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Abstract Let X1, X2, . . . , Xk be k disjoint subsets of S with the same cardinality m. Define

H(m,k) = {X ⊆ S : X 6⊆ Xi for 1 ≤ i ≤ k} and P (m,k) = {X ⊆ S : X ∩ Xi 6= ∅ for at

least two Xi’s}. Suppose S =
⋃k

i=1
Xi, and let Q(m, k, 2) be the collection of all subsets K of

S satisfying |K ∩ Xi| ≥ 2 for some 1 ≤ i ≤ k. For any two disjoint subsets Y1 and Y2 of S, we

define F1,j = {X ⊆ S : either |X ∩ Y1| ≥ 1 or |X ∩ Y2| ≥ j}. It is obvious that the four posets

are graded posets ordered by inclusion. In this paper we will prove that the four posets are

nested chain orders.
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1. Introduction

Let P be a finite poset. A rank function on P is a function r : P → N such that r(p) = 0 for

the minimal element of P and r(q) = r(p) + 1 whenever q covers p. If P admits a rank function,

then P is said to be ranked. The number r(P ) = max{r(p) : p ∈ P} is called the rank of P . For

0 ≤ i ≤ n, where n = r(P ), the ith level set of P is defined by Pi = {p ∈ P : r(p) = i} and the

number Wi = |Pi| is called the ith Whitney number. The sequence R(P ) = {W0, W1, . . . , Wn}

is called the rank sequence of P . We say that P is rank symmetric if Wi = Wn−i, 0 ≤ i ≤ n,

and rank unimodal if Wj ≥ min{Wi, Wk}, 0 ≤ i ≤ j ≤ k ≤ n. Similarly, we say P is log concave

if W 2
j ≥ Wj−1Wj+1, 1 ≤ j ≤ n − 1.

A ranked poset P is Sperner if no antichain of P has cardinality greater than the largest

Whitney number. More generally, P is k-Sperner if no union of k antichains has cardinality

greater than the sum of the k largest Whitey numbers, and is strongly Sperner if it is k-Sperner

for 1 ≤ k ≤ r(P ) + 1. Let B ⊆ Pi, 0 ≤ i ≤ n − 1. Then the collection ∇B = {D ∈ Pi+1 : D

covers B for some B ∈ B} is called the shade of B. If

|∇B|

Wi+1
≥

|B|

Wi

,

then we say P has the normalized matching property.
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A chain p1 < p2 < · · · < pt in a ranked poset P is saturated if pi covers pi−1 for 2 ≤ i ≤ t.

Two chains in a ranked poset P are nested if they are saturated and the chain containing the

element of least rank in their union also contains the element of greatest rank. Also, P is called a

nested chain order if P can be partitioned into pairwise nested chains. It is obvious that nested

chain order implies the unimodality and strong spernerity.

Let Bn be the Boolean lattice over an n-set S. It is well known that Bn has the strong

spernerity, normalized matching property and is log concave. Let C(n, k) be the collection

of all subsets of an n-set S which intersect a fixed k-subset of S. Then C(n, k) is a natural

generalization for the subset lattice. Lih[7] first observed this and showed that C(n, k) has the

Sperner property. Griggs[5] further showed that C(n, k) has several strong properties.

Let X1, X2, . . . , Xk be k pairwise disjoint subsets of S and with the same cardinality m.

Two posets are defined by : P (m, k) = {X ⊆ S : X ∩ Xi 6= ∅ for at least two Xi’s} and

H(m, k) = {X ⊆ S : X 6⊆ Xi for 1 ≤ i ≤ k}. If S =
⋃k

i=1 Xi, let Q(m, k, 2) be the collection of

all subsets K of S such that |K ∩ Xi| ≥ 2 for some 1 ≤ i ≤ k. Note that P (m, k) and H(m, k)

are identical when S =
⋃k

i=1 Xi. For any two disjoint subsets Y1 and Y2 of S, let F1,j be the

collection of all subsets X of S such that either |X ∩ Y1| ≤ 1 or |X ∩ Y2| ≤ j. It is obvious

that the four posets are graded ordered by inclusion. Moreover, H(m, k) and P (m, k) can be

regarded as the generalization of C(n, k). Horrocks[3] proved that Q(m, k, 2) has the normalized

matching property. In this paper we will prove that the four posets are nested chain orders.

