Article ID：1000－341X（2007）03－0479－05
Document code：A

Characterization of Weak I Sequences

WANG Chun－hua ${ }^{1}$ ，SONG Chuan－ning ${ }^{2}$
（1．Department of Applied Mathematics，Shanghai Fisheries University，Shanghai 200090，China；
2．Department of Mathematicas，Shanghai Normal University，Shanghai 200234，China ）
（E－mail：chhwang＠shfu．edu．cn）

Abstract

In［5］，Zhou defined the notion of weak I sequences and characterized such se－ quences by Koszul cohomology and local cohomology methods．The aim of this paper is to characterize weak I sequences by means of Ext functor．

Key words：Noetherian local ring；Ext functor．
MSC（2000）：13D07；13E05
CLC number：O154．2

1．Introduction

Throughout this paper，we use A to denote a commutative Noetherian local ring with unit， m the maximal ideal of A ，and I a proper ideal of A ．We denote by M a finite d－dimensional A－module．For an A－module N ，we use $\operatorname{Ext}^{n}(-, N)$ to denote the n－th right derived functor of $\operatorname{Hom}(-, N)$ ．Moreover，we denote $\bigcup_{n \geq 1}\left(0:_{M} I^{n}\right)$ by $\Gamma_{I}(M)$ ．Finally，we use Z^{+}to denote the set of positive integers．

Recall that a sequence $x_{1}, x_{2}, \ldots, x_{r}$ contained in I is said to be a weak I sequence with respect to M ，if for $1 \leq i \leq r$ and a fixed positive integer n

$$
\left(x_{1}^{n_{1}}, \ldots, x_{i-1}^{n_{i-1}}\right) M: x_{i}^{n_{i}} \subseteq\left(x_{1}^{n_{1}}, \ldots, x_{i-1}^{n_{i-1}}\right) M: I^{n}
$$

holds for $n_{1}, n_{2}, \ldots, n_{r}$ running through all positive integers ${ }^{[1]}$ ．In particular，if $x_{1}, x_{2}, \ldots, x_{d}$ is a weak m sequence with respect to M ，then M is a generalized Cohen－Macaulay A－module，and $x_{1}, x_{2}, \ldots, x_{d}$ must be a system of parameters for $M^{[1]}$ ．It is well－known that a weak I sequence can be characterized by means of local cohomology and Koszul homology．In this paper，we make use of Ext functor to characterize the properties of weak I sequences and obtain the following results．

Theorem 1．1 Let I be an ideal of A and M a finite A－module such that $\Gamma_{I}(M) \neq M$ ．If there exists an $N>0$ such that $I^{N} \operatorname{Ext}_{A}^{i}\left(A / I^{n}, M\right)=0$ ，for $n \in Z^{+}$and $0 \leq i<k$ ，then there exists a weak I sequences $x_{1}, x_{2}, \ldots, x_{k}$ with respect to M ．

Received date：2005－06－06；Accepted date：2005－11－25
Foundation item：Youth Fund of Shanghai Fisheries University．

Theorem 1.2 Let I be an ideal of A and M a finite A-module with $\Gamma_{I}(M) \neq M$. Set
$r=\inf \left\{i \mid I^{N} \operatorname{Ext}^{i}\left(A / I^{n}, M\right) \neq 0, N\right.$ is an arbitrary fixed number and for all $\left.n\right\}$.
Then any maximal weak I sequence with respect to M has the same length r.

2. Basic properties of weak I sequences

In the section, we study some basic properties of weak I sequences by means of Ext functor. First of all, we prove the following lemma.

Lemma 2.1 Let I be an ideal of the local ring A and M a finite A-module. If there exists a positive integer N such that $I^{N} \operatorname{Ext}_{A}^{i}\left(A / I^{n}, M\right)=0$ for all $i \geq 0$ and $n \in Z^{+}$, then $M=\Gamma_{I}(M)$.

