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1. Introduction

Let an(j) and bn(j), for n ≥ 1, be two sequences of positive integer-valued functions of the

positive integer j ≥ 1. The algorithm 0 < x ≤ 1, x = x1, and, for any n ≥ 1, with positive

integers dn(x),

1

dn(x)
< xn ≤

1

dn(x) − 1
, xn =

1

dn(x)
+

an(dn(x))

bn(dn(x))
· xn+1 (1)

leads to the series expansion

x =
1

d1(x)
+

∞∑
n=1

a1(d1(x)) · · · an(dn(x))

b1(d1(x)) · · · bn(dn(x))

1

dn+1(x)
, (2)

which is called the Oppenheim series expansion of x. Set

hn(j) =
an(j)

bn(j)
j(j − 1), j ≥ 2. (3)

If hn(j) is integer-valued (n ≥ 1, j ≥ 2), Equality (2) is termed the restricted Oppenheim series

expansion of x. Here and in what follows, we always assume hj is integer-valued, for all j ≥ 1.

The algorithm (1) implies

d1(x) ≥ 2, dn+1(x) ≥ hn(dn(x)) + 1, for any n ≥ 1. (4)

On the other hand, any {dn, n ≥ 1} of integer sequence satisfying Inequality (4) is an Oppenheim

admissible sequence, that is, there exists a unique x ∈ (0, 1] such that dn(x) = dn for any n ≥ 1.

The representation (2) under (1) is unique.
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The growth rates of digits in the Oppenheim series expansions are of interest and the metric

properties have been investigated by some authors[1−8].

We use | · | to denote the diameter of a subset of (0, 1], dimH to denote the Hausdorff

dimension and ‘cl’ the closure of a subset of (0, 1], respectively.

2. Hausdorff dimension of B
α

In this section, we give our main result. Let

Bm = {x ∈ (0, 1) :
dn(x)

hn−1(dn−1(x))
> m, n ≥ 1}, for m ≥ 2, (5)

where we set h0 = 1.

Theorem 2.1 Assume that l ≤ hj < L, for j ultimately, then

inf
l≤a≤L

S(a) ≤ dimH Bm ≤ sup
l≤a≤L

S(a), (6)

where S(a), for any integer a ≥ 1, is defined as

S(a) :
∑

b>ma

(
a

b(b − 1)
)S(a) = 1. (7)

Proof Assume that l ≤ hj ≤ L, for all j ≥ t0. Here and what follows, we often make use of

symbolic space defined as follows: For any k ≥ 1, let

Dk = {σ = (σ1, . . . , σk) ∈ Nk,
σj

hj−1(σj−1)
> m for 1 ≤ j ≤ k},

and define

D∗ =
∞⋃

k=0

Dk (D0 := ∅).

For any k ≥ 1, and σ = (σ1, . . . , σk) ∈ Dk, let Jσ and Iσ denote the following closed subintervals

of (0, 1], respectively.

Jσ =
⋃

d>mhk(dk)

cl{x ∈ (0, 1], d1(x) = σ1, . . . , dk(x) = σk, dk+1(x) = d},

Iσ = cl{x ∈ (0, 1], d1(x) = σ1, d2(x) = σ2, . . . , dk(x) = σk}.

Each Jσ is called an n-th order interval. It is obvious that

Bm =

+∞⋂
k=1

⋃
σ∈Dk

Jσ.

From the proof of Theorem 6.1 in [6], we have, k ≥ 1, for any σ ∈ Dk, Iσ is an interval with

endpoints

Aσ =

k−1∑
i=1

a1(σ1)

b1(σ1)
· · ·

ai−1(σi−1)

bi−1(σi−1)

1

σi

+
a1(σ1)

b1(σ1)
·
a2(σ2)

b2(σ2)
· · ·

ak−1(σk−1)

bk−1(σk−1)

1

σk

,
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Bσ =

k−1∑
i=1

a1(σ1)

b1(σ1)
· · ·

ai−1(σi−1)

bi−1(σi−1)

1

σi

+
a1(σ1)

b1(σ1)
·
a2(σ2)

b2(σ2)
· · ·

ak−1(σk−1)

bk−1(σk−1)

1

σk − 1
.

As a result, we have

|Iσ| =
a1(σ1)

b1(σ1)
·
a2(σ2)

b2(σ2)
· · ·

ak−1(σk−1)

bk−1(σk−1)

1

σk(σk − 1)
, (8)

|Jσ| =
∑

d>mhk(σk)

a1(σ1)

b1(σ1)
·
a2(σ2)

b2(σ2)
· · ·

ak(σk)

bk(σk)

1

d(d − 1)

=
1

m

a1(σ1)

b1(σ1)
·
a2(σ2)

b2(σ2)
· · ·

ak−1(σk−1)

bk−1(σk−1)

1

σk(σk − 1)
. (9)

