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Abstract The concept of derivations and generalized inner derivations has been generalized

as an additive function δ : R −→ R satisfying δ(xy) = δ(x)y + xd(y) for all x, y ∈ R, where d

is a derivation on R. Such a function δ is called a generalized derivation. Suppose that U is a

Lie ideal of R such that u2
∈ U for all u ∈ U . In this paper, we prove that U ⊆ Z(R) when

one of the following holds: (1) δ([u, v]) = u ◦ v (2) δ([u, v]) + u ◦ v = 0 (3) δ(u ◦ v) = [u, v] (4)

δ(u ◦ v) + [u, v] = 0 for all u, v ∈ U .
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1. Introduction

Daif and Bell[1] proved that a semiprime ring R must be commutative if it admits a derivation

d such that d([x, y]) = [x, y] or d([x, y]) + [x, y] = 0. Further, Ashar and Rehman[2] extended the

mentioned result for Lie ideals of R. The purpose of this paper is to generalize these results for

generalized derivations and Lie ideals of R.

Throughout this paper, R will always denote an associative ring with center Z(R). For any

x, y ∈ R, the symbol [x, y] stands for the commutator xy − yx and denote by x ◦ y the anti-

commutator xy + yx. Given two subsets A and B of R, then [A, B] will denote the additive

subgroup of R generated by all elements of the form [a, b] where a ∈ A, b ∈ B. Recall that R is

prime if aRb = 0 implies a = 0 or b = 0. An additive subgroup U of R is said to be a Lie ideal

of R if [u, r] ∈ U for all u ∈ U and r ∈ R. An additive map d : R −→ R is called a derivation

if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. For a fixed a ∈ R, the map Ia : R −→ R

given Ia(x) = [a, x] is a derivation which is said to be inner derivation. By a generalized inner

derivation, one usually means a map of the form x 7−→ ax + xb. Hvala[3] introduced the notions

of generalized derivations in rings. An additive function δ : R −→ R is called a generalized

derivation if there exists a derivation d : R −→ R such that δ(xy) = δ(x)y + xd(y) holds for all

x, y ∈ R.

2. Preliminaries
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We begin with some known results which will be used extensively in the sequel to prove our

theorems.

Lemma 2.1[4] Let R be a 2-torsion free semiprime ring and U a Lie ideal of R. If [U, U ] ⊆ Z(R),

then U ⊆ Z(R).

Lemma 2.2 If U is a Lie ideal of R such that u2 ∈ U for all u ∈ U , then 2uv ∈ U for all u,

v ∈ U .

Proof For all w, u, v ∈ U ,

uv + vu = (u + v)2 − u2 − v2 ∈ U.

On the other hand,

uv − vu ∈ U.

Adding two expressions, we have 2uv ∈ U for all u, v ∈ U .

Lemma 2.3[5] If U * Z(R) is a Lie ideal of a 2-torsion free prime ring R and a, b ∈ R such

that aUb = 0, then a = 0 or b = 0.

Lemma 2.4[5] If d 6= 0 is a derivation of R, and if U is a Lie ideal of R such that d(U) ⊆ Z(R),

then U ⊆ Z(R).

Lemma 2.5 A group cannot be a union of two its proper subgroups.

Proof Suppose on the contrary that G = M ∪N , where both M and N are proper subgroups of

G. Then there exists g1 ∈ G\M(i.e. g1 ∈ N\M) and g2 ∈ G\N (i.e. g2 ∈ M\N). It is obvious

that g1g2 ∈ G = M ∪ N . Therefore we have either g1g2 ∈ M or g1g2 ∈ N . If g1g2 ∈ M , we get

g1 ∈ M since g2 ∈ M . This is a contradiction. On the other hand, if g1g2 ∈ N , we get g2 ∈ N

since g1 ∈ N , again a contradiction. This completes the proof of the Lemma.

3. The proof of main theorem

Now we are in a position to prove the following theorem.

Theorem 3.1 Let R be a 2-torsion free prime ring and U a Lie ideal of R such that u2 ∈ U for

all u ∈ U . Suppose R admits a generalized derivation δ with d such that δ([u, v]) = u ◦ v for all

u, v ∈ U . If δ = 0 or d 6= 0, then U ⊆ Z(R).

