Article ID: 1000-341X(2007)02-0323-05

Document code: A

Complementarity Problems for Multivalued Non-Monotone Operators in Banach Spaces

GUO Wei-ping

(Department of Applied Mathematics, University of Science and Technology of Suzhou, Jiangsu 215009, China) (E-mail: guoweiping18@yahoo.com.cn)

Abstract: We utilize Park's maximal element theorem in H-space to prove the existence theorems of solutions of the complementarity problems for multivalued non-monotone operators in Banach spaces.

Key words: H-space; Banach space; multivalued non-monotone operator; complementarity problem.
MSC(2000): 49R50
CLC number: 0177.91

1. Introduction and preliminaries

The complementarity problems theory for single valued operators was applied to many realistic problems for mathematical programming, join circuit, economics and transportation equilibrium^[1-4]. Hence it is important to generalize the complementarity problems from single valued operators to multivalued operators. Recently, we discuss the complementarity problems for multivalued monotone operator in [5]. In this paper we utilize Park's maximal element theorem to discuss the complementarity problems for multivalued non-monotone operators in Banach spaces.

Throughout this paper, we always assume that E is a real Banach space, E^* denotes the conjugate space of E, 2^{E^*} denotes the family of all nonempty subsets of E^* , $\langle \cdot, \cdot \rangle$ denotes the pairing between E^* and E. Let $K \subset E$ be a convex cone, we denote by K^* the conjugate cone of K, i.e.,

$$K^* = \{ u \in E^* : \langle u, x \rangle \ge 0, \forall x \in K \}.$$

Let $T: K \to 2^{E^*}$ be a multivalued operator. The so called the complementarity problem of T is to find points $\bar{x} \in K$ and $\bar{u} \in T\bar{x}$ such that

$$T\bar{x} \subset K^*$$
 and $\langle \bar{u}, \bar{x} \rangle = 0$.

An operator $T: D \subset E \to 2^{E^*}$ is called semi-monotone^[6] if for any $x, y \in D$ we have

$$\inf_{v \in Ty} \langle v, x - y \rangle \le \inf_{u \in Tx} \langle u, x - y \rangle.$$

Received date: 2005-02-28; Accepted date: 2005-07-19

Foundation item: the Foundation of Jiangsu Education Committee (04KJD110170); the Foundation of University of Science and Technology of Suzhou.

It is clear from the definition that if T is monotone, then T is semi-monotone; but the converse is not true in general (see Example 2 in [6]).

In order to prove our main results, we first give the following lemmas.

Lemma 1 (Park's maximal element theorem^[7]) Let (X, D, Γ) be an H-space and $S : D \to 2^X$, $T : X \to 2^X$ multifunctions such that

(1) for each $x \in D, Sx \subset Tx$ and Sx is compactly open; and

(2) for each $y \in X, T^{-1}y$ is *H*-convex.

Suppose that there exists a nonempty compact subset K of X such that either

(i) $X \setminus K \subset S(M)$, for some nonempty finite subset M of D; or

(ii) for each nonempty finite subset N of D, there exists a compact H-subspace L_N of X containing N such that

$$L_N \setminus K \subset S(L_N \cap D).$$

Then either there exists a $y_0 \in K$ such that $S^{-1}y_0 = \emptyset$ or there exists an $x_0 \in X$ such that $x_0 \in Tx_0$.

Lemma 2^[8] Let *E* be a real normed linear space, and *X* be a nonempty subset of *E* and $T: X \to 2^{E^*}$ be an upper semicontinuous multimap such that each *Tx* is (norm-) compact. Then for each $y \in E$, the real valued function $g_y: X \to R$ defined by

$$g_y(x) = \inf_{w \in Tx} \langle w, x - y \rangle$$
 for each $x \in X$

is lower semicontinuous.

We denote by coA convex bull of the set A and denote by $\overline{co}A$ convex closed bull of the set A.

2. Complementarity problems for non-monotone operators

In this section, we utilize Park's maximal element theorem to discuss the complementarity problems for multivalued non-monotone operators in Banach spaces.