For the upper bound, for any k ≥ 1,
⋃

σ∈Dk
Iσ is a natural covering of Bm. Thus, for any

s > sup1≤a≤L S(a), by the definition of S(a), we have

Hs(Bm) ≤ lim inf
n→+∞

∑
σ∈Dn+1

|Iσ|
s

= lim inf
n→+∞

∑
σ∈Dn+1

(
a1(σ1)

b1(σ1)
·
a2(σ2)

b2(σ2)
· · ·

ak(σk)

bk(σk)

1

σk+1(σk+1 − 1)
)s

= lim inf
n→+∞

∑
σ∈Dn

|Iσ |
s ·

∑
σk+1>mhk(σk)

(
hk(σk)

σk+1(σk+1 − 1)
)s

≤ lim inf
n→+∞

∑
σ∈Dn

|Iσ |
s ≤ · · · ≤

∑
σ∈Dt0

|Iσ|
s < +∞. (10)

This indicates dimH Bm ≤ sup
1≤a≤L

S(a).

To get the lower bound, we consider a sequence of subset of Bm: for any α ∈ N : α >

1, Bm(α) = {x ∈ (0, 1] : m < dj/hj−1(dj−1) ≤ αm, j ≥ 1}.

We claim that: dimH Bm(α) ≥ inf l≤a≤L S(a, α), where S(a, α)is defined as follows

∑
ma<b≤αma

(
a

b(b − 1)
)S(a,α) = 1. (11)

Since Hs(E) = Hs
℘(E) in R1, where Hs

℘(E) denotes in the evaluation of Hausdorff measure of

E, and any cover of E is restricted to a collection of open intervals. It is natural that Bm(α)

is a closed set, then by Heine-Borel Theorem, any open covering system U, consisting of an

enumerable number of open intervals, can be replaced by a finite number of open intervals;

Furthermore, these intervals may be closed by the addition of their endpoints, and finally these

intervals may be altered to have their endpoints in Bm, without at any stage destroying the

property that U is a covering system of Bm and increasing
∑

Ui∈U |Ui|s.

Let G be an interval in U, of positive length. G is contained in I0 = [0, 1] and is not

contained in an Iσ , σ ∈ Dk, for k sufficient large. Therefore, there exists the largest value of

k, say n, for which G belongs to some Iσ, σ ∈ Dn. We see then that there exists numbers

n; σ1, . . . , σn; d, l with d 6= l, such that G is contained in Iσ1···σn
, and

GIσ1···σnd 6= ∅, GIσ1···σnl 6= ∅.
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And if the endpoints of G are in Bm, then

GJσ1···σnd 6= ∅, GJσ1···σnl 6= ∅.

Therefore, |G| is greater than or equal to the gap between Jσ1···σnk and Jσ1···σnl, Thus, by (9),

we know that for d > l,

|G| ≥ (1 −
1

m
)
a1(σ1)

b1(σ1)
· · ·

an(σn)

bn(σn)

1

d(d − 1)

≥
1

α2m3

a1(σ1)

b1(σ1)
· · ·

an(σn)

bn(σn)

1

h2
n(σn)

≥
1

α2m3L
|Iσ1···σn

|. (12)

Let Ω be the finite set of intervals Iσ corresponding in the above way to intervals G of U. Of

course,
⋃

I∈Ω I is a covering of Bm.

Let K1 = max{k : σ ∈ Dk, Iσ ∈ Ω}, K2 = min{k : σ ∈ Dk, Iσ ∈ Ω} and define, WK1
=

{Iσ ∈ Ω : σ ∈ DK1
}. By the definition of K1, we know that if Iσ1,...,σK1−1∗j ∈ WK1

, then for any

mhK1−1(σK1−1) < j ≤ αmhK1−1(σK1−1), Iσ1,...,σK1−1∗j ∈ WK1
. For any s < inf1≤a≤L S(a, α),

we have

∑
mhK1−1(σK1−1)<j≤αmhK1−1(σK1−1)

|Iσ1,...,σK1−1∗j |
s

= |Iσ1,...,σK1−1
|s

∑
mhK1−1(σK1−1)<j≤αmhK1−1(σK1−1)

(
hK1−1(σK1−1)

j(j − 1)
)s

≥ |Iσ1,...,σK1−1
|s.

The argument above shows that we can decrease the basic interval covering to a new one with

lower degree (here, the degree of Iσ is defined as the length of σ as a word) and without increasing

the sum. As a result, we can replace the covering Ω by a new covering Ω∗ in which all basic

interval are of the same order and, moreover,

∑
Iσ∈Ω

|Iσ |
s ≥

∑
σ∈Dk2

|Iσ|
s.