2. Nested chain decomposition

In 1951, de Bruijin et al.[1] discovered an inductive way to decompose Bn into symmetric

chains. Subsequently, Greene and Kleitman[4] produced an explicit symmetric chain decomposi-

tion of Bn. We now describe this method.

For each subset X ∈ Bn we associate it with a (0,1)-sequence χ(X) = ε1ε2 · · · εn, where

εi = 1 if i ∈ X and εi = 0 otherwise. Whenever a 1 immediately follows a zero in χ(X),

bracket or join them by placing parentheses around them. Continue this pairing procedure as

long as possible by pairing an unpaired zero with an unpaired 1 which follows it immediately, or

which is separated from the zero only by previously paired digits. For instance, for n = 12 and

X = {1, 4, 9, 10}, χ(X) is bracketed into

10(01)00(0(01)1)00.

This bracketing is unique for all X ∈ Bn, and, the unpaired zeros must appear on the right

hands of unpaired 1’s (if they exist). Sets in Bn with the same bracketing (joined pairs) form

a saturated chain which is symmetric about middle rank. Such bracketing induces a symmetric

chain decomposition of Bn. We denote this chain partition by En.

Now suppose that X1 ∪ X2 ∪ · · · ∪ Xk ⊆ [n], where Xi = {i + jk : j = 0, 1, 2, . . . , m − 1} for

i = 1, 2, . . . , k.

Lemma 2.1 Let C = {A1 ⊂ A2 ⊂ · · · ⊂ Ar} be a chain in En satisfying C ∩H(m, k) 6= ∅. Then
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C ⊂ H(m, k) or C \ {A1} ⊂ H(m, k) or C \ {A1, A2} ⊂ H(m, k).

Proof We first observe that if Ai ∈ H(m, k), then Aj ∈ H(m, k) whenever j ≥ i. Therefore the

lemma holds if A1 ∈ H(m, k). Thus it remains to consider the case A1 /∈ H(m, k).

Suppose A1 /∈ H(m, k). If the zeros in the first km digits of χ(A1) are all paired, then

A2 ∈ H(m, k). Thus C appears in H(m, k) missing only its first element. Now we distinguish

three cases to consider that χ(A1) contains at least one unpaired zero in the first km digits.

Case 1. A1 = ∅. Then Ai = {1, 2, . . . , i − 1}. Thus C appears in H(m, k) only missing its first

two elements.

Case 2. A1 ⊆ X1. If k ≥ 3, the first two digits of χ(A1) are unpaired zeros, then A2 =

A1 ∪ {1} /∈ H(m, k) and A3 = A2 ∪ {2} ∈ H(m, k). If k = 2, the leftmost two unpaired zeros

in χ(A1) are in position 1 and position j where j ∈ X2, then A2 = A1 ∪ {1} /∈ H(m, k) and

A3 = A2 ∪ {j} ∈ H(m, k). Thus in this case, C appears in H(m, k) only missing its first two

elements.

Case 3. A1 ∩ X1 = ∅. Let r be the position of the leftmost unpaired zero in χ(A1). Suppose

A1 ⊆ X2. If r /∈ X2, then A2 = A1 ∪ {r} ∈ H(m, k). If r ∈ X2, then the digit in position

(r − 1) is also an unpaired zero. That’s a contrary. If A1 ⊆ Xk (k ≥ 2), then r = 1 and

A2 = A1 ∪ {1} ∈ H(m, k). Therefore, C appears in H(m, k) only missing its first element. 2

Let EH be the chain decomposition of H(m, k) obtained by using the chains of En. From the

previous lemma, every chain in EH is saturated, beginning with a set of size j, j + 1 or j + 2 and

ending with a set of size (n − j). It is easy to observe that chains in EH need not be nested.

As in Ref.[2], we transform EH into a nested chain partition as follows. For every chain C

from a (j + 2)-set to an (n− j)-set with j ≥ 1, we will find a uniquely determined chain Ĉ from

a (j + 1)-set to an (n − j − 1)-set with the property that the set at the top of Ĉ is contained in

the set at the top of C. We form chain C
′

from a (j + 2)-set to an (n − j − 1)-set and Ĉ
′

from

a (j + 1)-set to an (n − j)-set. Now, we introduce a result[2].

Lemma 2.2 Let A and B be elements of Bn and let CA and CB be the chains which contain

A and B, respectively. If, for all i ≤ n, χ(B) contains a paired zero in position i whenever χ(A)

contains a paired zero in position i, then

T (CB) ⊆ T (CA)

where, for any chain C ∈ En, T (C) denotes the top element of C.

