On (m, n)-Coherent Modules and Preenvelopes

SONG Xian-mei¹, CHEN Jian-long²

(1. Department of Mathematics, Anhui Normal University, Anhui 241000, China;

2. Department of Mathematics, Southeast University, Jiangsu 210096, China)

(E-mail: sxmsgj@yahoo.com.cn)

Abstract In this paper, let m, n be two fixed positive integers and M be a right R-module, we define (m, n)-M-flat modules and (m, n)-coherent modules. A right R-module F is called (m, n)-M-flat if every homomorphism from an (n, m)-presented right R-module into F factors through a module in addM. A left S-module M is called an (m, n)-coherent module if M_R is finitely presented, and for any (n, m)-presented right R-module K, Hom(K, M) is a finitely generated left S-module, where $S = \text{End}(M_R)$. We mainly characterize (m, n)-coherent modules in terms of preenvelopes (which are monomorphism or epimorphism) of modules. Some properties of (m, n)-coherent rings and coherent rings are obtained as corollaries.

Keywords (m, n)-M-flat module; (m, n)-coherent module; (m, n)-M-flat preenvelope.

Document code A MR(2000) Subject Classification 16D90 Chinese Library Classification 0153.3

1. Introduction

Throughout this paper, R denotes an associative ring with identity and all modules are unitary. For a right R-module A, E(A) denotes the injective envelope of A and $i : A \to E(A)$ denotes the inclusion map. Given a right R-module M, M^I stands for the direct product of copies of M indexed by I, and addM indicates the category consisting of all right R-modules isomorphic to direct summands of finitely direct sums of copies of M. We simplify $\operatorname{Hom}_R(A, B)$ to $\operatorname{Hom}(A, B)$ for right R-modules A, B.

Let \mathcal{C} be a class of right R-modules and A be a right R-module. A homomorphism $\varphi : A \to C$ with $C \in \mathcal{C}$ is called a \mathcal{C} -preenvelope of A if for any homomorphism $f : A \to C'$ with $C' \in \mathcal{C}$, there is a homomorphism $g : C \to C'$ such that $g\varphi = f^{[1]}$. Moreover, if the only such g is automorphism of C when C' = C and $f = \varphi$, the \mathcal{C} -preenvelope φ is called a \mathcal{C} -envelope of A. Following [2], a \mathcal{C} -envelope of $A \varphi : A \to C$ has the unique mapping property if for any homomorphism $f : A \to C'$ with $C' \in \mathcal{C}$, there is a unique homomorphism $g : C \to C'$ such that $g\varphi = f$.

Received date: 2006-01-03; **Accepted date**: 2006-08-26

Foundation item: the National Natural Science Foundation of China (No. 10571026); the Natural Science Foundation of Anhui Provincial Education Department (No. 2006kj050c); Doctoral Foundation of Anhui Normal University.

Let m and n be two fixed positive integers. Recently, (m, n)-flat modules and (m, n)-coherent rings were introduced and studied in [3],[4],[5]. A right R-module K is said to be (m, n)-presented if there exists an exact sequence of right R-modules $0 \to L \to R^m \to K \to 0$, where L is ngenerated^[5]. A right R-module A is said to be (m, n)-flat if $A \otimes_R I \to A \otimes_R R^m$ is a monomorphism for all n-generated submodule I of the left R-module $R^{m^{[5]}}$. Moreover, a ring R is said to be left (m, n)-coherent if each n-generated submodule of the left R-module R^m is finitely presented^[5]. In this paper, we introduce the concepts of (m, n)-M-flat modules and (m, n)coherent modules. Let M be a finitely presented right R-module with $S = \text{End}(M_R)$ and m, nfixed positive integers, it is showed that $_SM$ is (m, n)-coherent if and only if every right Rmodule has an (m, n)-M-flat preenvelope; $_SM$ is (m, n)-coherent and injective right R-modules are (m, n)-M-flat if and only if every right R-module has an (m, n)-M-flat right R-modules are (m, n)-M-flat if and only if every right R-module has an (m, n)-M-flat preenvelope which is a monomorphism. In particular, some results of left (m, n)-coherent rings and left coherent rings are obtained as corollaries.

2. (m, n)-Coherent modules and preenvelopes

Definition 2.1 Let M be a right R-module. A right R-module F is called (m, n)-M-flat if every homomorphism from a (n, m)-presented right R-module into F factors through a module in addM, i.e., for any (n, m)-presented right R-module K and any homomorphism $f : K \to F$, there exist a module X in addM and homomorphisms $g : K \to X$, $h : X \to F$ such that f = hg.

Remark (1) By [5], a right *R*-module *F* is (m, n)-flat if and only if for every homomorphism from (n, m)-presented right *R*-module into *F* factors through a free module. Hence (m, n)-*R*-flat modules are just (m, n)-flat right *R*-modules.