Theorem 1 Let E be a Banach space and $K \subset E$ be a closed convex cone. Suppose that $T: K \to 2^{E^*}$ is upper semicontinuous from the norm topology in K to the norm topology in E^* and each Tx is norm compact; If there exist two nonempty compact subsets Q and Ω in K, for each $x \in K \setminus Q$ there exists a $y \in \Omega$ such that

$$\inf_{u \in Tx} \langle u, x - y \rangle > 0$$

and for each fixed $x \in Q$ we have

$$\inf_{u \in T_T} \langle u, y - x \rangle \ge 0 \text{ for all } y \in K.$$

Then there exist $\bar{x} \in Q \subset K$ and $\bar{u} \in T\bar{x}$ such that $T\bar{x} \subset K^*$ and $\langle \bar{u}, \bar{x} \rangle = 0$.

Proof For any finite subset A of E, let $\Gamma_A = coA$. It is easy to know that $(E, \{\Gamma_A\})$ is an

H-space in accordance with the norm topology in E and K is an H-convex set in $(E, \{\Gamma_A\})$. Consequently, $(K, \{\Gamma_A\}) = (K, \{\Gamma_A \cap K\})$ is also an H-space^[7,9].

Define a multivalued mapping $G: K \to 2^K$ by

No.2

$$G(y) = \left\{ x \in K : \inf_{u \in Tx} \langle u, x - y \rangle > 0 \right\} \text{ for each } y \in K$$

It follows from Lemma 2 that G(y) is an open set, and it is a compactly open set for each $y \in K$. Now we prove that

$$G^{-1}(x) = \left\{ y \in K : \inf_{u \in Tx} \langle u, x - y \rangle > 0 \right\}$$

is an H-convex. Suppose that $G^{-1}(x) \neq \emptyset$ for each $x \in K$. Let $y_1, y_2 \in G^{-1}(x)$ and $0 \le \alpha \le 1$. Then $\hat{y} = \alpha y_1 + (1 - \alpha)y_2 \in K$ and

$$\inf_{u \in T_x} \langle u, x - \widehat{y} \rangle \ge \alpha \inf_{u \in T_x} \langle u, x - y_1 \rangle + (1 - \alpha) \inf_{u \in T_x} \langle u, x - y_2 \rangle > 0.$$

The above formula shows that $G^{-1}(x)$ is a nonempty convex set, so $G^{-1}(x)$ is a nonempty H-convex set. Taking a point $x_* \in K \setminus Q$, for any finite subset N of K, let

$$L_N = \overline{\operatorname{co}}\left(\{x_*\} \cup N \cup Q \cup \Omega\right)$$

Since Q and Ω are compact sets in Banach space, L_N is a compact convex subset in K and $L_N \supset N$, and this implies that L_N is compact H-convex. Hence $(L_N, \{\Gamma_A\}) = (L_N, \{\Gamma_A \cap L_N\})$ is a compact H-subspace of $(K, \{\Gamma_A\})$. Since $x_* \in K \setminus Q$, so $L_N \setminus Q \neq \emptyset$, thus $x \in K \setminus Q$ for any $x \in L_N \setminus Q$. It follows from the condition of Theorem 1 that there exists $y \in \Omega$ such that $\inf_{u \in Tx} \langle u, x - y \rangle > 0$. Thus $x \in G(y)$, and

$$L_N \setminus Q \subset \bigcup_{y \in \Omega} G(y) \subset \bigcup_{y \in L_N} G(y) = G(L_N \cap K).$$

Let K = D = X and G = S = T. Then by Lemma 1, there exists $\bar{y} \in K$ such that $\bar{y} \in G(\bar{y})$, consequently $\inf_{u \in T\bar{y}} \langle u, \bar{y} - \bar{y} \rangle > 0$. This is a contradiction. Hence there exists an $\bar{x} \in Q \subset K$ such that $G^{-1}(\bar{x}) = \emptyset$, that is,

$$\inf_{u \in T\bar{x}} \langle u, \bar{x} - y \rangle \le 0 \text{ for each } y \in K.$$

