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1. Introduction

In order to improve the localization of the frequency field of wavelet bases, Coifman and

Meyer firstly introduced the notion of orthogonal univariate wavelet packets. They have been

applied to signal processing[1], image compression[2], solving integral equations[3] and so on.

Yang[4] constructed a-scale orthogonal multiwavelet packets which are more flexible in applica-

tions. Xia and Suter[5] introduced the notion of multiple vector-valued wavelets and investigated

the construction of multiple vector-valued wavelets. Multiple vector-valued wavelets are a class

of generalized multiwavelets[6]. However, multiwavelets and multiple vector-valued wavelets are

different in the following sense. For example, prefiltering is usually required for discrete multi-

wavelet transforms[7] but not necessary for discrete multiple vector-valued wavelet transforms.

Video image and medical CT formation are nevertheless multiple vector-valued signals. Thus, it

is necessary to extend the notion of orthogonal wavelet packets to the case of orthogonal multi-

ple vector-valued wavelets. Inspired by [4] and [5], we shall give the definition of the orthogonal

multiple vector-valued wavelet packets and investigate their properties.

Throughout this paper, let R and C be sets of all real and complex numbers, respectively.

Let Z stand for all integers and Z+ = {z : z ≥ 0, z ∈ Z}. Assume s is a constant and 2 ≤ s ∈ Z.

Write by ℓ 2(Z)s×s = {Q : Z −→ Cs×s, ‖Q‖2 = (
∑s

ı, =1

∑
k∈Z | qı,  (k) |2 )

1
2 < +∞}. By Is

and O, we denote the s×s identity matrix and zero matrix, respectively. The space L2(R, Cs×s)

is defined as the set of all multiple vector-valued function H(t), i.e.,
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L2(R, Cs×s) :=





H(t) :=




h11(t) h12(t) · · · h1 s(t)
h21(t) h22(t) · · · h2 s(t)
· · · · · · · · · · · ·

hs1(t) hs2(t) · · · hs s(t)


 :

t ∈ R, hk l(t) ∈ L2(R),
k, l = 1, 2, . . . , s





.

For any H ∈ L2(R, Cs×s), ‖H‖ denotes the norm of H , i.e., ‖H‖ := (
∑s

k,l=1

∫
R
|hk, l(t)|

2dt)1/2.

Its integration
∫

R H(t)dt is defined as
∫

R H(t)dt := (
∫

R hk,l(t) dt )s
k,l=1, and the Fourier transform

of H(t) is defined as Ĥ(ω) :=
∫

R
H(t) exp{−iωt} dt, ω ∈ R. For two multiple vector-valued func-

tions H, G ∈ L2(R, Cs×s), their symbol inner product is defined to be 〈H, G 〉 :=
∫

R H(t)G(t)∗dt.

Here and afterwards, ∗ means the transpose and the complex conjugate.

Definition 1 A multiple vector-valued function H(t) ∈ L2(R, Cs×s) is said to be orthogonal, if

its integer translations satisfy

〈H(· ), H(· − k) 〉 = δ0, kIs, k ∈ Z, (1)

where δ0, k is the Kronecker symbol, i.e., δ0, k = 1 when k = 0 and δ0, k = 0 when k 6= 0.

Definition 2 We say a sequence of multiple vector-valued functions {Hk(t)}k∈Z ⊂ U ⊂

L2(R, Cs×s) is an orthogonal basis of U if it satisfies formula (1) and for any Γ(t) ∈ U, there

exists a unique sequence {Pk}k∈Z , of which each element is an s × s matrix such that

Γ(t) =
∑

k∈Z

PkHk(t), t ∈ R.

This paper is organized as follows: In Section 2, we briefly recall the concept of vector-

valued multiresolution analysis. In Section 3, we give our main result, the definition of the

multiple vector-valued wavelet packets and their properties. In the final section, new orthogonal

bases of L2(R, Cs×s) will be constructed.

2. Vector-valued multiresolution analysis

We begin with the generic setting of a vector-valued multiresolution analysis of L2(R, Cs×s).

Let Υ (t) ∈ L2(R, Cs×s) satisfy the following refinement equation:

Υ (t) = 4 ·
∑

k∈Z

AkΥ(4 t − k), (2)

where {Ak}k∈Z ∈ ℓ2(Z)s×s is a finitely supported sequence of s × s matrices.