(2) It is easy to see that F is an (m, n)-M-flat right R-module if and only if for any (n, m)presented right R-module K, any homomorphism $f : K \to F$, there exist a positive integer sand homomorphisms $g : K \to M^s$, $h : M^s \to F$ such that f = hg.

(3) By definition, the class of (m, n)-M-flat right R-modules is closed under direct summands, finitely direct sums.

(4) If X is in addM, then X is (m, n)-M-flat; if X is (n, m)-presented, and X is (m, n)-M-flat, then X is in addM.

(5) If M is a projective right R-module, F is an (m, n)-M-flat right R-module, then F is (m, n)-flat.

Definition 2.2 For a right *R*-module M, S denotes the ring $End(M_R)$. ${}_{S}M$ is called an (m, n)coherent module if M_R is finitely presented, and for any (n, m)-presented right *R*-module K,
Hom(K, M) is a finitely generated left *S*-module.

Let M be a right R-module, $S = \operatorname{End}(M_R)$ and A, B be right R-modules. We use $\sigma_{A,B}$ denote the homomorphism $\operatorname{Hom}(M, A) \otimes_S \operatorname{Hom}(B, M) \to \operatorname{Hom}(B, A)$ given by $\sigma_{A,B}(f \otimes g) = fg$

where $f \in \text{Hom}(M, A)$, $g \in \text{Hom}(B, M)$. It is easy to see that if C is a direct summand of B, and $\sigma_{A,B}$ is an isomorphism, then $\sigma_{A,C}$ is also an isomorphism. Hence if $B \in \text{add}M$, then $\sigma_{A,B}$ is an isomorphism. Moreover, it is clear that if $A \in \text{add}M$, then $\sigma_{A,B}$ is also an isomorphism.

Proposition 2.1 Let M be a right R-module. The following statements are equivalent:

- (1) F is an (m, n)-M-flat right R-module;
- (2) For any (n, m)-presented right *R*-module *K*, $\sigma_{F,K}$ is an epimorphism.

Proof (1) \Rightarrow (2). Let K be an (n, m)-presented right R-module. For any $f \in \text{Hom}(K, F)$, by the definition of (m, n)-M-flatness, there exist a positive integer k and homomorphisms $g: K \to M^k$ and $h: M^k \to F$ such that f = hg. Let $p_i: M^k \to M$ and $\lambda_i: M \to M^k$ denote the ith canonical projection and canonical injection respectively. Put $g_i = p_i g$, $h_i = h\lambda_i$, then $\sum_{i=1}^k (h_i \otimes g_i) \in \text{Hom}(M, F) \otimes_S \text{Hom}(K, M)$ and $\sigma_{F,K}(\sum_{i=1}^k (h_i \otimes g_i)) = \sum_{i=1}^k h_i g_i = \sum_{i=1}^k h\lambda_i p_i g = f$. Hence $\sigma_{F,K}$ is an epimorphism.

 $(2) \Rightarrow (1)$. Let K be an (n, m)-presented right R-module, and $f \in \text{Hom}(K, F)$. By hypothesis, $f = \sigma_{F,K}(\sum_{i=1}^{k} (h_i \otimes g_i))$ for some $h_i \in \text{Hom}(M, F)$, $g_i \in \text{Hom}(K, M)$. Put $X = M^k$. We define $g : K \to M^k$ by $g(x) = (g_1(x), \ldots, g_k(x))$ for every $x \in K$ and $h : M^k \to F$ by $h(m_1, \ldots, m_k) = \sum_{i=1}^k h_i(m_i)$ for every $(m_1, \ldots, m_k) \in M^k$. Then f = hg and so F is (m, n)-M-flat.

Proposition 2.2 Let M be a pure projective right R-module. Then every pure submodule of (m, n)-M-flat right R-module is (m, n)-M-flat.

Proof Let A be a pure submodule of (m, n)-M-flat module B, and K be an (n, m)-presented right R-module. Let $j: A \to B$ denote the inclusion map, and $\pi: B \to B/A$ denote a canonical epimorphism. For any $f \in \text{Hom}(K, A)$, then there exist a module X in addM and homomorphisms $g: K \to X$, $h: X \to B$ such that jf = hg. Note that there is a pure projective right R-module Y such that $\alpha: Y \to B$ is a pure epimorphism by [6]. Since M is pure projective, so X is pure projective, and there is a homomorphism $\beta: X \to Y$ such that $\alpha\beta = h$. Put a pullback of $\alpha: Y \to B$ and $j: A \to B$, we have the following commutative diagram

Note that $\pi\alpha\beta g = \pi hg = \pi jf = 0$, it follows that $\beta g(K) \subseteq \operatorname{Ker}(\pi\alpha) = \operatorname{Im}\lambda$. But λ is a monomorphism, hence there is a submodule V of U such that for any $y \in K$, there is unique $x \in V$ satisfying $\beta g(y) = \lambda(x)$. It is easy to see that λ is a pure monomorphism since j is a pure monomorphism and α is a pure epimorphism. Thus since K is finitely generated, V is finitely generated. By [7], there exists a homomorphism $\gamma: Y \to U$ such that $\gamma\lambda(x) = x$ for any $x \in V$.

