Article ID: 1000-341X(2007)04-0671-03

Document code: A

The Structure of $*\tau_x$ and Its Properties

CHEN Dong-li¹, MA Chun-hui¹, SHI Yan-wei²

(1. School of Science, Xi'an University Architecture and Technology, Shaanxi 710055, China;

2. Department of Science and Engineering, Modern College of Northwest University,

Shaanxi 710075, China)

(E-mail: feibiaozhun@126.com)

Abstract: The structure and some properties of ${}^{*}\tau_{x}$ are discussed in the nonstandard κ -saturated model in this paper. First, a sufficient and necessary condition of a internal set in ${}^{*}\tau_{x}$ is given. Then, in κ -saturation, some properties of ${}^{*}\tau_{x}$ are proved. Finally, the approach theorem is easily obtained.

Key words: concurrent; κ-saturation; monad; *-finite. MSC(2000): 54J05 CLC number: O141.41

1. Introduction and preliminaries

Let (X, τ) be an infinite topological space. For any $x \in X$, τ_x denotes the system of neighborhoods of point x. As we all known, the structure of τ_x is clear [1]. By transfer principle, $*\tau_x$ is obtained. What is in $*\tau_x$ and what are the properties of $*\tau_x$? In this paper, we devote to solve these problems.

First of all, some concepts in nonstandard analysis must be recalled.

Definition 1 Let r be a relation in superstructure V(S). r is called concurrent if whenever $a_1, a_2, \ldots, a_n \in \text{dom}(r)$, there is an element $b \in \text{ran}(r)$ such that $\langle a_i, b \rangle \in r$ for $i = 1, 2, \ldots, n$.

Definition 2 Nonstandard model V(*S) is called the κ -saturated model of V(S) if an internal relation r in V(*S) is concurrent on a subset A of its domain and if $\operatorname{card}(A) < \kappa$ implies the existence of an element y in range of r such that $\langle x, y \rangle$ holds for all $x \in A$.

In this paper, S denotes a infinite individual set and $X \subseteq S$. Let V(*S) be a κ -saturation of V(S) with $\kappa > \operatorname{card}(\tau)$.

Definition 3 Let (X, τ) be a topological space. For any point $x \in X$, the set $\mu(x) = \bigcap \{ {}^*G : G \in \tau_x \}$ is called the monad of point x.

Definition 4 Let (X, τ) be a topological space, $A \subseteq {}^*X$. The set $\mu_{\tau}(\{A\}) = \cap \{{}^*\Omega : \Omega \subseteq \tau \text{ and } A \in {}^*\Omega \}$ is called τ -monad of A.

Received date: 2005-12-12; Accepted date: 2006-08-28

Foundation item: the Natural Science Foundation of Shaanxi Province (2007A12); the Basic Research Foundation of Xi'an Arch. & Tech. University (JC0620) and the Youth Science Technology of Xi'an Arch. & Tech. University (QN0736).

Definition 5 Let $\Lambda \subseteq \mathcal{P}(^*X)$. Then $^0\Lambda = \{A \in \mathcal{P}(X) : ^*A \in \Lambda\}$.

2. The structure of $^*\tau_x$

In this section, a sufficient and necessary condition for a internal set in ${}^{*}\tau_{x}$ is obtained.

Let (X, τ) be a topological space. If A is a nonempty subset of *X, let $\tau_{\{A\}} = \{\Omega : \Omega \subseteq \tau, A \in *\Omega\}$. It is obvious that $\mu_{\tau}(\{A\}) = \cap \{*\Omega : \Omega \in \tau_{\{A\}}\}$.

Lemma Let (X, τ) be a topological space. If A is a nonempty internal subset of *X, then there is an element $E \in *\tau_{\{A\}}$ such that $E \subseteq \mu_{\tau}(\{A\})$.

