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Abstract: In this paper, we present a neural network for solving linear complementarity
problem in real time. It possesses a very simple structure for implementation in hardware.
In the theoretical aspect, this network is different from the existing networks which use the
penalty functions or Lagrangians. We prove that the proposed neural network converges
globally to the solution set of the problem starting from any initial point. In addition, the
stability of the related differential equation system is analyzed and five numerical examples
are given to verify the validity of the neural network.
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1. Introduction

Given a matrix M ∈ Rn×n and a vector q ∈ Rn, the problem of finding vectors x and y

satisfying

y − Mx = q

and

x ≥ 0, y ≥ 0, xTy = 0 (1.1)

(or possibly showing that no such solution exists) is called the linear complementarity problem,

which is denoted by LCP(M, q).

The problem (1.1) is a fundamental problem in mathematical programming and numerical

optimization[1]. The most distinguishing feature of LCP from the general optimization problems

is that there is no objective function to minimize. Linear and quadratic programming problems,

bimatrix game problems, and equilibrium problems can be reformulated as linear complemen-

tarity problems. Moreover, many algorithms for solving nonlinear optimization problems require

handling linear complementarity problems[2].

It is well known that one promising approach to solve the optimization problems in real time

is to employ artificial neural networks based on the circuit implementation. Since 1980s, Several

neural networks have been shown to be efficient for solving linear programming problems[3−7].
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Then how to use a neural network method to solve the linear complementarity problem in real

time becomes an important issue in this area. In this paper, we proposed a recurrent neural

network for solving LCP. Compared with existing networks in the literature, this neural network

is much simpler and more suitable for implementation in hardware. It contains only the variables

of the original problem. When the problem has many solutions, we prove that, for any initial

point, the trajectory of the network does converge to an exact solution of the problem.

This paper is divided into four sections. In Section 2, preliminary information is introduced

to facilitate later discussions. In Section 3, we propose a neural network and prove that the

proposed neural network is stable in the sense of Lyapunov and globally converges to an exact

optimal solution. In Section 4, we report five numerical examples to show the efficiency of the

neural network.

2. A transformation

Let Φ(x) = 1
2 (max (xTMx + qTx, 0))2, x ∈ Rn. Then Φ is a differentiable convex func-

tion under the condition that M is positive semidefinite. Moreover, ∇Φ(x) is locally Lipschitz

continuous.

We can easily prove the following results.

Lemma 2.1 The point x∗ is the solution of (1.1) if x∗ is the solution of the following equation

Ψ(x) =















xT(Mx + q)
n

∑

i=1

min{0, xi}
2

n
∑

i=1

min{0, (Mx + q)i}
2















= 0.

The energy function for the LCP is defined as follows:

E(x) = Φ(x) +
n

∑

i=1

min{0, xi}
2 +

n
∑

i=1

min{0, (Mx + q)i}
2.

In this paper, we just consider the situation when M is semidefinitely positive (denoted by

M � 0). It is easy to see that E(x) = 0 is equivalent to Ψ(x) = 0.

Theorem 2.1 When M � 0, E(x) is a non-negative, continuously differentiable and convex

function.

Proof Clearly, E(x) is a non-negative, and continuously differentiable function. As Φ is

convex and ϕ(x) =
∑n

i=1 min{0, xi}
2 is also convex, we only need to prove the convexity of

∑n

i=1 min{0, (Mx + q)i}
2 = ϕ(Mx + q). For any µ ∈ (0 1), since M � 0, we have

ϕ(M(µx1 + (1 − µ)x2) + q) = ϕ(M(µx1 + (1 − µ)x2) + µq + (1 − µ)q)

= ϕ(µ(Mx1 + q) + (1 − µ)(Mx2 + q))

≤ µϕ(Mx1 + q) + (1 − µ)ϕ(Mx2 + q),
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which implies that E(x) is a convex function. 2

Theorem 2.2 Let x∗ ∈ Rn. Then the following statements are equalent.

(a) E(x∗) = 0.

(b) x∗ is the solution of the LCP.

Proof As E(x∗) = 0 is equivalent to Ψ(x∗) = 0, we obtain the conclusion. 2

3. The neural network

Based on the above results, a neural network for LCP can then be constructed as

dx

dt
= −∇E(x), x(0) = x0, (3.1)

or

dx

dt
= −xT(Mx+q)(2Mx+q)−2

n
∑

i=1

min{0, xi}−2
n

∑

i=1

min{0, MT(Mx+q)i}, x(0) = x0. (3.2)

The architecture of neural network (3.1) is illustrated by Fig.1.

