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Abstract: The model with linear memory arise in the case of a generalized Kirchhoff vis-
coelastic bar, where a bending-moment relation with memory was considered. In this paper,
the exponential decay is proved if the memory kernal satisfies the condition of the exponential
decay. Furthermore, we show that the existence of strong global attractor by verifying the
condition (C) introduced in [3].
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1. Introduction

A general Kirchhoff viscoelastic beam model is mentioned in [1]

utt − γ0△utt + γ1△
2u(t) + ψ ∗ △2u(t) − γ2△u+ ϕ ∗ △u(t) = 0, (1)

where γ0, γ1 and γ2 are non-negative constants, ψ and ϕ are memory kernals, and u describes

the transversal motion of the beam. Furthermore, they discussed the polynomial decay of the

energy and the non-exponential stability of the solutions for γ0 = γ2 = 0, ψ ≡ 0. In this paper,

we investigate the nonlinear equation with linear damping

utt + δut + φ(0) △2 u+

∫ ∞

0

φ′(s) △2 u(t− s)ds+ g(u) = h, in Ω × R
+ (2)

with the following boundary conditions: The first case is simply supported at both ends

u(x, t) = △u(x, t) = 0, x ∈ Γ, t ∈ R. (3)

Another case is fixed at both ends

u(x, t) = ∇u(x, t) = 0, x ∈ Γ, t ∈ R. (4)

The initial conditions are given by

u(x, t) = u0(x, t), x ∈ Ω, t ≤ 0, (5)
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where Ω ⊂ R
2 is a bounded domain with smooth boundary Γ. φ(0), φ(∞) > 0 and φ′(s) ≤ 0 for

every s ∈ R
+. Similar problem was also studied by C.Giorgi, J.E.M.Rivera and V.Pata in [2].

But in any case, all the results on the existence of global attractors for the dynamical system

were obtained only in the weak Sobolev spaces. We will prove that in the stronger Hilbert spaces

by verifying the condition (C) which arised by [3]. For other methods proving the attractors, see

[4–6].

2. Preliminaries

Remark 1 In the following we only study equation (2) with (3) and (5).

Analogous to [2], we define

ηt(x, s) = u(x, t) − u(x, t− s). (6)

We set for simplicity µ(s) = −φ′(s) and φ(∞) = 1. In view of (6), adding and subtracting

the term △2u, equation (2) is transformed into the system







utt + δut + △2u+

∫ ∞

0

µ(s) △2 ηt(s)ds+ g(u) = h,

ηt + ηs = ut,

(7)

where the second equation is obtained by differentiating (6). The corresponding intial-boundary

value conditions are then given by



















u(x, t) = △u(x, t) = 0, x ∈ Γ, t ≥ 0,

ηt(x, s) = △ηt(x, s) = 0, x ∈ Γ, t ≥ 0, s ∈ R
+,

u(x, 0) = u1(x), ut(x, 0) = u2(x), x ∈ Ω,

η0(x, s) = η0(x, s), (x, s) ∈ Ω × R
+,

(8)

where
{

u1(x) = u0(x, 0), u2(x) = ∂tu0(x, t)|t=0,

η0(x, s) = u0(x, 0) − u0(x,−s).

Assume that the nonlinear function g ∈ C2(R,R) satisfying the following conditions:

(g1) lim inf
|s|→∞

G(s)
s2 ≥ 0, G(s) =

∫ s

0 g(τ)dτ ;

(g2) lim sup
|s|→∞

|g′(s)|
|s|γ = 0, ∀ 0 ≤ γ <∞;

(g3) There exists C1 > 0, such that lim inf
|s|→∞

sg(s)−C1G(s)
s2 ≥ 0.

The memory kernel µ is required to satisfy the following assumptions:

(h1) µ ∈ C1(R+) ∩ L1(R+), µ(s) ≥ 0, µ′(s) ≤ 0, ∀ s ∈ R
+;

(h2)
∫ ∞

0 µ(s)ds = M > 0;

(h3) µ′(s) + αµ(s) ≤ 0, ∀ s ∈ R
+, α > 0.

We write H = L2(Ω), V = H2
0 (Ω). The scalar product and the norm on H and V are

denoted by (·, ·), | · | and ((·, ·)), ‖ · ‖ respectively, where

(u, v) =

∫

Ω

u(x)v(x)dx, ((u, v)) =

∫

Ω

△u(x) △ v(x)dx.
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Define D(A) = {v ∈ V, Av ∈ H}, where A = △2. For the operator A, we assume that

A :
V −→ V ∗,

D(A) → H

are isomorphism, and there exists α > 0 such that (Au, u) ≥ α‖u‖2, ∀ u ∈ V . We also define the

power As of A for s ∈ R which operates on the spaces D(As), and we write V2s = D(As), s ∈ R.