Theorem 2.3 H(m, k) is a nested chain order.

Proof Let C be a chain in EH which, when considered as an element of En, is missing its first

two elements. Let X and Y be the first and second elements of C respectively, and Z be the

above element of Y when viewed as a chain of En. From the above process, we obtain that either

X = ∅ or X ⊆ X1, Y = X ∪ {1} and Z = Y ∪ {s} where s /∈ X1. Now we distinguish two cases
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to construct the nested chain decomposition.

Case i. S =
⋃

Xi. If X 6= ∅, let T = X ∪ {s}. Then T ∈ H(m, k) is uniquely determined

by C. Let Ĉ be the chain in En which contains T . Then the bottom element of Ĉ is T , so Ĉ

appears entirely in H(m, k). By Lemma 2.2, we obtain that T (Ĉ) ⊆ T (C). Construct C′ and

Ĉ′ as follows. Let C′ = C\T (C) and Ĉ′ = Ĉ ∪ T (C). In EH , replace each such pair (C, Ĉ) with

(C′, Ĉ′) and let E ′

H be the collection of chains so obtained. Now observe that each chain in E ′

H

runs from a 2-set to an n-set, or from a j-set to an (n− j)-set for some j ≥ 2 or from a (j +1)-set

to an (n − j)-set for some j ≥ 1, so E ′

H is a nested chain partition of H(m, k).

Case ii.
⋃

Xi ⊂ S. If X = ∅, let T = X ∪ {n}. Otherwise, let T = X ∪ {s}. Then T ∈ H(m, k)

is uniquely determined by C. Let Ĉ be the chain in En which contains T . Then the bottom

element of Ĉ is T , so Ĉ appears entirely in H(m, k). By Lemma 2.2, we obtain that T (Ĉ) ⊆ T (C).

Construct C′ and Ĉ′ as follows. Let C′ = C\T (C) and Ĉ′ = Ĉ ∪T (C). In EH , replace each such

pair (C, Ĉ) with (C′, Ĉ′) and let E ′

H be the collection of chains so obtained. Now observe that

each chain in E ′

H runs from a j-set to an (n − j)-set for some j ≥ 1 or from a (j + 1)-set to an

(n − j)-set for some j ≥ 1, so E ′

H is a nested chain partition of H(m, k).

Thus we complete the proof. 2

Theorem 2.4 P (m, k) is a nested chain order.

Proof Let C = {A1 ⊂ A2 ⊂ · · · ⊂ Ar} be a chain in En satisfying C ∩ P (m, k) 6= ∅. We first

prove that C ⊂ P (m, k) or C \ {A1} ⊂ P (m, k) or C \ {A1, A2} ⊂ P (m, k). Similarly to the

proof of Lemma 2.1, we only need to consider the case A1 /∈ P (m, k). Suppose A1 /∈ P (m, k).

Then A1 ∩ Xi 6= ∅ for at most one i.

Case i. A1 ∩ X1 6= ∅. Then in χ(A1), the leftmost two unpaired zeros are in position 1 and

position j where j ∈ X2, which implies that A2 = A1 ∪ {1} /∈ P (m, k) and A3 = A2 ∪ {j} ∈

P (m, k). Thus C appears in P (m, k) only missing its first two elements.

Case ii. A1 ∩ Xj 6= ∅ for some j ≥ 2. If j = 2 and k = 2, then the position of the leftmost

unpaired zero in χ(A1) is in X1; and if k ≥ 3, the position of the leftmost unpaired zero is either

in X1 or in X3. If j ≥ 3, the first digit of χ(A1) is an unpaired zero. Thus A2 ∈ P (m, k) and C

appears in P (m, k) only missing its first element.

Case iii. A1∩Xj = ∅ for j = 1, 2, . . . , k. It is obvious that the leftmost two unpaired zeros lie in

position 1 and position 2. Then A2 = A1 ∪ {1} /∈ P (m, k) and A3 = A2 ∪ {2} ∈ P (m, k). Thus

C appears in P (m, k) only missing its first two elements.

Let EP be the chain decomposition of P (m, k) obtained by using the chains of En. From the

previous process, every chain in EP is saturated, beginning with a set of size j, j + 1 or j + 2

and ending with a set of size (n− j). It is easy to observe that chains in EP need not be nested.