Proof Let $r = \{\langle G, H \rangle : G \in {}^{*}\tau_{\{A\}}, H \in {}^{*}\tau_{\{A\}}, H \subseteq G\}$. Clearly, r is a internal relation, and ${}^{\sigma}\tau_{\{A\}} \subseteq \operatorname{dom}(r) = {}^{*}\tau_{\{A\}}$. We shall show that r is concurrent on ${}^{\sigma}\tau_{\{A\}}$. To see that r is concurrent, let $G_1, G_2, \ldots, G_n \in {}^{\sigma}\tau_{\{A\}}$. Then $G_i = {}^{*}B_i$ for each $i = 1, 2, \ldots, n$ where $B_i \in \tau_{\{A\}}$. Let $H = \bigcap_{i=1}^n G_i = \bigcap_{i=1}^n {}^{*}B_i = {}^{*}(\bigcap_{i=1}^n B_i) \in {}^{\sigma}\tau_{\{A\}} \subseteq {}^{*}\tau_{\{A\}}$. Thus $H \subseteq G_i$ for all $i = 1, 2, \ldots, n$, that is, there exists $H \in {}^{*}\tau_{\{A\}}$ such that $\langle G_i, H \rangle \in r$ for each $i = 1, 2, \ldots, n$. Hence r is concurrent and $\operatorname{card}({}^{\sigma}\tau_{\{A\}}) = \operatorname{card}(\tau_{\{A\}} < \operatorname{card}(\tau) < \kappa$. Because $V({}^{*}S)$ is the κ saturation of V(S), there is $E \in {}^{*}\tau_{\{A\}}$ such that $\langle G, E \rangle \in r$ for each $G \in {}^{\sigma}\tau_{\{A\}}$, that is, $E \subseteq G$ for each $G \in {}^{\sigma}\tau_{\{A\}}$. So $E \subseteq \cap \{G : G \in {}^{\sigma}\tau_{\{A\}}\} = \mu_{\tau}(\{A\})$.

Theorem 1 Let (X, τ) be a topological space and A be a nonempty internal set of *X. Then there exists a point $x \in X$ such that $A \in *\tau_x$, if and only if for every *-finite subset $\Lambda \subseteq \mu_\tau(\{A\})$ we have $\cap\{B : B \in \Lambda\} \neq \emptyset$.

Proof Let A be internal and $A \in {}^{*}\tau_{x}$ for some $x \in X$. By the definition, $\mu_{\tau}(\{A\}) \subseteq {}^{*}\tau_{x}$. Since τ_{x} has the finite intersection property, ${}^{*}\tau_{x}$ has the *-finite intersection property. So for every *-finite subset $\Lambda \subseteq \mu_{\tau}(\{A\} \subseteq {}^{*}\tau_{x}, \Lambda$ also has the *-finite intersection property, that is $\cap\{B: B \in \Lambda\} \neq \emptyset$.

Conversely, from the lemma it follows that there is an element $E \in {}^{*}\tau_{\{A\}}$ such that $E \subseteq \mu_{\tau}(\{A\})$. By the hypothesis, the family E of internal sets has the *-finite intersection property, that is, there is $E \in {}^{*}\tau_{\{A\}}$ and E has the *-finite intersection property. By the transfer principle, there exists an element $\Omega \in \tau_{\{A\}}$ such that Ω has the finite intersection property. From $\Omega \in \tau_{\{A\}}$ it follows that $A \in {}^{*}\Omega$, and so A is an element of the extension of the τ_x for some $x \in X$ generated by Ω . This completes the proof of the theorem.

3. Some properties of $^*\tau_x$

In this section, some properties of τ_x are discussed.

Theorem 2 Let (X, τ) be a topological space. Then for each point $x \in X$, if Λ is an internal subset of ${}^*\tau_x$ such that $\tau_x = {}^0 \Lambda$, then there exists an element $E \in \Lambda$ such that $E \subseteq \mu(x)$.