Proof Suppose δ is a generalized derivation of R such that

δ([u, v]) = u ◦ v. (1)

If δ = 0, then u ◦ v = 0. By Lemma 2.2, replacing v by 2vw in (1) and using the fact charR 6= 2,

we have

uvw + vwu = 0. (2)
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Combining (1) with (2), we have

−vuw + vwu = v[w, u] = 0 = v[u, w]. (3)

Again replacing v by [u, r] gives

[u, r][u, w] = 0. (4)

Replacing r by sr in (4), we have

0 = [u, sr][u, w] = s[u, r][u, w] + [u, r]r[u, w] = [u, s]R[u, w]. (5)

In particular, we have [u, w]R[u, w] = 0. The primeness of R forces that [u, v] = 0 (i.e. [U, U ] =

0), and hence by Lemma 2.1 we get the required result. Therefore, from now on we shall assume

that δ 6= 0. Suppose on the contrary that U * Z(R). For any u, v ∈ U , we have δ([u, v]) = u ◦ v.

In other words, we have obtained

δ(u)v + ud(v) − δ(v)u − vd(u) = u ◦ v. (6)

Replacing v by 2vu in (6) and using the fact charR 6= 2, we find that

δ(u)vu + ud(v)u + [u, v]d(u) − δ(v)u2 − vd(u)u = u ◦ (vu). (7)

Combining (6) with (7), we have [u, v]d(u) = 0 for all u, v ∈ U . Again replacing v by 2wv in the

above gives 0 = [u, wv]d(u) = [u, w]vd(u) + w[u, v]d(u) = [u, w]vd(v). That is,

[u, w]Ud(u) = 0. (8)

Thus we have either [u, w] = 0 or d(u) = 0 by Lemma 2.3. Now let U1 = {u ∈ U | [u, w] = 0}

and U2 = {u ∈ U | d(u) = 0}. Then U1, U2 are both additive subgroups of U and U1

⋃
U2 = U .

Thus U = U1 or U = U2 by Lemma 2.5. If U = U1, then [u, w] = 0 (i.e. [U, U ] = 0) for all

u, w ∈ U . Hence we get U ⊆ Z(R) by Lemma 2.1, a contradiction. On the other hand, if U = U2

then d(U) = 0 for all u ∈ U . Thus by Lemma 2.4, we get U ⊆ Z(R), again a contradiction.

Using the same technique with necessary variations we get the following.

Theorem 3.2 Let R be a 2-torsion free prime ring and U a Lie ideal of R such that u2 ∈ U for

all u ∈ U . Suppose R admits a generalized derivation δ with d such that δ([u, v]) + u ◦ v = 0 for

all u, v ∈ U . If δ = 0 or d 6= 0, then U ⊆ Z(R).

Theorem 3.3 Let R be a 2-torsion free prime ring and U a Lie ideal of R such that u2 ∈ U for

all u ∈ U . Suppose R admits a generalized derivation δ with d such that δ(u ◦ v) = [u, v] for all

u, v ∈ U . If δ = 0 or d 6= 0, then U ⊆ Z(R).

Proof If δ = 0, then we have [u, v] = 0 (i.e. [U, U ] = 0). By Lemma 2.1, we have U ⊆ Z(R).

Now, we assume that δ 6= 0. Suppose on the contrary that U * Z(R). For any u, v ∈ U , we have

δ(u ◦ v) = [u, v]. (9)

Replacing v by 2vu in (9), and using the fact charR 6= 2, we have

δ(u)vu + ud(v)u + uvd(u) + δ(v)u2 + vd(u)u + vud(u) = [u, v]u. (10)
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Combining (9) with (10), we have

(u ◦ v)d(u) = 0. (11)

Again replacing v by 2wv in (11) and using charR 6= 2 yields

(u ◦ (wv))d(u) = 0. (12)

Using the identity x ◦ (yz) = y(x ◦ z) + [x, y]z to expand (12) leads to

w(u ◦ v)d(u) + [u, w]vd(u) = 0. (13)

Combining (11) with (13), we have [u, w]vd(u) = 0. That is, [u, w]Ud(u) = 0. Note that the

argument given in the proof of Theorem 3.1 is still valid in the present situation and hence

repeating the same porcess we get the required result.

Using the same technique with necessary variations, one can prove the following.

Theorem 3.4 Let R be a 2-torsion free prime ring and U a Lie ideal of R such that u2 ∈ U for

all u ∈ U . Suppose R admits a generalized derivation δ with d such that δ(u ◦ v) + [u, v] = 0 for

all u, v ∈ U . If δ = 0 or d 6= 0, then U ⊆ Z(R).

Remark In view of the above results, it is natural to ask if these also hold to left multiplier

(i.e., a generalized derivation with d = 0). We leave this as an open question.
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