Subsequently, we transform it into a nested chain.

Suppose C is a chain in EP which, when considered as an element of En, is missing its first
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two elements. Let X and Y be the first and second elements of C respectively when viewed as

a chain of En and Z be the above element of Y in C. From the above process, we obtain that

Y = X ∪ {1} and Z = Y ∪ {s}, where s /∈ X1. If X 6= ∅, let T = X ∪ {s}. Then T ∈ P (m, k)

is uniquely determined by C. Let Ĉ be the chain in En which contains T . Then the bottom

element of Ĉ is T , so Ĉ appears entirely in P (m, k). By Lemma 2.2, we obtain that T (Ĉ) ⊆ T (C).

Construct C′ and Ĉ′ as follows. Let C′ = C\T (C) and Ĉ′ = Ĉ ∪T (C). In EP , replace each such

pair (C, Ĉ) with (C′, Ĉ′) and let E ′

P be the collection of chains so obtained. Now observe that

every chain in E ′

P runs from a 2-set to an (n − 2)-set, or from a j-set to an (n − j)-set for some

j ≥ 2 or from a (j + 1)-set to an (n − j)-set for some j ≥ 1, so E ′

P is a nested chain partition of

P (m, k). Thus we complete the proof. 2

Theorem 2.5 Q(m, k, 2) is a nested chain order.

Proof Suppose that [n] = X1 ∪X2 ∪ · · · ∪Xk, where Xi = {(i− 1)m + 1, (i− 1)m + 2, . . . , im},

i = 1, 2, . . . , k. Let C = {A1 ⊂ A2 ⊂ · · · ⊂ Ar} be a chain in En satisfying C ∩ Q(m, k, 2) 6= ∅.

We first prove that C ⊂ Q(m, k) or C \ {A1} ⊂ Q(m, k) or C \ {A1, A2} ⊂ Q(m, k, 2). If

A1 ∈ Q(m, k, 2), then C ⊆ Q(m, k, 2). Thus we may suppose that A1 /∈ Q(m, k, 2). We consider

two cases.

Case 1. m > 3. If |A1∩X1| = 1, suppose that the leftmost unpaired zero in χ(A1) is in position

i. Then i ∈ X1 and A2 = A1 ∪ {i} ∈ Q(m, k, 2). Thus C appears in Q(m, k, 2) missing only

its first element. If A1 ∩ X1 = ∅, then the first two digits of χ(A1) are unpaired zeros, which

deduces that A2 = A1 ∪ {1} 6∈ Q(m, k, 2) and A3 = A2 ∪ {2} ∈ Q(m, k, 2). Thus C appears in

Q(m, k, 2) missing only its first two elements.

Case 2. m = 3. If |A1∩X1| = 1, suppose that the leftmost unpaired zero in χ(A1) is in position

i. Then either i ∈ X1 or i ∈ X2. If i ∈ X1, then A2 = A1 ∪ {i} ∈ Q(m, k, 2). If i ∈ X2, then

A1 ∩X2 6= ∅ and A2 = A1 ∪{i} ∈ Q(m, k, 2). Thus C appears in Q(m, k, 2) missing only its first

element. If A1 ∩ X1 = ∅, then the first two digits are unpaired zeros in χ(A1), which deduces

that A2 = A1 ∪ {1} 6∈ Q(m, k, 2) and A3 = A2 ∪ {2} ∈ Q(m, k, 2). Thus C appears in Q(m, k, 2)

missing only its first two elements.

Let EQ be the chain decomposition of Q(m, k, 2) obtained by using the chains of En. Let C

be a chain in EQ which, when considered as an element of En, is missing its first two elements.

Let X and Y be the first and second elements of C respectively when viewed as a chain of En

and Z be the above element of Y in C. Then C is a chain from a (j + 2)-set to an (n − j)-set.

From the above process, we obtain that Y = X ∪ {1} and Z = Y ∪ {2}. If j ≥ 1, then χ(X)

contains at least one 1. For any i we define the right position i to be position r, where

r =

{
i + 1 if m ∤ i

i − m + 1 otherwise.

It is obvious that if the digit of χ(X) in the position i is 1, then the digit in the right position

i is zero. Let i be the least integer such that the digit in the position i is 1 and the zero in the
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right position i is unpaired. Let T = X ∪{r}. Then T ∈ Q(m, k, 2) is uniquely determined by C.

