integer. Then, when 4 < n < 45+,
we have 4“1 < [2] < 4% where [p] = max{v € Z, v < p}. Order n = 4[2] + A\, A =0,1,2,3.

By induction assumption and Lemma 1, we obtain

<‘I’[%](- —1J), ‘I’[%](- — k)> = §;, 1l = Z \Il[%](w + 2171’)‘1’[%](&] +2im)* =1,. (19)
lez

According to Lemma 1 and Formulas (14), (16), (19), we have

(¥n ( —k))
= /\Il * - exp{—i(j — k)w}dw
T @ P i(i—k)

= PO ()T ()T —i—kwq
2%2;/% ()41 (4T (£) PO(E)* e P

= 3 W n)(w + 2m) ¥ a)(w + 27)* PO (W) - e 4Ry

4 [4]

™

ez

= 3
_1 / S PO (w Ty PN (4 TEy - e iy
s 0 o—0 2 2

= 5, L.
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Theorem 2 If{ ¥, (t), n € Z;} are multiple vector-valued wavelet packets with respect to the

orthogonal multiple vector-valued scaling function Y (t), then for every n € Z,, we have
<\Il4n+)\(') ) ‘Il4n+#(' - k)> = 5>\,,LL 50,]6157 Av B = {07 15 27 3}5 k €Z (20)

Proof By Formulas (14) and (16), we get that

1 W, W, o~ W w )
. I - (G Yad - TNEp(p) (x| ikw
(Farr(): Fanen = 1)) = 5= [ POCDELD T PIE) - ™o
1 8 w ~ W ~
= — pPM(Z U, (= +2r) ¥, 2m) L P (Z)* gihw g
5 [, PO Bal o+ 20m) B+ 20m) P ()7 e d

27
= —/ PN (w)PW (w)* - exp{dikw} dw
0

o=0
2 3
=— / O, u I - exp{4ikw} dw = 0y, . 0o, 1 Ls.
™ Jo
Theorem 3 For any m, n € Zy and k € Z, we have
<‘I’m() ) \I’n( - k)> = 5m,n 50,kIs' (21)

Proof For m = n, (21) follows by Theorem 1. Without loss of generality, we suppose m > n for
the case of m # n. Rewrite m, n as m = 4[m/4]+ X1, n = 4[n/4]+ p1 where A1, 1 € {0,1,2,3}.
(i). If [m/4] = [n/4], then A1 # pq. Formula (21) follows from (14),(16) and (19), since

[z (w )‘f’[%]( VP (W)* - exp{dikw}dw

»Is

(¥ (=) = = [ PO

27
= _/ P(Al) Z (2] (w+ 2i7) ‘I’[%](w + 2l7)* }P(#l)(w)* ik g,
0 ez

T 4

z 3
2
2 /2 S PO (w+ Ty pln) (w + T0y* - expldikw} dw

2 iy
— /2 Oxni, pa Ls - exp{4ikw}dw = 0O
T™Jo

(if). If [] # [§], then set [m/4] = 4[[m/4]/4] + A, [n/4] = 4[[n/4]/4] + pa2, A2, p2 €
{0,1,2,3}. If [[m/4]/4] = [[n/4]/4] Formula (21) follows similar to the case (i); If [[m/4]/4] #
[[2/4)/4], then we order [ [m/4]/4) = 4{[ [m/A4)/4]+Xs, [[n/4]/4] = 4 [[o/44)/4]+15, Do, i5 €
{0,1,2,3} once more. Thus, after taking finite times steps (denoted by k ), denoting by A, =

~ = —~
[---[m/4] - /4], pe = [ |-+ [n/4]---]/4], we obtain A\, u, € {0,1,2,3} and
* A =g =1, or A;=p, =2, or A = iy = 3;

* % A =1, =0, =2,u, =0, or A\ =2,,=1 or A\;=3,u, =0,
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AH:?)? /1%:17 or )\m:?’u Mm:2

For the case «, (21) fillows similarly as the case (i). As for the case %, we get from (6) and
(7) that Y,c, ®a, (w +207) ¥, (w + 2i7)* = O, w € R. Thus