Let $k = \delta \gamma \beta : X \to A$. Then foy any $y \in K$,

$$kg(y) = \delta\gamma\beta g(y) = \delta\gamma\lambda(x) = \delta(x) = \alpha\lambda(x) = hg(y) = f(y).$$

Therefore A is (m, n)-M-flat.

Lemma 2.3^[8] Let M, A be right R-modules and $S = \text{End}(M_R)$. Then A has an addM-preenvelope if and only if Hom(A, M) is a finitely generated left S-module.

Proposition 2.4 Let M be a right R-module and $S = End(M_R)$. The following statements are equivalent:

(1) $_{S}M$ is an (m, n)-coherent module;

(2) M_R is finitely presented and every (n,m)-presented right R-module has an addM-preenvelope;

(3) M_R is finitely presented and every (n, m)-presented right R-module has an (m, n)-M-flat preenvelope.

Proof By Lemma 2.3, $(1) \Leftrightarrow (2)$ is clear.

 $(2) \Rightarrow (3)$. For any (n, m)-presented right *R*-module *K*, it has an add*M*-preenvelope $f: K \to X$ with $X \in \text{add}M$. For any (m, n)-*M*-flat right *R*-module *F* and any homomorphism $g: K \to F$, there exist $X_1 \in \text{add}M$ and homomorphisms $g_1: K \to X_1, g_2: X_1 \to F$ such that $g = g_2g_1$. Note that *f* is an add*M*-preenvelope, it follows that there is a homomorphism $h: X \to X_1$ such that $hf = g_1$. Hence $g_2hf = g_2g_1 = g$, that is, *f* is an (m, n)-*M*-flat preenvelope.

 $(3) \Rightarrow (2)$. For any (n, m)-presented right *R*-module *K*, it has an (m, n)-*M*-flat preenvelope $f: K \to F$. Hence there exist a right *R*-module $X \in \operatorname{add} M$ and homomorphisms $g: K \to X$, $h: X \to F$ such that f = hg. It is easy to see that $g: K \to X$ is an add*M*-preenvelope of *K*.

Theorem 2.5 Let M be a finitely presented right R-module and $S = End(M_R)$. The following statements are equivalent:

- (1) $_{S}M$ is an (m, n)-coherent module;
- (2) Every right R-module has an (m, n)-M-flat preenvelope;
- (3) Every (n, m)-presented right *R*-module has an add*M*-preenvelope;
- (4) Every (n, m)-presented right R-module has an (m, n)-M-flat preenvelope;
- (5) $\prod_{i \in I} M$ is an (m, n)-M-flat right R-module for any index set I;
- (6) The direct products of (m, n)-M-flat right R-modules is (m, n)-M-flat;
- (7) $\operatorname{Hom}_{S}(P, M)$ is an (m, n)-M-flat right R-module for any projective left S-module P.

Proof $(2) \Rightarrow (1), (6) \Rightarrow (5)$ are trivial and by Proposition 2.4, $(1) \Leftrightarrow (3) \Leftrightarrow (4)$.

 $(1) \Rightarrow (6)$. Let $\{F_i\}_{i \in I}$ be a family of (m, n)-*M*-flat right *R*-modules and *K* be an (n, m)presented right *R*-module. We denote by $p_i : \prod_{i \in I} F_i \to F_i$ the ith canonical projection. For any $f \in \operatorname{Hom}(K, \prod_{i \in I} F_i)$, $p_i f$ factors through X_i with $X_i \in \operatorname{add} M$, that is, there are homomorphisms $g_i : K \to X_i$ and $h_i : X_i \to F_i$ such that $p_i f = h_i g_i$. Note that ${}_S M$ is (m, n)-coherent, it follows that *K* has an add*M*-preenvelope $g : K \to X$. Hence there is a homomorphism $k_i: X \to X_i$ such that $k_i g = g_i$. By the universal property of direct products, there is a homomorphism $h: X \to \prod_{i \in I} F_i$ such that $p_i h = h_i k_i$, then $p_i h g = h_i k_i g = h_i g_i = p_i f$. Therefore hg = f.