This is a Hilbert space for the scalar product and the norm as follows

(u, v)2s = (Asu,Asv), ‖u‖2s = ((u, u)2s)
1

2 , ∀ u, v ∈ D(As),

and Ar is an isomorphism from D(As) onto D(As−r), ∀ s, r ∈ R. It is clear that D(A0) = H ,

D(A
1

2 ) = V , D(A− 1

2 ) = V ∗ and D(A) ⊂ V ⊂ H = H∗ ⊂ V ∗, where H∗, V ∗ are the dual of

H, V respectively, and each space is dense in the following one and the injections are continuous.

Using the Poincáre inequality we have

‖v‖ ≥ λ1|v|, ∀ v ∈ V, (9)

where λ1 denotes the first eigenvalue of A
1

2 .

In view of (h1), let L2
µ(R+, H2

0 ) be the Hilbert space of H2
0 -valued functions on R

+, endowed

with the following inner product and the norm

(ϕ, ψ)µ,V =

∫ ∞

0

µ(s)(△ϕ(s),△ψ(s))ds

and

|ϕ|2µ,V = (ϕ,ϕ)µ,V =

∫ ∞

0

µ(s)‖ϕ‖2ds.

Finally, we introduce the following Hilbert spaces:

H0 = V ×H × L2
µ(R+, V ), H1 = D(A) × V × L2

µ(R+, D(A)).

According to the classical Faedo-Galerkin method it is easy to obtain the existence and

uniqueness of solutions and the continuous dependence to the initial value, so we omit it and

only give the following theorem:

Theorem 1
[2,4] Let (g1)–(g3) and (h1) hold. Then given any time interval I = [0, T ], problem

(7)–(8) has a unique solution (u, ut, η) in I with initial data (u1, u2, η0) ∈ H0, and the mapping

{u1, u2, η0} → {u(t), ut(t), η
t(s)} is continuous in H0. If, furthermore, (u1, u2, η0) ∈ H1, then we

have a unique solution (u, ut, η) ∈ C(I,H1), and the mapping above is continuous in H1, too.

Thus, it admits to define a C0 semigroup

S(t) : {u1, u2, η0} → {u(t), ut(t), η
t(s)}, t ∈ R

+,

and they map H0, H1 into themselves, respectively.

In addition, the following abstract results will be used in our consideration:



310 Journal of Mathematical Research and Exposition Vol.27

Definition 1
[3] A C0 semigroup {S(t)}t≥0 in a Banach space X is said to satisfy condition (C)

if for any ε > 0 and for any bounded set B of X , there exists t(B) > 0 and a finite dimensional

subspace X1 of X , such that {‖PS(t)x‖X , x ∈ B, t ≥ t(B)} is bounded and

‖(I − P )S(t)x‖X <X ε, for t ≥ t(B), x ∈ B,

where P : X → X1 is a bounded projector.

Theorem 2
[3] Let {S(t)}t≥0 be a C0 semigroup in a Hilbert space M . Then {S(t)}t≥0 has a

global attractor if and only if

(1) {S(t)}t≥0 satisfies condition (C);

(2) there exists a bounded absorbing subset B of M .

3. Bounded absorbing set in H1

For simplicity, we denote φ(u) =
∫

ΩG(u(x))dx.

First, taking the inner product of the first equation of (7) with v = ut + σu in H , after

computation we conclude

1

2

d

dt
(‖u‖2+|v|2) + σ‖u‖2 + (δ − σ)|v|2 − σ(δ − σ)(u, v)+

(η, v)µ,V + (g(u), v) = (h, v). (10)

Combining with the second equation of (7) we have

(η, v)µ,V =
1

2

d

dt
|η|2µ,V + (η, ηs)µ,V + σ(η, u)µ,V . (11)

In the following we often exploiting the Hölder inequality and Young inequality. According to

(h2)–(h3), we have

(η, ηs)µ,V =
1

2

∫ ∞

0

µ(s)
d

ds
| △ ηt(s)|2ds = −

1

2

∫ ∞

0

µ′(s)| △ ηt(s)|2ds ≥
α

2
|η|2µ,V , (12)

and

σ(η, u)µ,V = σ

∫ ∞

0

µ(s)(△η(s),△u)ds

≥ −σ(

∫ ∞

0

µ(s)| △ ηt(s)|2ds)
1

2 (

∫ ∞

0

µ(s)| △ u|2ds)
1

2

≥ −
α

4

∫ ∞

0

µ(s)| △ ηt(s)|2ds−
σ2

α

∫ ∞

0

µ(s)| △ u|2ds

≥ −
α

4
|η|2µ,V −

Mσ2

α
‖u‖2. (13)