In order to discuss the stability of the neural network in (3.1) or (3.2), we first prove the

following two theorems.

Theorem 3.1 The initial value problem of the system of differential equations in (3.1) has a

unique solution.

Proof By the definition of the LCP, it is obvious that the right-hand side of (3.2) is locally

Lipschitz continuous. Thus for any x0 ∈ IRn, the initial value problem has a unique solution x(t)

with x(0) = x0 by the existence and uniqueness theorem of the initial value problem of a system

of differential equations. 2

Theorem 3.2 Let A = {x ∈ Rn|∇E(x) = 0} be the set of equilibrium points of (3.1) and B be

the set of optimal solutions of LCP. Then A = B.

Proof Suppose that x ∈ A, that is ∇E(x) = 0. And assume x∗ is any solution of LCP. Then

E(x∗) = 0 by Theorem 2.3. Since E(x) is a differentiable convex function by Theorem 2.2, from

the necessary and sufficient conditions for convex functions, we have

E(x) + (x∗ − x)T∇E(x) ≤ E(x∗) = 0.

Hence,

E(x) ≤ (x − x∗)T∇E(x), (3.3)

which implies E(x) ≤ 0 by ∇E(x) = 0. Nevertheless, E(x) ≥ 0, and we immediately obtain

E(x) = 0. Thus x ∈ B by Theorem 2.3 and A ⊆ B.
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Figure 1: The architecture of (3.1)

On the other hand, for any x ∈ B, xT(Mx + q) = 0 and x ≥ 0. We have xi − |xi| = 0,

i = 1, 2, . . . , n, and MT(Mx + q)i −MT|(Mx + q)i| = 0. Thus, ∇E(x) = 0, implying x ∈ A and

B ⊆ A. 2

Now we are in a position to prove the stability of System (3.1).

Theorem 3.3 Suppose that LCP has an optimal solution x∗, then x∗ is a globally asymptotically

stable equilibrium point of system(3.1).

Proof Suppose that the initial point x0 is arbitrarily given (x0 ∈ IRn) and x(t) = x(t; t0; x
0)

is the solution of the initial value problem of system of differential equation in (3.1). Define

H(x) =
1

2
‖x − x∗‖2(≥ 0),

where x∗ is the optimal solution of LCP and H(x∗) = 0. Obviously, H(x) is a positively
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unbound function (H(x) → +∞ when x → +∞). In view of the convexity of E(x), we have

E(x)+(x∗−x)T∇E(x) ≤ E(x∗), which implies (x∗−x)T∇E(x) ≤ −E(x). Therefore, for x 6= x∗,

dH(x(t))

dt
= ∇H(x)T

dx

dt
= (x − x∗)T(−∇E(x))

= (x∗ − x)T(∇E(x)) ≤ −E(x) < 0. (3.4)

Thus, when x 6= x∗, along the trajectory x = x(t), Ḣ [x(t)] is negative definite. Therefore, x∗ is

globally asymptotically stable by the Lyapunov stability theorem[8,9]. 2.

The follow theorem deals with the case where the solution set has infinitely many points.

Theorem 3.4 Suppose that LCP has infinitely many solutions. Then for any x0(x0 ∈ IRn),

the trajectory x = x(t, x0) (t ≥ 0) corresponding to the neural network in (3.1) converges to an

optimal solution of LCP.

Proof Suppose that x∗ is an equilibrium point of the network in (3.1), namely, ∇E(x∗) = 0.

By the proof of Theorem 3.3, along the trajectory x = x(t, x0)(t ≥ 0, ∀x0), we have Ḣ(x(t)) ≤

0 (t ≥ 0) and H(x(t, x0)) is monotone nonincreasing, namely

‖x(t, x0) − x∗‖ ≤ ‖x0 − x∗‖ (t ≥ 0),

yielding

‖x(t, x0)‖ ≤ ‖x∗‖ + ‖x0 − x∗‖.