Without loss of generality, we assume Υ̂(ω) is continuous at the origin and Υ̂(0) = Is.

Define a closed subspace Vj ⊂ L2(R, Cs×s) by

Vj = closL2(R,Cs×s)(Span{Υ(4j · −k) : k ∈ Z }), j ∈ Z. (3)

If the closed subspace sequence {Vj}j∈Z defined in (3) satisfies the following conditions:

(i). · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ;

(ii).
⋂

j∈Z Vj = {O} ;
⋃

j∈Z Vj is dense in L2(R, Cs×s);
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(iii). H(·) ∈ Vj⇐⇒H(4·) ∈ Vj+1, ∀j ∈ Z;

(iv). The families {Υ(t − k), k ∈ Z} forms an orthogonal basis for V0;

then we say Υ(t) in (2) generates a vector-valued multiresolution analysis {{V}j∈Z , Υ(t)} and

Υ(t) is called a multiple vector-valued scaling function.

Let Wj, j ∈ Z, be the orthocomplementary space of Vj in Vj+1 and there exist three

multiple vector-valued function Γν(t) ∈ L2(R, Cs×s), ν = 1, 2, 3, such that their translations and

dilations form a Riesz basis of Wj, i.e.,

Wj = closL2(R,Cs×s)〈Γν(4j · −k) : k ∈ Z, ν = 1, 2, 3 〉, j ∈ Z. (4)

Since Γı(t) ∈ W0 ⊂ V1, ı = 1, 2, 3, there exist three finitely supported sequences of s × s

matrices {B
(ı)
k }k∈Z ∈ ℓ 2(Z)s×s such that Γı(t) = 4 ·

∑
k∈Z B

(ı)
k Υı(4 t − k), ı = 1, 2, 3.

If Υ(t) ∈ L2(R, Cs×s) is an orthogonal multiple vector-valued scaling function, then by

Definition 1, we have

〈Υ(·), Υ(· − n) 〉 = δ0, nIs, n ∈ Z. (5)

We say that Γı(t) ∈ L2(R, Cs×s), ı = 1, 2, 3, are orthogonal multiple vector-valued wavelet

functions associated with the orthogonal multiple vector-valued scaling function Υ(t) if

〈Υ(·), Γı(· − n) 〉 = O, ı = 1, 2, 3, n ∈ Z, (6)

and {Γı(t − k), k ∈ Z, ı = 1, 2, 3} is an orthogonal basis of W0. Then, we have

〈Γı(·), Γ(· − n) 〉 = δ0, nIs, ı,  ∈ {1, 2, 3}, n ∈ Z. (7)

Lemma 1 Let H(t) ∈ L2(R, Cs×s). Then H(t) is an orthogonal multiple vector-valued function

if and only if ∑

l∈Z

Ĥ(ω + 2lπ)Ĥ(ω + 2lπ)∗ = Is. (8)

Proof If H(t) is an orthonormal function, then we get from (1) that

δ0, kIs = 〈H(·) , H(· − k) 〉 =
1

2π

∫

R

Ĥ(ω)Ĥ(ω)∗ · exp{ikω}dω

=
1

2π

∫ 2π

0

∑

l∈Z

Ĥ(ω + 2lπ)Ĥ(ω + 2lπ)∗ · exp{ikω}dω

which implies (8). The converse is obvious. 2

By Lemma1, Formulas (5)–(7) and Fourier transformation, we can obtain the following

Lemma 2.

Lemma 2[5] Let Υ(t) ∈ L2(R, Cs×s) be an orthogonal multiple vector-valued scaling function.

Assume Γı(t) ∈ L2(R, Cs×s), ı = 1, 2, 3, are orthogonal multiple vector-valued wavelet functions

associated with Υ(t). Then

3∑

σ=0

A [ ω + (σπ)/2]A[ ω + (σπ)/2]∗ = Is, ω ∈ R. (9)
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3∑

σ=0

A [ ω + (σπ)/2]B(ı)[ ω + (σπ)/2]∗ = O, ı = 1, 2, 3, ω ∈ R. (10)

3∑

σ=0

B(ı)[ ω + (σπ)/2]B()[ ω + (σπ)/2]∗ = δı, Is, ı,  = 1, 2, 3. (11)