Proof Let $r = \{ \langle A, B \rangle : A \in \Lambda, B \in \Lambda, B \subseteq A \}$. Clearly, r is a internal relation, and $\sigma \tau_x \subseteq \text{dom}(r) = \Lambda$. We show that r is concurrent on $\sigma \tau_x$. To this end, let $A_1, A_2, \ldots, A_n \in \sigma \tau_x$. Then

 $\begin{array}{l} A_i = {}^*G_i \text{ for each } i = 1, 2, \dots, n \text{ where } G_i \in \tau_x. \text{ Let } B = \bigcap_{i=1}^n A_i = \bigcap_{i=1}^n {}^*G_i = {}^*(\bigcap_{i=1}^n G_i) \in \\ {}^{\sigma}\tau_x \subseteq \Lambda. \text{ Thus } B \subseteq A_i \text{ for all } i = 1, 2, \dots, n, \text{ that is, there exists } B \in \Lambda \text{ such that } \langle A_i, B \rangle \in r \text{ for } \\ \text{each } i = 1, 2, \dots, n. \text{ Hence } r \text{ is concurrent. And } \operatorname{card}({}^{\sigma}\tau_x) = \operatorname{card}(\tau_x) < \operatorname{card}(\tau) < \kappa. \text{ Because } \\ V({}^*S) \text{ is the } \kappa\text{-saturation of } V(S), \text{ there is } E \in \Lambda \text{ such that } \langle A, E \rangle \in r \text{ for each } A \in {}^{\sigma}\tau_x, \text{ that } \\ \text{is, } E \subseteq A \text{ for each } A \in {}^{\sigma}\tau_x. \text{ So } E \subseteq \cap \{A : A \in \tau_x\} = \mu(x). \end{array}$

Corollary 1 Let (X, τ) be a topological space. For each point $x \in X$, if Ω is an internal subset of ${}^{*}\tau_{x}$ such that $E \in {}^{*}\tau_{x}$ and $E \subseteq \mu(x)$ implies $E \in \Omega$, then there exists an element $G \in \tau_{x}$ such that ${}^{*}G \in \Omega$.

Proof Suppose that ${}^*G \notin \Omega$ for any $G \in \tau_x$. Then let $\Lambda = {}^*\tau_x - \Omega$. It is obvious that Λ is an internal subset of ${}^*\tau_x$ and ${}^*G \in \Lambda$ for every $G \in \tau_x$, that is, λ satisfies the conditions of Theorem 2. Hence there exists an element $E \in \Lambda$ such that $E \subseteq \mu(x)$. This contradicts $E \in \Omega$. \Box

The following corollary is a famous conclusion–Approach Principle in [2]. However, it can be easily obtained in this paper.

Corollary 2 For each $x \in X$ there is an internal set $D \in {}^{*}\tau_{x}$ such that $D \subseteq \mu(x)$.

Proof We only need to let Λ in Theorem 2 be $*\tau_x$.

References:

- [1] KELLEY J L. General Topology [M]. Springer-Verlag, 1955.
- [2] DAVIS M. Applied Nonstandard Analysis [M]. New York: Wiley, 1977.
- [3] LUXEMBURG W A J. A General Theory of Monads [M]. New York: Halt, 1969.
- [4] CHEN Dong-li, MA Chun-hui, YUAN Wen-fa. The nonstandard characteristics of filter convergence and its application [J]. Pure Appl. Math. (Xi'an), 2004, 20(1): 10–13.
- [5] CHEN Dong-li. The extension of infinitesimal prolongation theorem and its application [J]. J. Math. Res. Exposition, 2003, 23(2): 221–224.

$*\tau_x$ 的结构及其性质

陈东立1,马春晖1,史艳维2

(1. 西安建筑科技大学理学院, 陕西 西安 710055; 2. 西北大学现代学院理工系, 陕西 西安 710075)

摘要: 在 κ - 饱和的非标准模型中,讨论了 * τ_x 的结构及其性质. 首先,本文给出了一个内集在 * τ_x 中的充分必要条件. 其次,对 * τ_x 的性质做了进一步的讨论. 最后,利用 * τ_x 的性质,容易 地证明了著名的逼近原理.

关键词: 共点关系; κ- 饱和; 单子; *- 有限.