Proof We use induction on $\operatorname{dim} M=d$. For $d=0$, the result is trivial. Now assume $d>0$. Suppose that $M \neq \Gamma_{I}(M)$, we put $\bar{M}=M / \Gamma_{I}(M)$. Clearly, $\Gamma_{I}(\bar{M}) \neq \bar{M}$. Consider the short exact sequence $0 \rightarrow \Gamma_{I}(M) \rightarrow M \rightarrow \bar{M} \rightarrow 0$, then we have the long exact sequence

$$
\cdots \rightarrow \operatorname{Ext}_{A}^{i}\left(A / I^{n}, \Gamma_{I}(M)\right) \rightarrow \operatorname{Ext}_{A}^{i}\left(A / I^{n}, M\right) \rightarrow \operatorname{Ext}_{A}^{i}\left(A / I^{n}, \bar{M}\right) \rightarrow \cdots
$$

By the condition, we have $I^{N} \Gamma_{I}(M)=0$, so $I^{N} \operatorname{Ext}_{A}^{i}\left(A / I^{n}, \Gamma_{I}(M)\right)=0$. Hence $I^{N} \operatorname{Ext}_{A}^{i}\left(A / I^{n}\right.$, $\left.\Gamma_{I}(\bar{M})\right)=0$ holds for all $i \geq 0$ and $n>0$. On the other hand, there exists an \bar{M}-regular element $x \in I$. Choose a positive integer $s>2 N$ and consider the short exact sequence

$$
0 \longrightarrow \bar{M} \xrightarrow{x^{s}} \bar{M} \longrightarrow \bar{M} / x^{s} \bar{M} \longrightarrow 0
$$

Then, we have the long exact sequence

$$
\cdots \rightarrow \operatorname{Ext}_{A}^{i}\left(A / I^{n}, \bar{M}\right) \xrightarrow{x^{s}} \operatorname{Ext}_{A}^{i}\left(A / I^{n}, \bar{M}\right) \rightarrow \operatorname{Ext}_{A}^{i}\left(A / I^{n}, \bar{M} / x^{s} \bar{M}\right) \rightarrow \cdots
$$

From this we obtain $I^{2 N} \operatorname{Ext}_{A}^{i}\left(A / I^{n}, \bar{M} / x^{s} \bar{M}\right)=0$, for all $i \geq 0$ and $n>0$. In particular, $I^{2 N} \Gamma_{I}\left(\bar{M} / x^{s} \bar{M}\right)=0$. Since $\operatorname{dim} \bar{M}=d-1$, by induction we have $\Gamma_{I}\left(\bar{M} / x^{s} \bar{M}\right)=\bar{M} / x^{s} \bar{M}$. It follows that $I^{2 N} \bar{M} \subseteq x^{s} \bar{M}$. Hence $I^{2 N} \bar{M} \subseteq x^{s-2 N} I^{2 N} \bar{M}$. By Nakayama Lemma, we have $I^{2 N} \bar{M}=0$, so $\Gamma_{I}(M)=M$ and this is a contradiction.

Proposition 2.2 Let I be an ideal of a local ring A and M be a finite A-module with $\Gamma_{I}(M) \neq$ M. If a sequence $x_{1}, x_{2}, \ldots, x_{s}$ contained in I satisfies

$$
\left(x_{1}^{n_{1}}, \ldots, x_{i-1}^{n_{i-1}}\right) M: x_{i}^{n_{i}} \subseteq\left(x_{1}^{n_{1}}, \ldots, x_{i-1}^{n_{i-1}}\right) M: I^{k}, \quad 1 \leq i \leq s
$$

where k is a fixed positive integer and $n_{1}, n_{2}, \ldots, n_{s}$ run through all positive integers, then there exists a positive integer $N \in Z^{+}$which depends only on k such that $I^{N} \operatorname{Ext}_{A}^{i}\left(A / I^{n}, M\right)=0$ for $i<s$ and all $n>0$.