We now present multiple vector-valued Meyer wavelets as a special family of multiple vector-

valued wavelets. For details on scalar-valued Meyer wavelets, see [8]. Let

Υ̂(ω) =






Is, |ω| < 2π
3 ,

cos[ π
2 f( 3

2π |ω| − 1) ]Λ(ω), 2π
3 ≤ |ω| ≤ 4π

3 ,

0, otherwise,

(12)

where Λ(ω) is paraunitary and Λ(2π
3 ) = Λ(− 2π

3 ) = Is, and f(t) is a scalar-valued smooth function

such that

f(t) =






1, t ≥ 1,

0, t ≤ 0,
and f(t) + f(1 − t) = 1, for t ∈ (0, 1).

Then, after computation, for ω ∈ R, we obtain that
∑

k∈Z Υ̂(ω + 2kπ)Υ̂(ω + 2kπ)∗ = Is.

By Lemma 1, Υ(t) is orthogonal. This implies that the multiple vector-valued functions

Υ(t), defined in (12), is a multiple vector-valued scaling function. Similar to the scalar-valued

Meyer wavelets[8,p138] the corresponding lowpass filter A(ω) is

A(ω) =
∑

k∈Z

Υ̂(2(ω + 2kπ)), ω ∈ R.

By using paraunitary vector filter theory[5], we can obtain three filter functions B(1)(ω), B(2)(ω),

B(3)(ω) satisfying (10) and (11). Let Γ̂ı(ω) = B(ı)(ω/4)Υ̂(ω/4), ı = 1, 2, 3. Then, Γı(t), ı = 1, 2, 3,

are multiple vector-valued Meyer wavelets[5].

3. The properties of multiple vector-valued wavelet packets

Xia and Suter[5] introduced the multiple vector-valued wavelets and studied the construction

of the multiple vector-valued wavelets. In this section, we shall define the multiple vector-valued

wavelet packets and discuss their properties. First, we set

Ψ0(t) = Υ(t), Ψı(t) = Γı(t); P
(0)
k = Ak, P

(ı)
k = B

(ı)
k , ı = 1, 2, 3, k ∈ Z.

Definition 3 The family of multiple vector-valued functions {Ψ4n+λ(t), n = 0, 1, 2, . . . , λ =

0, 1, 2, 3 } is called a multiple vector-valued wavelet packets with respect to the orthogonal mul-

tiple vector-valued scaling function Υ(t) where

Ψ4n+λ(t) = 4 ·
∑

k∈Z

P
(λ)
k Ψn(4t − k), λ = 0, 1, 2, 3. (13)
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By implementing the Fourier transform for the both sides of (13), we have

Ψ̂4n+λ(ω) = P(λ)(ω/4) Ψ̂n(ω/4), λ = 0, 1, 2, 3, (14)

where

P(λ)(ω) =
∑

k∈Z

P
(λ)
k · exp{−ikω}, ω ∈ R. (15)

Then P(0)(ω) = A(ω), P(ı)(ω) = B(ı)(ω), ı = 1, 2, 3. Formulas (9)–(11) can jointly be written

as
3∑

σ=0

P(ı)(ω +
σπ

2
)P( )(ω +

σπ

2
)∗ = δı, Is, ı,  ∈ { 0, 1, 2, 3}, ω ∈ R. (16)

It is evident that Formula (16) is equivalent to

∑

σ∈Z

P
(ı)
σ+4k(P

( )
σ+4l)

∗ =
1

4
δı, δk, lIs, ı,  ∈ { 0, 1, 2, 3}, k, l ∈ Z. (17)

In the following, we will discuss properties of the multiple vector-valued wavelet packets.

Theorem 1 If {Ψn(t), n ∈ Z+} are multiple vector-valued wavelet packets with respect to the

orthogonal multiple vector-valued scaling function Υ(t), then for every n ∈ Z+, we have

〈Ψn(· − j ) , Ψn(· − k) 〉 = δj, k Is, j, k ∈ Z. (18)

Proof (i) Formula (18) follows from (5) for the case of n = 0. (ii) Assume that Formula (18)

holds, for the case of 0 ≤ n < 4L, where L is a positive integer. Then, when 4L ≤ n < 4L+1,

we have 4L−1 ≤ [n
4 ] < 4L where [ρ] = max{ν ∈ Z, ν ≤ ρ} . Order n = 4[n

4 ] + λ, λ = 0, 1, 2, 3.