™
w
= / P()\l) m/4]( ) ‘I’[n/4](—) P(”l)( )* - exp{ikw} dw =
o2 4
- / HP(/\ ) L2\ (i)‘i’ (i) (ﬁP(Nv)( ))* - exp{ikw} dw
R 40 4 4 o=1
1 4~+1ﬂ, K o y
_ (Ao ) T (po) (N \* | Likw
o HP Z; +2zw)\1: ( + 2Im)* )(L[lp (3))" - e™dw
1
=5 H pOe > H P m “ . exp{ikw} dw = O.
T Jo
In a word, for any m, n € Z; and k € Z, Formula (21) holds. O

Lemma 3 If {¥,(¢t), n =0,1,2...} are multiple vector-valued wavelet packets with respect to

the orthogonal multiple vector-valued scaling function Y (t), then for every n € Z+, we have

v, ZZ PO Wanis(t—1), ke Z. (22)
o=01cZ
Proof
1 3 3
12 2 B Waniat =) = D0 D (A7) Y P Wa(dt — 4l j)
o=01eZ o=0 leZ j€Z
3 3
=S NS B P @t —m) = ST S (P Py, (4t — m)
o=01€Z meZ meZ o=0 1€z
= Okl Wn (4t —m) = W, (42 — k).
mezZ

4. Orthogonal vector-valued wavelet bases of L?(R,(C**%)

In this section we shall construct orthogonal vector-valued wavelet bases of L?(R, C**%) b
using the multiple vector-valued wavelet packets.

We start from introducing a dilation operator (Dh)(t) = h(4t) where h(t) € L*(R, C**%).
ForV Q C L*(R, C***) and ¥V n € Z, denote DQ by DQ = {Dh : h € 2}, and define

Q, = =D QrUu(t — k), {Qr}rez € £3(2)°°}. (23)

keZ

Then Qg = Vo, Q1P N P N3 = W, where @ denotes the orthogonal direct sum.
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For X, YCR,setcX ={c-z:0€R, z€X}, X+Y ={a+y:ze€ X, yeY}. For
a fix positive integer 7, denote by E, = S5 440,1,2,3}, E; = E\E;_1.

Lemma 4 For arbitrary n € Z,, the space D2, can be orthogonally decomposed into spaces
Qinir, A=0,1,2,3, e, DD, = D5 Qunia

Proof By Formulas (13) and (23), we have @i:o Qupir C R, forvVneZ,.
On the other hand, Q4,, Q4n4+1, Qan42 and Q4,13 are orthogonal each other according to
Theorem 2. By Lemma 3, we get

3
1 o) e
T, (4t - k) = 5 S S P ianio(t—1), ke Z
o=010eZ

Therefore, the basis of the space 2, can be linearly represented by the basis of the space

Qunir, A=0,1,2,3. Thus, Q, C @5_, Qunyr. This leads to DR, = B} _, Qappa. O

Theorem 4 The family of multiple vector-valued functions { ¥,,(-— k), n € E., k € Z} forms
an orthogonal basis of D"Wy. In particular, the set { ¥, (- — k), n € Zy, k € Z} constitutes
an orthogonal basis of L?(R, C**®).

Proof By Lemma 4, we get that DQy = Qg @i:o Q,, ie, DVyg =V, P Wy.

It can inductively be proved by using Theorem 2 and Lemma 4 that

D'V, = @ Q,, and DTVO@DTWO = D™V, ie., DW= EB Q,.
nGET nek,

Therefore, the set { ¥,,(- — k), n € E., k€ Z} forms an orthogonal basis of D"W . Moreover

L*(R, C**) = Vo (P D"Wo) = 2 DD P ) = D ..

o<t 0<7t n€eE, nezy
That is, the set { ¥,,(- — k), n € Z,, k € Z} forms an orthogonal basis of L?(R, C**%). O

Theorem 5 For each 7 € Z,\{0}, the family of multiple vector-valued functions { ¥, (47 t —
k), n€ E,, j€Z, k& Z} forms an orthogonal basis of L?(R, C***).

Proof Note that by Theorem 4, { ¥, (t — k), n € E;, k € Z} forms an orthogonal basis of
D™W,. Then for each j € Z, { ¥, (47t — k), n € E,;, k € Z} forms an orthogonal basis of
DJD™W. Hence, For each 7 € Z,\{0},

P DW= DW= DIW,.
Jj€Z JjEZ JjE€EZ

Thus, the family { ®,,(47t — k), n € E;, j, k € Z} forms an orthogonal basis of L*(R, C***).
a
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SEMEEER/IVEE

BRAEL 2, BEX ', FEES
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TE[E LY (R, C**) Wi IESCHE.
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