Therefore, γ+(x0) = {x(t, x0)|t ≥ 0} is bounded. Take strictly monotonely increasing sequence

{t̄n}, 0 ≤ t̄1 ≤ t̄2 ≤ · · · ≤ t̄i ≤ t̄i+1 ≤ · · · ≤ t̄n → +∞, then {x(t̄n, x0)} is a bounded sequence

composed of infinitely many points. Thus there exists a limit point x̄, that is, there exists a

subsequence {tn} ⊆ {t̄n}, tn → +∞ such that

lim
n→+∞

x(tn, x0) = x̄. (3.5)

Hence x̄ is an ω-limit point of trajectory γ+(x0). Moreover, along trajectory x = x(t, x0)(t ≥ 0),

one has

Ė(x) =
d

dt
E[x(t, x0)] = ∇E(x)T

dx

dt
= −‖∇E(x)‖2 ≤ 0.

Hence E(x) is a Lyapunov function of the network in (3.1) on IRn, and γ+(x0) = {x(t, x0)|t ≥ 0}

is a bounded trajectory of Rn. By LaSalle invariance principle[8], we have ∇E(x̄) = 0 and x is

an optimal solution of LCP. By (3.5), for any ε ≥ 0, there is a nature number N such that

‖x(tn, x0) − x̄‖ ≤ ε, n ≥ N.

Similar to the decreasing property of H(x) in the proof of Theorem 3.3, we can easily prove that

‖x − x‖2 is monotonely nonincreasing along trajectory x = x(t, x0) (t ≥ 0). Therefore, when

t ≥ 0 and t ≥ tN , one has

‖x(t, x0) − x̄‖ ≤ ‖x(tN , x0) − x̄‖ ≤ ε.
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Thus limt→+∞ x(t, x0) = x̄ and the theorem is proved. 2

4. Simulation experiments

In order to demonstrate the efficiency of the proposed neural network, in this section, we

present five simulation examples. The ordinary differential equation solver engaged is ode45s.

Example 1[10] Consider the LCP(M,q) with

M10×10 =















1 2 2 . . . 2
0 1 2 . . . 2
0 0 1 . . . 2
...

...
... . . .

...
0 0 0 . . . 1















q10×1 = (−1,−1,−1, . . . ,−1)T. The optimal solution of the LCP is x∗ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1)T.

Fig.2 shows the trajectories with the initial points (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T, (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T

and (2, 2, 2, 2, 2, 2, 2, 2, 2, 2)T, respectively. The trajectories all converge to the theoretical opti-

mal solution x∗ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1)T, see Fig.2.

Example 2 Consider the LCP(M, q) with

M =





1 0.5 1
1 2 2
2 2 3





q = (−1,−1,−1)T. The optimal solution of the LCP is x∗ = (1, 0, 0)T. Fig.3 shows the trajecto-

ries with the initial points (0, 0, 0)T, (1, 1, 1)T, (2, 2, 2)T, (1, 2, 1)T and (2, 3, 1)T, respectively. The

trajectories all converge to the theoretical optimal solution x∗ = (0.97968, 0.041227,−0.000898)T,

see Fig.3.



No.3 LI Y, et al: A novel neural network for linear complementarity problems 545

Example 3 Consider the LCP(M, q) with

M =

(

2 −5
−1 3

)

q = (−1, 0)T. The optimal solution of the LCP is x∗ = (3, 1)T. Fig.4 shows the trajectories with

the initial points (0, 0)T, (1, 1)T, (2, 2)T, (1, 2)T and (2, 3)T, respectively. The trajectories all

converge to the theoretical optimal solution x∗ = (2.996979, 0.99875083)T, see Fig.4.

Example 4 Consider the LCP(M,q) with

M =









3 0 −1 0
−1 3 −1 0
0 −1 4 −2
−1 −1 −1 5









q = (−2, 3,−4, 5)T. The optimal solution of the LCP is x∗ = (1, 0, 1, 0)T. Fig.5 shows the tra-

jectories with the initial points (0, 0, 0, 0)T, (1, 1, 1, 1)T, (2, 2, 0, 0)T and (1, 2, 0, 0)T, respectively.

The trajectories all converge to the theoretical optimal solution x∗ = (1.0002, 0.0086, 1.0009,−0.0021)T,

see Fig.5.

Example 5 Consider the LCP(M, q) with

M =









1 0 0 1
0 0.5 1 0
0 0 1 0
1 0 0 0.5









q = (−1,−1,−1,−1)T. The optimal solution of the LCP is x∗ = (1, 0, 1, 0)T. Fig.6 shows the

trajectories with the initial points (0, 0, 0, 0)T, (1, 0, 1, 0)T, (1, 0.1, 1, 0.1)T and (1, 0, 1, 0.1)T, re-

spectively. The trajectories all converge to the theoretical optimal solution x∗ = (1, 0, 1, 0)T, see

Fig.6.
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