By induction assumption and Lemma 1, we obtain

〈Ψ[ n

4
](· − j), Ψ[ n

4
](· − k) 〉 = δj, kIs ⇐⇒

∑

l∈Z

Ψ̂[ n

4
](ω + 2lπ)Ψ̂[ n

4
](ω + 2lπ)∗ = Is. (19)

According to Lemma 1 and Formulas (14), (16), (19), we have

〈Ψn(· − j ) , Ψn(· − k) 〉

=
1

2π

∫

R

Ψ̂n(ω)Ψ̂n(ω)∗ · exp{−i(j − k)ω}dω

=
1

2π

∑

l∈Z

∫ 8(l+1)π

8lπ

P (λ)(
ω

4
)Ψ̂[ n

4
](

ω

4
)Ψ̂[ n

4
](

ω

4
)∗P (λ)(

ω

4
)∗ · e−i(j−k)ωdω

=
2

π

∫ 2π

0

P (λ)(ω){
∑

l∈Z

Ψ̂[ n

4
](ω + 2lπ)Ψ̂[ n

4
](ω + 2lπ)∗}P (λ)(ω)∗ · e−4i(j−k)ωdω

=
1

π

∫ π

2

0

3∑

σ=0

P(λ)(ω +
σπ

2
)P(λ)(ω +

σπ

2
)∗ · e−4i(j−k)ωdω

= δj, kIs.
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Theorem 2 If {Ψn(t), n ∈ Z+} are multiple vector-valued wavelet packets with respect to the

orthogonal multiple vector-valued scaling function Υ(t), then for every n ∈ Z+, we have

〈Ψ4n+λ(·) , Ψ4n+µ(· − k) 〉 = δλ, µ δ0, kIs, λ, µ = { 0, 1, 2, 3}, k ∈ Z. (20)

Proof By Formulas (14) and (16), we get that

〈Ψ4n+λ(·) , Ψ4n+µ(· − k) 〉 =
1

2π

∫

R

P (λ)(
ω

4
)Ψ̂n(

ω

4
) Ψ̂n(

ω

4
)∗P (µ)(

ω

4
)∗ · eikωdω

=
1

2π

∫ 8π

0

P (λ)(
ω

4
){

∑

l∈Z

Ψ̂n(
ω

4
+ 2lπ) Ψ̂n(

ω

4
+ 2lπ)∗}P (µ)(

ω

4
)∗ eikω dω

=
2

π

∫ 2π

0

P (λ)(ω)P (µ)(ω)∗ · exp{4ikω} dω

=
2

π

∫ π

2

0

3∑

σ=0

P(λ)(ω +
σπ

2
)P(µ)(ω +

σπ

2
)∗ exp{4ikω} dω

=
2

π

∫ π

2

0

δλ, µ Is · exp{4ikω} dω = δλ, µ δ0, kIs.

Theorem 3 For any m, n ∈ Z+ and k ∈ Z, we have

〈Ψm(·) , Ψn(· − k) 〉 = δm, n δ0, kIs. (21)

Proof For m = n, (21) follows by Theorem 1. Without loss of generality, we suppose m > n for

the case of m 6= n. Rewrite m, n as m = 4[m/4]+λ1, n = 4[n/4]+µ1 where λ1, µ1 ∈ { 0, 1, 2, 3}.

(i). If [m/4] = [n/4], then λ1 6= µ1. Formula (21) follows from (14),(16) and (19), since

〈Ψm (·)Ψn(· − k)〉 =
2

π

∫

R

P (λ1)(ω)Ψ̂[ m

4
](ω) Ψ̂[ n

4
](ω)∗P (µ1)(ω)∗ · exp{4ikω}dω

=
2

π

∫ 2π

0

P (λ1)(ω){
∑

l∈Z

Ψ̂[ n

4
](ω + 2lπ)Ψ̂[ n

4
](ω + 2lπ)∗ }P (µ1)(ω)∗ · e4ikωdω

=
2

π

∫ π

2

0

3∑

σ=0

P(λ1)(ω +
σπ

2
)P(µ1)(ω +

σπ

2
)∗ · exp{4ikω} dω

=
2

π

∫ π

2

0

δλ1, µ1
Is · exp{4ikω} dω = O.