Integrating with (12)–(13), from (11) entails

(η, v)µ,V ≥
1

2

d

dt
|η|2µ,V +

α

4
|η|2µ,V −

Mσ2

α
‖u‖2. (14)
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In view of (g1), (g3), there exist constants K1, K2 > 0 such that

φ(u(t)) +
1

8
‖u‖2 ≥ −K1, ∀u ∈ V, (15)

(u, g(u)) − C1φ(u) +
1

4
‖u‖2 ≥ −K2, ∀u ∈ V. (16)

Hence,

(g(u), v) =
d

dt

∫

Ω

G(u)dx+ σ

∫

Ω

g(u)udx ≥
d

dt
φ(u) + σ(C1φ(u) −

1

4
‖u‖2 −K2). (17)

Collecting with (14), (17), we obtain from (10) that

1

2

d

dt
(‖u‖2+|v|2 + 2φ(u) + |η|2µ,V ) + (δ − σ)|v|2 − σ(δ − σ)(u, v)+

σ(
3

4
−
Mσ

α
)‖u‖2 +

α

4
|η|2µ,V + σC1φ(u) − σK2 ≤

|h|2

δ
+
δ

4
|v|2.

Take σ small enough, such that

3δ

4
− σ >

δ

2
,

3

4
−
Mσ

α
>

1

2
.

Thus in line with (9), we have

(δ − σ)|v|2 − σ(δ − σ)(u, v) + σ(
3

4
−
Mσ

α
)‖u‖2 ≥

δ

2
|v|2 +

σ

2
‖u‖2. (18)

Let σ0 = min{σ, δ
2 ,

α
2 , σC1}. We conclude

d

dt
(‖u‖2 + |v|2 + 2φ(u) + |η|2µ,V ) + σ0(‖u‖

2 + |v|2 + 2φ(u) + |η|2µ,V ) ≤
2|h|2

δ
+ 2σK2.

Due to (15), write

W (t) = ‖u‖2 + |v|2 + 2φ(u) + |η|2µ,V + 2K1 > 0.

Then we have
d

dt
W (t) + σ0W (t) ≤ C, C =

2|h|2

δ
+ 2σK2 + 2σK1.

By the Gronwall Lemma, we end up with

W (t) ≤W (0) exp(−σ0t) +
C

σ0
(1 − exp(−σ0t)), ∀ t ≥ 0.

Thus, we have the following theorem:

Theorem 3 Assume that (g1)–(g3) and (h1)–(h3) hold. Then the ball of H0, B0 = BH0
(0, µ0),

centered at 0 with radius µ0 =
√

C
σ0

, is a bounded absorbing set in H0 for the semigroup

{S(t)}t≥0.

Secondly, taking the scalar product in H of the first equation of system (7) with Av =

Aut + σAu, and combining with the second equation, we find

1

2

d

dt
(|Au|2+‖v‖2 + ‖η‖2

µ,D(A)) + σ|Au|2 + (δ − σ)‖v‖2 − σ(δ − σ)(Au, v)+

(η, ηs)µ,D(A) + σ(η, u)µ,D(A) + (g(u), Av) = (h,Av). (19)
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Analogous to (12)–(13), we have

(η, ηs)µ,D(A) + σ(η, u)µ,D(A) ≥
α

4
|η|2µ,D(A) −

Mσ2

α
|Au|2. (20)

According to (g2), for any ε > 0, there exists a constant Cε > 0 such that

|g′(s)| ≤ ε|s|γ + Cε, ∀ 0 ≤ γ <∞.

By Theorem 3 and Sobolev embedding theorem, g(u) and g′(u) are uniformly bounded in L∞,

that is, there exists a constant K3 > 0 such that

|g(u)|L∞ ≤ K3, |g′(u)|L∞ ≤ K3. (21)

Thanks to (21), we get

(g(u), Av) =
d

dt
(g(u), Au) − (g′(u)ut, Au) + σ(g(u), Au)

≥
d

dt
(g(u), Au) + σ(g(u), Au) −

∫

Ω

|g′(u)| · |ut| · |Au|dx

≥
d

dt
(g(u), Au) + σ(g(u), Au) −K3|ut| · |Au|

≥
d

dt
(g(u), Au) + σ(g(u), Au) −K3µ0|Au|

≥
d

dt
(g(u), Au) + σ(g(u), Au) −

σ2

8
|Au|2 −

2K2
3µ

2
0

σ2
. (22)