Proof We use induction on $\operatorname{dim} M=d$. For $d=0$, the result is trivial. Now suppose that $d>0$ and the result holds for those A-modules M_{1} with $\operatorname{dim} M_{1}<d$. Set $\bar{M}=M / \Gamma_{I}(M)$. By the
condition $\Gamma_{I}(M) \neq M$, so $\Gamma_{I}(\bar{M}) \neq \bar{M}$. Note that there exists an \bar{M}-regular element $x_{1} \in I$. Choose a positive integer t such that $t>2 k$ and consider the following short exact sequence $0 \longrightarrow \bar{M} \xrightarrow{x_{1}^{t}} \bar{M} \longrightarrow \bar{M} / x_{1}^{t} \bar{M} \longrightarrow 0$, so we can deduce the long exact sequence

$$
\cdots \rightarrow \operatorname{Ext}_{A}^{i}\left(A / I^{n}, \bar{M}\right) \xrightarrow{x_{1}^{t}} \operatorname{Ext}_{A}^{i}\left(A / I^{n}, \bar{M}\right) \rightarrow \operatorname{Ext}_{A}^{i}\left(A / I^{n}, \bar{M} / x_{1}^{t} \bar{M}\right) \rightarrow \cdots
$$

Clearly, $x_{2}, x_{3}, \ldots, x_{s}$ satisfies

$$
\left(x_{2}^{n_{2}}, \ldots, x_{i-1}^{n_{i-1}}\right) M: x_{i}^{n_{i}} \subseteq\left(x_{2}^{n_{2}}, \ldots, x_{i-1}^{n_{i-1}}\right) M: I^{2 k}, \quad 2 \leq i \leq s
$$

where n_{2}, \ldots, n_{s} run through all positive integers. Observe that $\operatorname{dim} \bar{M} / x_{1}^{t} \bar{M}=d-1$, so by induction, we can choose an integer $N \in Z^{+}$such that $I^{N} \operatorname{Ext}_{A}^{i}\left(A / I^{n}, \bar{M} / x_{1}^{t} \bar{M}\right)=0, i<s-1$, for all $n, t \in Z^{+}$. Now for an arbitrary element $a \in \operatorname{Ext}_{A}^{i}\left(A / I^{n}, \bar{M}\right)$, there exists an integer $t \in Z^{+}$such that $x_{1}^{t} a=0$. Hence from the long exact sequence we can see that $I^{N} a=0$. This implies $I^{N} \operatorname{Ext}_{A}^{i}\left(A / I^{n}, M\right)=0$ for $i<s$, and the proof is complete.

3. The length of a maximal weak I sequence

In this section, we will prove the main results Theorems 1.1 and 1.2 of this paper. These results include the condition of the existence of a weak I sequence in terms of Ext functor and characterization of the length of a maximal weak I sequence by means of the Ext functor. Now we first prove an important lemma.

Lemma 3.1 Let A be a Notherian local ring and I an ideal of A. Let M be a finite A-module with $\Gamma_{I}(M) \neq M$. Let $x_{1}, x_{2}, \ldots, x_{r}$ be a weak I sequence with respect to M. If there exists an integer s such that

$$
I^{s} \operatorname{Ext}_{A}^{0}\left(A / I^{n}, M /\left(x_{1}^{n_{1}}, \ldots, x_{r}^{n_{r}}\right) M\right)=0
$$

holds for all $n_{1}, n_{2}, \ldots, n_{r} \in Z^{+}$, then there exists an element $x_{r+1} \in I$ such that x_{1}, \ldots, x_{r+1} is a weak I sequence.

Proof It suffices to construct an element x_{r+1} such that for any $n_{1}, \ldots, n_{r}, n_{r+1} \in Z^{+}$

$$
\begin{equation*}
\left(x_{1}^{n_{1}}, \ldots, x_{r}^{n_{r}}\right) M: x_{r+1}^{n_{r+1}} \subseteq\left(x_{1}^{n_{1}}, \ldots, x_{r}^{n_{r}}\right) M: I^{s} \tag{3.1}
\end{equation*}
$$