We denote by θ the zero vector of E, then $\theta \in K$. By the above formula we have

$$\inf_{u \in T\bar{x}} \langle u, \bar{x} \rangle = \inf_{u \in T\bar{x}} \langle u, \bar{x} - \theta \rangle \le 0.$$

Since K is convex and $\bar{x} \in Q \subset K$ we know that $2\bar{x} \in K$. By the condition of Theorem 1 we have

$$\inf_{u \in T\bar{x}} \langle u, \bar{x} \rangle = \inf_{u \in T\bar{x}} \langle u, 2\bar{x} - \bar{x} \rangle \ge 0$$

Combining the above two inequalities, we have $\inf_{u \in T\bar{x}} \langle u, \bar{x} \rangle = 0$. Note that the real valued function $u \mapsto \langle u, \bar{x} \rangle$ is continuous on the compact set $T\bar{x}$. Therefore, there exists a $\bar{u} \in T\bar{x}$ such that

$$\langle \bar{u}, \bar{x} \rangle = \inf_{u \in T\bar{x}} \langle u, \bar{x} \rangle = 0.$$

Finally, we prove that $T\bar{x} \subset K^*$. In fact, for any $u \in T\bar{x}$ and $y \in K$, by the condition of Theorem 1 we have

$$\langle u, y \rangle \ge \inf_{u \in T\bar{x}} \langle u, y \rangle = \inf_{u \in T\bar{x}} \langle u, y \rangle - \inf_{u \in T\bar{x}} \langle u, \bar{x} \rangle \ge \inf_{u \in T\bar{x}} \langle u, y - \bar{x} \rangle \ge 0.$$

The proof is complete.

Corollary 1 Let *E* be a Banach space and $K \subset E$ be a closed convex cone. Suppose that $T: K \to 2^{E^*}$ is upper semicontinuous from the norm topology in *K* to the norm topology in E^* and each *Tx* is norm compact. If there exist two nonempty totally bounded subsets *Q* and Ω in *K*, satisfying for each $x \in K \setminus \overline{\operatorname{co}Q}$ there exists a $y \in \overline{\operatorname{co}\Omega}$

$$\inf_{u \in Tx} \langle u, x - y \rangle > 0$$

and for each fixed $x \in \overline{\operatorname{co}}Q$ we have

$$\inf_{u \in Tx} \langle u, y - x \rangle \ge 0, \text{ for all } y \in K.$$

Then there exist $\bar{x} \in \overline{\operatorname{co}}Q \subset K$ and $\bar{u} \in T\bar{x}$ such that $T\bar{x} \subset K^*$ and $\langle \bar{u}, \bar{x} \rangle = 0$.

Proof Since Q and Ω are totally bounded sets in Banach space, $\overline{co}Q$ and $\overline{co}\Omega$ are totally bounded complete sets, which shows that $\overline{co}Q$ and $\overline{co}\Omega$ are compact sets. It follows from Theorem1 that Corollary 1 is true.

Now we discuss the complementarity problems for multivalued semi-monotone operators in real Banach spaces.

Theorem 2 Let *E* be a Banach space and $K \subset E$ be a closed convex cone. Suppose that $T: K \to 2^{E^*}$ is upper semicontinuous from the norm topology in *K* to the norm topology in E^* and semi-monotone, and each *Tx* is norm compact. If there exist two nonempty compact subsets *Q* and Ω in *K*, satisfying for each $x \in K \setminus Q$ there exists a $y \in \Omega$

$$\inf_{v\in Ty} \langle v, x-y\rangle > 0$$

and for each fixed $x \in Q$ we have

$$\inf_{u \in Tx} \langle u, y - x \rangle \ge 0 \text{ for all } y \in K.$$

Then there exist $\bar{x} \in Q \subset K$ and $\bar{u} \in T\bar{x}$ such that $T\bar{x} \subset K^*$ and $\langle \bar{u}, \bar{x} \rangle = 0$.