Let Ĉ be the chain in En which contains T . Then the bottom element of Ĉ is T , so Ĉ appears

entirely in Q(m, k, 2). By Lemma 2.2, we obtain that T (Ĉ) ⊆ T (C). Constructing C′ and Ĉ′

as follows. Let C′ = C\T (C) and Ĉ′ = Ĉ ∪ T (C). In EQ, replace each such pair (C, Ĉ) with

(C′, Ĉ′) and let E ′

Q be the collection of chains so obtained. Now observe that a chain in E ′

Q runs

from a 2-set to an n-set, or from a j-set to an (n− j)-set for some j ≥ 2 or from a (j + 1)-set to

an (n − j)-set for some j ≥ 1, so E ′

Q is a nested chain partition of Q(m, k, 2). 2

Theorem 2.6 Let Y1, Y2 be two disjoint subsets of S and |Y1| = k1, |Y2| = k2, and F1,2 be the

collection of all subsets X of S such that either |X ∩ Y1| ≥ 1 or |X ∩ Y2| ≥ k. Then F1,2 is a

nested chain order if k1 ≥ k − 1.

Proof In F1,2 we bracket and form chains in the same way as Bn, so that F1,2 is partitioned

into chains with each lying in one of the chains induced by bracketing Bn. We now consider how

a chain in the bracketing of Bn produces a chain in F1,2.

Suppose Y1 = {1, 2, . . . , k1} and Y2 = {k1 + 1, . . . , k1 + k2}. Then X ∈ Bn belongs to F1,2

only if that either |X ∩Y1| ≥ 1 or |X ∩Y2| ≥ k. That is, only if either one of the first k1 digits in

χ(X) is a 1 or there exist k 1’s in the digits from (k1 + 1)th to (k1 + k2)th. Let C be a chain in

the bracketing of Bn and X be its bottom set. Now we distinguish two cases to consider χ(X).

Case 1. Suppose χ(X) contains at least k 1′s in its first (k1 + k2) digits. Then there exists

at least either one 1 in the first k1 digits or k 1′s in the digits from (k1 + 1)th to (k1 + k2)th.

Otherwise it is contrary to the fact that there are at least k 1′s in the first (k1 +k2) digits. Then

we obtain that X ∈ F1,2, which implies that all sets in C belong to F1,2, so C is a chain induced

by bracketing F1,2.

Case 2. Suppose χ(X) begins with at most (k−1) 1′s in the first (k1 +k2) digits. If there exists

one 1 in the first k1 digits, then X ∈ F1,2. This implies that all sets in C belong to F1,2, so C is

a chain induced by bracketing F1,2.

Otherwise there is no 1 in the first k1 digits of χ(X). If all zeros in the first (k1 + k2) digits

are paired, then this will be true all the way up the chain C, and no set in C belongs to F1,2.

Otherwise there is at least one unpaired zero in the first (k1 + k2) digits. Let T be the set in C

which covers X . If there is one unpaired zero in the first k1 digits, then T ∈ F1,2. Otherwise

there is no unpaired zero in the first k1 digits, then k1 = k − 1 and there are (k − 1) 1′s in the

digits from the (k1 + 1)th to (k1 + k2)th. Moreover χ(T ) is formed by changing the leftmost

unpaired zero in χ(X) to a 1. Thus χ(T ) contains k 1′s in the first (k1 +k2) digits, which implies

T ∈ F1,2. So all sets above X in C belong to F1,2. Deleting X from C produces a chain in the

bracketing of F1,2.

Let E ′ be the chain decomposition of F1,2 obtained by using the chains of En. From the above

two cases, every chain in E ′ is saturated, beginning with a set of size j or j + 1 and ending with

a set of size (n − j). Then E ′ is a nested chain decomposition of F1,2. 2
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3. Remarks

From Section 2, we know that the posets H(m, k), P (m, k), Q(m, k, 2) and F1,j have the

strong sperner property. Usually, we will ask whether the poset has the normalized matching

property or not when it has the sperner property. It is not difficult to verify that F1,j doesn’t

employ the normalized matching property if j ≥ 2. Using the method of Ref. [6], we have verified

that P (m, k) is log concave and has the normalized matching property for k ≥ 1 and m = 2, 3, 4.

Though we can’t verify that P (m, k), H(m, k) and Q(m, k, 2) have the normalized matching

property for every k ≥ 1 and m ≥ 1, we also confirm that the result holds true.
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