holds.
Put $N=\sum_{i=1}^{r} n_{i}$ and choose an element $x_{r+1} \in I$ such that (3.1) holds for $N=r$. This is possible because $I^{s} \operatorname{Ext}_{A}^{0}\left(A / I^{n}, M /\left(x_{1}^{n_{1}}, \ldots, x_{r}^{n_{r}}\right) M\right)=0$. Now we use induction on N to prove that x_{r+1} satisfies (3.1) for all $N \geq r$. Suppose the conclusion holds for those N^{\prime} with $r \leq N^{\prime}<N$. Note that $x_{i_{1}}, \ldots, x_{i_{r}}$ is a weak I sequence with respect to M, where $x_{i_{1}}, \ldots, x_{i_{r}}$ is a permutation of $x_{1}, \ldots, x_{r}^{[5]}$. Without loss of generality we may assume $n_{1}>1$. For any $a \in\left(\left(x_{1}^{n_{1}}, \ldots, x_{r}^{n_{r}}\right) M: x_{r+1}^{n_{r+1}}\right)$, we may express

$$
\begin{equation*}
x_{r+1}^{n_{r+1}} a=x_{1}^{n_{1}} a_{1}+a_{1}^{\prime}, \tag{3.2}
\end{equation*}
$$

where $a_{1} \in M, a_{1}^{\prime} \in\left(x_{2}^{n_{2}}, \ldots, x_{r}^{n_{r}}\right) M$. By the induction hypothesis, for any $y \in I^{s}$, we may write

$$
\begin{equation*}
y a=x_{1}^{n_{1}-1} a_{2}+a_{2}^{\prime}, \tag{3.3}
\end{equation*}
$$

where $a_{2} \in M, a_{2}^{\prime} \in\left(x_{2}^{n_{2}}, \ldots, x_{r}^{n_{r}}\right) M$. From (3.2) and (3.3) we assert that

$$
x_{1}^{n_{1}-1}\left(y x_{1} a-x_{r+1}^{n_{r+1}} a_{2}\right) \in\left(x_{2}^{n_{2}}, \ldots, x_{r}^{n_{r}}\right) M .
$$

On the other hand, $x_{2}, \ldots, x_{r}, x_{1}$ is also a weak I sequence with respect to M. Hence we can find an integer $s^{\prime} \in Z^{+}$such that $y^{\prime}\left(y x_{1} a-x_{r+1}^{n_{r+1}} a_{2}\right) \in\left(x_{2}^{n_{2}}, \ldots, x_{r}^{n_{r}}\right) M$ holds for any $y^{\prime} \in I^{s^{\prime}}$. This implies $x_{r+1}^{n_{r+1}} y^{\prime} a_{2} \in\left(x_{1}, x_{2}^{n_{2}}, \ldots, x_{r}^{n_{r}}\right) M$. By the induction hypothesis, we have $y^{\prime} y^{\prime \prime} a_{2} \in$ $\left(x_{1}, x_{2}^{n_{2}}, \ldots, x_{r}^{n_{r}}\right) M$ for any $y^{\prime \prime} \in I^{s}$. Hence from (3.3) we obtain $y y^{\prime} y^{\prime \prime} a \in\left(x_{1}^{n_{1}}, \ldots, x_{r}^{n_{r}}\right) M$. By the arbitrary choice of y, y^{\prime} and $y^{\prime \prime}$, we see that $I^{2 s+s^{\prime}} a \in\left(x_{1}^{n_{1}}, \ldots, x_{r}^{n_{r}}\right) M$. But by the assumption, $I^{s} \operatorname{Ext}_{A}^{0}\left(A / I^{n}, M /\left(x_{1}^{n_{1}}, \ldots, x_{r}^{n_{r}}\right) M\right)=0$. Therefore, $a \in\left(x_{1}^{n_{1}}, \ldots, x_{r}^{n_{r}}\right) M: I^{s}$ and this proves the lemma.