At the same time, since

∑
σ∈Dk+1

|Iσ|
s =

∑
σ∈Dk

∑
mhK1−1(σK1−1)<j≤αmhk(σk)

|Iσ∗j |
s

≥
∑

σ∈Dk

|Iσ|
s ≥ · · · ≥

∑
σ∈Dt0

|Iσ |
s,

we have

∑
G∈U

|G|s ≥
1

α2m3L

∑
σ∈Ω

|Iσ|
s ≥

1

α2m3L

∑
σ∈Dk2

|Iσ|
s ≥

1

α2m3L

∑
σ∈Dt0

|Iσ |
s.
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Since s is arbitrarily, we have dimH Bm(α) ≥ inf l≤a≤L S(a, α). This can finish the proof of

Theorem 2.2, according to the following lemma:

Lemma 2.2 S(a, α) is increasing, as to α, and

lim
α→+∞

S(a, α) = S(a). (13)

Proof The fact that S(a, α) is increasing, as to α, is quite natural, and S(a) > S(a, α) for all

α > 1. And for the other side, we notice firstly that S(a, α) ≥ 1
2 for α sufficiently large, and we

have ∑
ma<j<αma

(
a

j(j − 1)
)

1
2 ≥

∑
ma<j<αma

a
1
2

j
≥ a

1
2 log α > 1.

Now, we show that, for any ǫ > 0, S(a) < S(a, α) + ǫ ultimately. Since for α sufficiently

large,

∑
j>ma

(
a

j(j − 1)
)S(a,α)+ǫ

=
∑

ma<j<αma

(
a

j(j − 1)
)S(a,α)+ǫ +

∑
j>αam

(
a

j(j − 1)
)S(a,α)+ǫ

≤ (
1

am2
)ǫ +

∑
j>αam

(
a

j(j − 1)
)S(a,α)+ǫ < 1.

This implies S(a) < S(a, α) + ǫ, for α sufficiently large. As a result, we have

lim
α→+∞

S(a, α) = S(a).

Since dimH Bm ≥ dimH Bm(α), for any α > 1, then

dimH Bm ≥ sup
α>1

inf
l≤a≤L

S(a, α) = inf
l≤a≤L

S(a).

This completes the proof of Theorem 2.2.

3. Hausdorff dimension of a set in Lüroth series expansion

Form Theorem 2.2, we get the following corollary.

Corollary 3.1 For Lüroth series expansion, the set Bm = {x ∈ (0, 1) : dn(x) > m, n ≥ 1} is of

Hausdorff dimension S(1). Moreover, for m ≥ KK ≥ 17, we have

1

2
+

log K

2 log(m + 2)
≤ S(1) ≤

1

2
+

log log(m − 1)

2 log(m − 1)
.

Proof From the proof Theorme 2.2, the upper bound s of dimHBm satisfies:

∑
b>m

(
1

b(b − 1)
)s ≤ 1. (14)
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Since

∑
b>m

(
1

b(b − 1)
)s <

∞∑
b=m+1

(
1

b − 1
)2s <

∫ ∞

m

(x − 1)−2sdx =
1

2s − 1
(

1

m − 1
)2s−1,

the velue of s satisfies Inequality (14) if

1

2s − 1
(

1

m − 1
)2s−1 ≤ 1,

that is

(2s − 1)(m − 1)2s−1 ≥ 1. (15)

Now, when

2s − 1 =
log log(m − 1)

log(m − 1)
, (16)

Inequality (15) can be written in the form

log log(m − 1) ≥ 1

or

m ≥ 1 + ee > 17. (17)

Thus, the upper bound s of dimH Bm is obtained in Equality (16) with m satisfying Inequality

(17), i.e.,

dimH Bm ≤
1

2
+

log log(m − 1)

2 log(m − 1)

is implied by condition (17).

From the proof Theorme 2.2, the lower bound s of dimH Bm has the property:

∑
b>m

(
1

b(b − 1)
)s ≥ 1. (18)

Since ∑
b>m

(
1

b(b − 1)
)s >

∞∑
b=m+1

(
1

b
)2s >

∫ ∞

m+2

x−2sdx =
1

2s− 1
(

1

m + 2
)2s−1,

the velue of s satisfies Inequality (18) if

(2s − 1)(m + 2)2s−1 ≤ 1

or

m + 2 ≤ (
1

2s − 1
)

1
2s−1 .

Thus dimH Bm ≥ s0, where

m + 2 = (
1

2s0 − 1
)

1
2s0−1 . (19)

Notice that xx is, for x ≥ 1, a strictly increasing function of x. For any constant K > 2 and

m + 2 > KK , (20)



No.3 ZHONG T, et al: A class of exceptional sets in Oppenheim series expansion 553

there exists a real number c > 0, such that

m + 2 = (K + c)K+c. (21)

Therefore,

logK(m + 2) = (K + c) logk(K + c) ≥ (K + c).

It follows that

logK(m + 2) ≥ K + c. (22)

On the other hand, by Equalities (19) and (21), we have

1

2s0 − 1
= K + c (23)

and by (22) and (23), we have logK(m + 2) ≥ 1
2s0−1 . So s0 ≥ 1

2 + log K
2 log(m+2) , where m satisfies

condition (20). Hence we have proved

dimH Bm ≥
1

2
+

log K

2 log(m + 2)
,

for any m ≥ KK − 2.
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