Proof Using the condition of Theorem 2 and noting that T is semi-monotone, for each $x \in K \setminus Q$ there exists a $y \in \Omega$ such that

$$\inf_{u \in Tx} \langle u, x - y \rangle \ge \inf_{v \in Ty} \langle v, x - y \rangle > 0.$$

It follows from Theorem1 that Theorem 2 is true.

Corollary 2 Let E be a Banach space and $K \subset E$ be a closed convex cone. Suppose that

 $T: K \to 2^{E^*}$ is upper semicontinuous from the norm topology in K to the norm topology in E^* and semi-monotone, and each Tx is norm compact. If there exist two nonempty totally bounded subsets Q and Ω in K, satisfying for each $x \in K \setminus \overline{\operatorname{co}}Q$ there exists a $y \in \overline{\operatorname{co}}\Omega$

$$\inf_{v \in Ty} \langle v, x - y \rangle > 0$$

and for each fixed $x \in \overline{co}Q$ we have

$$\inf_{u \in Tx} \langle u, y - x \rangle \ge 0 \text{ for all } y \in K.$$

Then there exist $\bar{x} \in \overline{\operatorname{co}}Q \subset K$ and $\bar{u} \in T\bar{x}$ such that $T\bar{x} \subset K^*$ and $\langle \bar{u}, \bar{x} \rangle = 0$.

Remark Theorems 1, 2 and Corollarys 1, 2 extend some main results in [2,4,10] to multivalued non-monotone operators.

References:

- [1] COTTLE R W, DAMTZIG G B. Complementarity and variational problems [J]. Sympos. Math., 1976, 19: 177 - 208.
- [2] THERA M. Existence results for the nonlinear complementarity problem applications nonlinear analysis [J]. J. Math. Anal. Appl., 1991, 154: 572–584.
- [3] ZHANG Shi-sheng, SHU Yong-lu. Complementarity problems with applications to mathematical programming [J]. Acta. Math. Appl. Sinica, 1992, 15: 380-388. (in Chinese)
- [4] ZHANG Shi-sheng, Li Jian. Complementarity problems in Bnanch spaces [J]. Appl. Math. J. Chinese Univ., 1994, 9: 75-83. (in Chinese)
- [5] GUO Wei-ping. Complementarity problems for multivalued monotone operator in Banach spaces [J]. J. Math. Anal. Appl., 2004, 292: 344-350.
- [6] BAE J S, KIM W K, TAN K K. Another generalization of Ky Fan 's minimax inequality and applications [J]. Bull. Inst. Math. Acad. Sinica, 1993, 21: 229-244.
- [7] PARK S. On minimax inequalities on spaces having certain contractible subsets [J]. Bull. Austral. Math. Soc., 1993, 47: 25-40.
- [8] KIM W K, TAN K K. A variational inequality in non-compact set and its applications [J]. Bull. Austral. Math. Soc., 1992, 46: 139–148.
- [9] BARDARO C, CEPPITELLI R. Some farther generalizations Kntter-Kuratowski-Mazurkiewic theorem and minimax inequalities [J]. J. Math. Anal. Appl., 1988, **132**: 484–490.
- [10] GUO Wei-ping. Complementarity problems for monotone operators and coercive operators [J]. J. Math. Study, 2002, **35**: 1–6. (in Chinese)
- [11] GUO Wei-ping. Implicit complementarity problems for multivalued monotone operators [J]. Acta. Anal. Funct. Appl., 2003, 5: 271-275. (in Chinese)

Banach 空间中多值非单调算子的相补问题

郭 伟 平 (苏州科技学院应用数学系, 江苏 苏州 215009)

摘要: 应用 H- 空间中的 Park 极大元定理, 在 Banach 空间中证明了多值非单调算子的相补问 题的解的存在性定理.

关键词: H- 空间; Banach 空间; 多值非单调算子; 相补问题.