The proof of Theorem 1.1 We use induction on $\operatorname{dim} M=d$. Since $\Gamma_{I}(M) \neq M$, we have $d>0$. For $d=1$, we prove that $k \leq 1$ and the result is trivial. In fact, if on the contrary $k>1$. By the condition we have $I^{N} \operatorname{Ext}_{A}^{1}\left(A / I^{n}, M\right)=0$ for all $n \in Z^{+}$. Choose an element $x \in I$ such that x is $\bar{M}\left(\bar{M}=M / \Gamma_{I}(M)\right)$-regular. Consider the short exact sequence $0 \rightarrow \Gamma_{I}(M) \rightarrow M \rightarrow \bar{M} \rightarrow 0$ and the long exact sequence

$$
\cdots \rightarrow \operatorname{Ext}_{A}^{i}\left(A / I^{n}, \Gamma_{I}(M)\right) \rightarrow \operatorname{Ext}_{A}^{i}\left(A / I^{n}, M\right) \rightarrow \operatorname{Ext}_{A}^{i}\left(A / I^{n}, \bar{M}\right) \rightarrow \cdots
$$

Since $I^{N} \operatorname{Ext}_{A}^{i}\left(A / I^{n}, \Gamma_{I}(M)\right)=0$ for all $i \geq 0$ and $I^{N} \operatorname{Ext}_{A}^{j}\left(A / I^{n}, M\right)=0$ for $j \leq 1$, we have $I^{N} \operatorname{Ext}_{A}^{j}\left(A / I^{n}, \bar{M}\right)=0$ for $j \leq 1$.

On the other hand, consider the short exact sequence $0 \longrightarrow \bar{M} \xrightarrow{x^{t}} \bar{M} \longrightarrow \bar{M} / x^{t} \bar{M} \longrightarrow 0$ and the long exact sequence

$$
\cdots \rightarrow \operatorname{Ext}_{A}^{i}\left(A / I^{n}, \bar{M}\right) \xrightarrow{x^{t}} \operatorname{Ext}_{A}^{i}\left(A / I^{n}, \bar{M}\right) \rightarrow \operatorname{Ext}_{A}^{i}\left(A / I^{n}, \bar{M} / x^{t} \bar{M}\right) \rightarrow \cdots
$$

We conclude that $I^{2 N} \bar{M} / x^{t} \bar{M}=0$ for all $t \geq 0$. Choosing $t>2 N$, we have $I^{2 N} \bar{M} \subseteq x^{t-2 N} I^{2 N} \bar{M}$. By Nakayama Lemma, $I^{2 N} \bar{M}=0$. This is a contradiction and thus the result holds for $d=1$.

Suppose that $d>1$ and the conclusion holds for integers less than d. As above we can reduce the proof to the case depth $M \geq 1$ and $I^{N} \operatorname{Ext}_{A}^{i}\left(A / I^{n}, M / x^{t} M\right)=0$ for $i<k$ and all $n \in Z^{+}$. By Lemma 3.1 we have x_{2} such that x_{1}, x_{2} is a weak I sequence with respect to M and there exists an integer N^{\prime} with $I^{N^{\prime}} \operatorname{Ext}_{A}^{i}\left(A / I^{n}, M /\left(\left(x_{1}^{n_{1}}, x_{2}^{n_{2}}\right) M\right)\right)=0$ for all n_{1}, n_{2} and $i<k-1$. Repeat the process, one can construct a weak I sequence $x_{1}, x_{2}, \ldots, x_{k}$ with respect to M.

The proof of Theorem 1.2 Suppose x_{1}, \ldots, x_{t} is a maximal weak I sequence with respect to M such that for $1 \leq i \leq t$,

$$
\left(x_{1}^{n_{1}}, \ldots, x_{i-1}^{n_{i-1}}\right) M: x_{i}^{n_{i}} \subseteq\left(x_{1}^{n_{1}}, \ldots, x_{i}^{n_{i-1}}\right) M: I^{s}
$$

holds，where s is a fixed positive number and $n_{1}, n_{2}, \ldots, n_{t}$ run through all positive number．By Proposition 2．2，we have $t \leq r$ ．Now suppose that $t<r$ and consider the short exact sequences

$$
0 \rightarrow\left(0: x_{1}^{n_{1}}\right) \rightarrow M \rightarrow x_{1}^{n_{1}} M \rightarrow 0, \quad 0 \rightarrow x_{1}^{n_{1}} M \rightarrow M \rightarrow M / x_{1}^{n_{1}} M \rightarrow 0
$$