(ii). If [m
4 ] 6= [n

4 ], then set [m/4] = 4[ [m/4]/4] + λ2, [n/4] = 4[ [n/4]/4] + µ2, λ2, µ2 ∈

{ 0, 1, 2, 3}. If [ [m/4]/4] = [ [n/4]/4] Formula (21) follows similar to the case (i); If [ [m/4]/4] 6=

[ [n/4]/4], then we order [ [m/4]/4] = 4[ [ [m/4]4]/4]+λ3, [ [n/4]/4] = 4[ [ [n/4]4]/4]+µ3, λ3, µ3 ∈

{ 0, 1, 2, 3} once more. Thus, after taking finite times steps (denoted by κ ), denoting by λκ =
κ︷ ︸︸ ︷

[[· · · [ m/4] · · ·]/4], µκ =

κ︷ ︸︸ ︷
[ [· · · [ n/4] · · ·]/4], we obtain λκ, µκ ∈ {0, 1, 2, 3} and

⋆ λκ = µκ = 1, or λκ = µκ = 2, or λκ = µκ = 3;

⋆ ⋆ λκ = 1, µκ = 0, λκ = 2, µκ = 0, or λκ = 2, µκ = 1 or λκ = 3, µκ = 0,
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λκ = 3, µκ = 1, or λκ = 3, µκ = 2.

For the case ⋆, (21) fillows similarly as the case (i). As for the case ⋆⋆, we get from (6) and

(7) that
∑

l∈Z Ψ̂λκ
(ω + 2lπ) Ψ̂µκ

(ω + 2lπ)∗ = O, ω ∈ R. Thus

〈Ψm(·) , Ψn(· − k) 〉 =
1

2π

∫

R

Ψ̂m(ω) Ψ̂n(ω)∗ · exp{ikω} dω

=
1

2π
·

∫

R

P (λ1)(
ω

4
) Ψ̂[m/4](

ω

4
) Ψ̂[n/4](

ω

4
)∗P (µ1)(

ω

4
)∗ · exp{ikω} dω = · · ·

=
1

2π

∫

R

κ∏

σ=1

P (λσ)(
ω

4σ
) Ψ̂λκ

(
ω

4κ
) Ψ̂µκ

(
ω

4κ
)∗ (

κ∏

σ=1

P (µσ)(
ω

4σ
) )∗ · exp{ikω} dω

=
1

2π

∫ 4κ+1π

0

κ∏

σ=1

P (λσ)(
ω

4σ
)(

∑

l∈Z

Ψ̂λκ
(

ω

4κ
+ 2lπ) Ψ̂µκ

(
ω

4κ
+ 2lπ)∗ )(

κ∏

σ=1

P (µσ)(
ω

4σ
) )∗ · eikωdω

=
1

2π

∫ 4κ+1π

0

κ∏

σ=1

P (λσ)(
ω

4σ
) ·O · (

κ∏

σ=1

P (µσ)(
ω

4σ
) )∗ · exp{ikω} dω = O.

In a word, for any m, n ∈ Z+ and k ∈ Z, Formula (21) holds. 2

Lemma 3 If {Ψn(t), n = 0, 1, 2 . . .} are multiple vector-valued wavelet packets with respect to

the orthogonal multiple vector-valued scaling function Υ(t), then for every n ∈ Z+, we have

Ψn(4t − k) =
1

4

3∑

σ=0

∑

l∈Z

(P
(σ)
k−4l)

∗Ψ4n+σ(t − l), k ∈ Z. (22)

Proof

1

4

3∑

σ=0

∑

l∈Z

(P
(σ)
k−4l)

∗Ψ4n+σ(t − l) =

3∑

σ=0

∑

l∈Z

(P
(σ)
k−4l)

∗
∑

j∈Z

P
(σ)
j Ψn(4t − 4l − j)

=

3∑

σ=0

∑

l∈Z

∑

m∈Z

(P
(σ)
k−4l)

∗P
(σ)
m−4l Ψn(4t − m) =

∑

m∈Z

{

3∑

σ=0

∑

l∈Z

(P
(σ)
k−4l)

∗ P
(σ)
m−4l }Ψn(4t − m)

=
∑

m∈Z

δk, mIs Ψn(4t − m) = Ψn(4t − k).