In addition

(h,Av) = (h,Aut) + σ(h,Au) ≤
d

dt
(h,Au) +

σ2

4
|Au|2 + |h|2. (23)

Collecting with (20), (22) and (23), from (19) we have

1

2

d

dt

(

|Au|2 + ‖v‖2 − 2(h,Au) + |η|2µ,D(A) + 2(g(u), Au)
)

+ σ(1 −
Mσ

α
−

3σ

8
)|Au|2+

(δ − σ)‖v‖2 − σ(δ − σ)(Au, v) + σ(g(u), Au) +
α

4
|η|2µ,D(A) ≤

2K2
3µ

2
0

σ
+ |h|2, ∀ t ≥ t0(B).

Choose σ small enough such that

3δ

4
− σ >

δ

4
, 1 −

σδ

λ2
1

−
Mσ

α
−

3σ

8
>

1

2
.

Therefore, by the above inequality

d

dt

(

|Au + g(u) − h|2 + ‖v‖2 + |η|2µ,D(A))
)

− 2

∫

Ω

g′(u)utdx+ 2(g′(u)ut, h)+

σ|Au|2 +
δ

2
‖v‖2 +

α

2
|η|2µ,D(A) + 2σ(g(u), Au)

≤ 2(|h|2 +
2K2

3µ
2
0

σ2
), t ≥ t0(B).
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Combining with (21), Theorem 3 and Sobolev embedding theorem we have

d

dt

(

|Au + g(u) − h|2 + ‖v‖2 + |η|2µ,D(A)

)

+ σ|Au + g(u) − h|2 +
δ

2
‖v‖2 +

α

2
|η|2µ,D(A)

≤ 2

∫

Ω

|g′(u)| · |ut|dx+ 2

∫

Ω

|g′(u)| · |ut| · |h|dx+ σ|g(u)|2 + 2(1 + σ)|h|2 +
4K2

3µ
2
0

σ2

≤ C, t ≥ t0(B),

where C is a constant relying on µ0, |h|, K3, σ.

Let σ0 = min{σ, δ
2 ,

α
2 }. The following inequality is obtained immediately

d

dt

(

|Au+ g(u) − h|2 + ‖v‖2 + |η|2µ,D(A)

)

+ σ0

(

|Au+ g(u) − h|2 + ‖v‖2 + |η|2µ,D(A)

)

≤ C, t ≥ t0(B).

By the Gronwall lemma, we have

|Au(t) + g(u(t)) − h|2 + ‖v(t)‖2 + |ηt(s)|2µ,D(A)

≤
(

|Au(t0) + g(u(t0)) − h|2 + ‖v(t0)‖
2 + |ηt0(s)|2µ,D(A)

)

exp(−σ0(t− t0)) +
C

σ0
, ∀ t ≥ t0(B).

Now, in the light of (21), if B ⊂ BH1
(p0, ρ) (BH1

is the ball , centered at p0 with radius ρ in

H1), then B is also bounded in H0, and integrating with Theorem 3, there exists a constant

R1 > 0, such that

sup
(u(t0),ut(t0),ηt0 (s))∈B

{|Au(t0) + g(u(t0)) − h|2 + ‖v(t0)‖
2 + |ηt0(s)|2µ,D(A) ≤ R2

1.

Take t1 to satisfy t1 − t0 ≥ 1
σ0

logR2
1, then we have

|Au(t) + g(u(t)) − h|2 + ‖v(t)‖2 + |ηt(s)|2µ,D(A) ≤ ρ2
1, t ≥ t1,

where ρ2
1 = 1 + C

σ0

.

According to (21), we conclude that

|Au(t)|2 + ‖v(t)‖2 + |ηt|2µ,D(A)

≤ |g(u)|2 + 2(h,Au) + |h|2 + 2|g(u)| · |Au| + 2(g(u), h) + ρ2
1

≤ K2
3 + |h|2 + 2K3|Au| + 2|h||Au| + 2K3|h| + ρ2

1

≤ σ|Au|2 +K2
3 + |h|2 + 2K3|h| + ρ2

1 +
2K2

3

σ
+

2|h|2

σ
,

namely,

(1 − σ)|Au(t)|2 + ‖v(t)‖2 + |ηt|2µ,D(A) ≤ C,

where C = (3 + 2
σ
)K2

3 + (3
2 + 2

σ
)|h|2 + ρ2

1.