and the long exact sequences

$$
\begin{aligned}
& \cdots \rightarrow \operatorname{Ext}_{A}^{i}\left(A / I^{n},\left(0: x_{1}^{n_{1}}\right)\right) \rightarrow \operatorname{Ext}_{A}^{i}\left(A / I^{n}, M\right) \rightarrow \operatorname{Ext}_{A}^{i}\left(A / I^{n}, x_{1}^{n_{1}} M\right) \rightarrow \cdots \\
& \cdots \rightarrow \operatorname{Ext}_{A}^{i}\left(A / I^{n}, x_{1}^{n_{1}} M\right) \rightarrow \operatorname{Ext}_{A}^{i}\left(A / I^{n}, M\right) \rightarrow \operatorname{Ext}_{A}^{i}\left(A / I^{n}, M / x_{1}^{n_{1}} M\right) \rightarrow \cdots
\end{aligned}
$$

Since $I^{s} \operatorname{Ext}_{A}^{i}\left(A / I^{n},\left(0: x_{1}^{n_{1}}\right)\right)=0$ for all $i \geq 0$ and $I^{N} \operatorname{Ext}_{A}^{i}\left(A / I^{n}, M\right)=0$ for all $i<r$ ， $I^{s+N} \operatorname{Ext}_{A}^{i}\left(A / I^{n}, x_{1}^{n_{1}} M\right)=0$ for $i<r$ ．It follows that $I^{s+2 N} \operatorname{Ext}_{A}^{i}\left(A / I^{n}, M / x_{1}^{n_{1}} M\right)=0$ for $i<r-1$ ．Repeating the process，one can prove that there exists a positive number N^{\prime} such that

$$
I^{N^{\prime}} \operatorname{Ext}_{A}^{i}\left(A / I^{n}, M /\left(x_{1}^{n_{1}} M, \ldots, x_{t}^{n_{t}} M\right)\right)=0
$$

holds for $i<r-t$ and all $n, n_{1}, \ldots, n_{t} \in Z^{+}$．Note that $r-t>0$ ．Thus

$$
I^{N^{\prime}} \operatorname{Ext}_{A}^{0}\left(A / I^{n}, M /\left(x_{1}^{n_{1}} M, \ldots, x_{t}^{n_{t}} M\right)\right)=0
$$

holds for all $n, n_{1}, \ldots, n_{t} \in Z^{+}$．By Lemma 3．1，there exists $x_{t+1} \in I$ such that $x_{1}, x_{2}, \ldots, x_{t+1}$ is a weak I sequence with respect to M ．This is a contradiction and thus $r=t$ ．

References：

［1］STÜKRAD J，VOGEL W．Eine verallgemeinerung der Cohen－Macaulay－Ringe und anwendungen aufein prob－ lem der multiplizitätstheorie［J］．J．Math．Kyoto Univ．，1973，13：513－528．（in German）
［2］STÜKRAD J，VOGEL W．Toward a theorey of Buchsbaum singularities［J］．Amer．J．Math．，Oxford，1970， 21：727－746．
［3］TRUNG N V．On the associated graded ring of a Buchsbaum ring［J］．Math．Nachr．，1982，107：209－220．
［4］TRUNG N V．Toward a theorey of generalized Cohen－Macaulay modules［J］．Nagoya Math．J．，1986，102： 1－49．
［5］ZHOU Cai－jun．Toward a theory of weak I sequences［J］．Chinese Ann．Math．Ser．B，1997，18（3）：283－292．
［6］MATSUMRA H．Commutative Ring Theory［M］．Cambridge University Press，Cambridge， 1986.

弱 I 序列的刻画

王春华 ${ }^{1}$ ，宋传宁 ${ }^{2}$
（1．上海水产大学应用数学系，上海 200090；2．上海师范大学数学系，上海 200234 ）
摘要：在文献［5］中，周才军定义了弱 I 序列，并利用 Koszul 上同调和局部上同调的方法刻画了这种序列。本文利用 Ext 函子刻画了弱 I 序列。

关键词：Noetherian 局部环；Ext 函子。