4. Orthogonal vector-valued wavelet bases of L2(R, Cs×s)

In this section we shall construct orthogonal vector-valued wavelet bases of L2(R, Cs×s) by

using the multiple vector-valued wavelet packets.

We start from introducing a dilation operator (D~)(t) = ~( 4t) where ~(t) ∈ L2(R, Cs×s).

For ∀ Ω ⊂ L2(R, Cs×s) and ∀ n ∈ Z+, denote DΩ by DΩ = {D~ : ~ ∈ Ω}, and define

Ωn = { ~(t) : ~(t) =
∑

k∈Z

QkΨn(t − k), {Qk}k∈Z ∈ ℓ 2(Z)s×s}. (23)

Then Ω0 = V0, Ω1

⊕
Ω2

⊕
Ω3 = W0, where

⊕
denotes the orthogonal direct sum.
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For X, Y ⊂ R, set σX = {σ · x : σ ∈ R, x ∈ X}, X + Y = {x + y : x ∈ X, y ∈ Y }. For

a fix positive integer τ , denote by Ẽτ =
∑ı=τ

ı=0 4ı{ 0, 1, 2, 3}, Eτ = Ẽτ\Ẽτ−1.

Lemma 4 For arbitrary n ∈ Z+, the space DΩn can be orthogonally decomposed into spaces

Ω4n+λ, λ = 0, 1, 2, 3, i.e., DΩn =
⊕3

λ=0 Ω4n+λ.

Proof By Formulas (13) and (23), we have
⊕3

λ=0 Ω4n+λ ⊂ Ωn for ∀ n ∈ Z+.

On the other hand, Ω4n, Ω4n+1, Ω4n+2 and Ω4n+3 are orthogonal each other according to

Theorem 2. By Lemma 3, we get

Ψn(4t − k) =
1

4

3∑

σ=0

∑

l∈Z

(P
(σ)
k−4l)

∗Ψ4n+σ(t − l), k ∈ Z.

Therefore, the basis of the space Ωn can be linearly represented by the basis of the space

Ω4n+λ, λ = 0, 1, 2, 3. Thus, Ωn ⊂
⊕3

λ=0 Ω4n+λ. This leads to DΩn =
⊕3

λ=0 Ω4n+λ. 2

Theorem 4 The family of multiple vector-valued functions {Ψn(·−k), n ∈ Eτ , k ∈ Z} forms

an orthogonal basis of DτW0. In particular, the set {Ψn(· − k), n ∈ Z+, k ∈ Z} constitutes

an orthogonal basis of L2(R, Cs×s).

Proof By Lemma 4, we get that DΩ0 = Ω0

⊕3
λ=0 Ωλ, i.e., DV0 = V0

⊕
W0.

It can inductively be proved by using Theorem 2 and Lemma 4 that

DτV0 =
⊕

n∈Ẽτ

Ωn, and DτV0

⊕
DτW0 = Dτ+1V0, i.e., DτW0 =

⊕

n∈Eτ

Ωn.

Therefore, the set {Ψn(· − k), n ∈ Eτ , k ∈ Z} forms an orthogonal basis of DτW0. Moreover

L2(R, Cs×s) = V0

⊕
(
⊕

0≤τ

DτW0) = Ω0

⊕
(
⊕

0≤τ

(
⊕

n∈Eτ

Ωn)) =
⊕

n∈Z+

Ωn.

That is, the set {Ψn(· − k), n ∈ Z+, k ∈ Z} forms an orthogonal basis of L2(R, Cs×s). 2

Theorem 5 For each τ ∈ Z+\{0}, the family of multiple vector-valued functions {Ψn(4j t −

k), n ∈ Eτ , j ∈ Z, k ∈ Z} forms an orthogonal basis of L2(R, Cs×s).

Proof Note that by Theorem 4, {Ψn(t − k), n ∈ Eτ , k ∈ Z} forms an orthogonal basis of

DτW0. Then for each j ∈ Z, {Ψn(4j t − k), n ∈ Eτ , k ∈ Z} forms an orthogonal basis of

DjDτW0. Hence, For each τ ∈ Z+\{0},

⊕

j∈Z

DjDτW0 =
⊕

j∈Z

Dj+τW0 =
⊕

j∈Z

DjW0.

Thus, the family {Ψn(4j t − k), n ∈ Eτ , j, k ∈ Z} forms an orthogonal basis of L2(R, Cs×s).

2
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