Thus, we have the following theorem:
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Theorem 4 Assume that (g1)–(g3) and (h1)–(h3) hold. Then the ball of H1, B1 = BH1
(0, µ1),

centered at (0, 0, 0) with radius µ1, is a bounded absorbing set in H1.

4. Global attractor A in H1

In order to obtain our main results, we need the following compactness results.

Lemma 1 Assume that g ∈ C3(R,R) with (g2), g(0) = 0, and g : D(A) → H2
0 (Ω) be defined

by

((g(u), v)) =

∫

Ω

g′(u)△u△vdx+

∫

Ω

g′′(u)(∇u)2△vdx,

∀ u ∈ D(A), v ∈ H2
0 (Ω). Then g is continuous compact.

Lemma 2 Let f(u) = g′(u)ut, and g ∈ C2(R,R) satisfy (g2), g(0) = 0. Then f : D(A)×V −→

H is continuous compact.

The above two lemmas are easy to verify, so we omit it. The reader can also see [5, 6].

5. Our main results

Theorem 5 Suppose that h ∈ V , Ω is a bounded smooth domain in R
2, and conditions (g1)–

(g3) and (h1)–(h3) are hold. Then the solution semigroup {S(t)}t≥0 associated with system

(7)–(8) has a global attractor A1 in H1, and it attracts all bounded subsets of H1 in the norm

of H1.

Proof Applying theorem 2, we only have to prove that the condition (C) is hold in H1.

Let {w̃i} be an orthonormal basis of D(A) which consists of eigenvectors of A. It is also an

orthonormal basis of V, H , respectively. The corresponding eigenvalues are denoted by

0 < λ̃1 < λ̃2 ≤ λ̃3 ≤ · · · , λ̃i → ∞, as i→ ∞

with Aω̃i = λ̃iω̃i, ∀i ∈ N. We write Vm = span{ω̃1, . . . , ω̃m}. For any (u, ut, η) ∈ H1, we

decompose that

(u, ut, η) = (u1, u1t, η1) + (u2, u2t, η2),

where (u1, u1t, η1) = (Pmu, Pmut, Pmη), and Pm : V → Vm is the orthogonal projector.

Since h ∈ V , g : D(A) → V is compact by Lemma 1, for any ε > 0, there exists some m,

such that

‖(I − Pm)h‖V ≤
ε

4
,

‖(I − Pm)g(u)‖V ≤
ε

4
, ∀u ∈ BD(A)(0, µ1). (24)

Taking the scalar product of the first equation of (7) inH with Av2 = Au2t+σAu2 and combining

with the second equation, we find

1

2

d

dt
(|Au2|

2+‖v2‖
2 + |η2|

2
µ,D(A)) + σ|Au2|

2 + (δ − σ)‖v2‖
2

σ(δ − σ)(Au2, v2) +
α

4
|η2|

2
µ,D(A) + ((g(u), v2)) ≤ (h,Av2).
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Note

σ|Au2|
2 + (δ − σ)‖v2‖

2 − σ(δ − σ)(Au2, v2) ≥ σ(1 −
σδ

λ2
1

)|Au2|
2 + (

3δ

4
− σ)‖v2‖

2 (25)

and

(h,Av2) ≤
d

dt
(h2, Au2) +

σ2

4
|Au2|

2 +
ε2

16
(26)

where h2 = (I − Pm)h. Integrating (25)–(26), when σ small enough, we obtain

d

dt
(|Au2 − h2|

2 + ‖v2‖
2 + |η2|

2
µ,D(A)) + σ(|Au2 − h2|

2 + ‖v2‖
2 + |η2|

2
µ,D(A))

≤ Cε2, C =
1

16
(1 + σ +

1

δ
).

By the Gronwall lemma

|Au2(t) − h2|
2 + ‖v2(t)‖

2 + |ηt
2(s)|

2
µ,D(A)

≤ (|Au2(t1) − h2|
2 + ‖v2(t1)‖

2 + |ηt1
2 (s)|2µ,D(A)) exp(−σ(t− t1)) +

Cε2

σ

≤ µ1 exp(−σ(t− t1)) +
Cε2

σ
, ∀t ≥ t1,

where µ1 is given by Theorem 4. Take t2 large enough such that t2−t1 ≥ 1
σ

log µ1

ε2 , so we conclude

that

|Au2(t) − h2|
2 + ‖v2(t)‖

2 + |ηt
2(s)|

2
µ,D(A) ≤ (1 +

C

σ
)ε2, for t ≥ t2.

Thus {S(t)}t≥0 satisfies the condition (C).
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