(6) \Rightarrow (2). Let A be a right R-module with $\operatorname{Card} A \leq \aleph$. For any (m, n)-M-flat module Fand any homomorphism $f : A \to F$, $\operatorname{Card} f(A) \leq \aleph$. Let $\aleph_{\alpha} = \max \{\operatorname{Card} R, \aleph\}$. Then by [9], there is a pure submodule S of F such that $f(A) \subseteq S$ and $\operatorname{Card} S \leq \aleph_{\alpha}$. By Proposition 2.2, S is (m, n)-M-flat. Let $(\varphi_i)_{i \in I}$ give all such homomorphisms $\varphi_i : A \to S_i$ with $\operatorname{Card} S_i \leq \aleph_{\alpha}$. So any homomorphism $A \to F$ has a factorization $A \to S_j \to F$ for some $j \in I$. Hence $A \to \prod_{i \in I} S_i$ is an (m, n)-M-flat preenvelope since $\prod_{i \in I} S_i$ is (m, n)-M-flat by (6).

 $(5) \Rightarrow (1)$. We need to prove for any (n,m)-presented right *R*-module *A*, Hom(A, M) is a finitely generated left *S*-module. Let $p_i : M^I \to M$ denote the ith canonical projection. By Lemma 3.2.21 in [9], this is equivalent to prove that for any index set $I, \tau : \text{Hom}(M, M^I) \otimes_S \text{Hom}(A, M) \to \text{Hom}(A, M)^I$ given by $\tau(g \otimes f) = (p_i g f)$ is an epimorphism, where $f \in \text{Hom}(A, M)$, $g \in \text{Hom}(M, M^I)$. Note that $\sigma_{M^I,A} : \text{Hom}(M, M^I) \otimes \text{Hom}(A, M) \to \text{Hom}(A, M^I)$ is an epimorphism since M^I is (m, n)-*M*-flat, $\theta : \text{Hom}(A, M^I) \to \text{Hom}(A, M)^I$ given by $\theta(f) = (p_i f)_{i \in I}$ is an isomorphism and $\tau = \theta \sigma_{M^I,A}$, it follows that τ is an epimorphism. Therefore ${}_SM$ is (m, n)-coherent.

(5) \Rightarrow (7). Since *P* is a projective left *S*-module, Hom(*P*, *M*) is isomorphic to a direct summand of M^{I} for some index set *I*. By hypothesis, M^{I} is (m, n)-*M*-flat, therefore Hom(*P*, *M*) is (m, n)-*M*-flat.

(7) \Rightarrow (5). Put $_{S}P = S^{(I)}$ for any index set I.

In Ref. [5], it was proved that R is a left (m, n)-coherent ring if and only if R^{I} is an (m, n)-flat right R-module for any index set I. Hence by Theorem 2.5, when $M_{R} = R_{R}$, it is easy to see that $_{R}R$ is (m, n)-coherent if and only if R is left (m, n)-coherent ring. So the equivalence (1)–(3) and (6)–(9) of Theorem 3.1 in Ref. [3] is just Corollary 2.6.

Corollary 2.6 The following statements are equivalent:

- (1) R is a left (m, n)-coherent ring;
- (2) Every right R-module has an (m, n)-flat preenvelope;
- (3) Every (n, m)-presented right R-module has a finitely generated projective preenvelope;
- (4) Every (n, m)-presented right R-module has an (m, n)-flat preenvelope;
- (5) $\prod_{i \in I} R$ is (m, n)-flat right *R*-module for any index set *I*;
- (6) The direct products of (m, n)-flat right R-modules is (m, n)-flat;
- (7) $\operatorname{Hom}(P, R)$ is an (m, n)-flat right R-module for any projective left R-module.

Let M be a right R-module $S = \operatorname{End}(M_R)$. We denote $\operatorname{Hom}(A, M)$ by A^* , where A^* is a left S-module. Put $A^{**} = \operatorname{Hom}_S(A^*, M)$. Define $\delta_A : A \to A^{**}$ by $\delta_A(a)(f) = f(a)$ for any $a \in A$ and $f \in \operatorname{Hom}(A, M)$. It is clear that if $A \in \operatorname{add} M$, then δ_A is an isomorphism.

Proposition 2.7 Let $_{S}M$ be (m, n)-coherent and K be an (n, m)-presented right R-module. Then K has an addM-envelope if and only if K^* has a projective cover. **Proof** Let $f: K \to X$ be an add*M*-envelope of *K*. Then $f^*: X^* \to K^*$ is an epimorphism and X^* is a finitely generated projective left *S*-module. For any $h \in \text{Hom}(X^*, X^*)$ such that $f^*h = f^*$, since $f^{**}\delta_K = \delta_X f$, it follows that $\delta_X^{-1}h^*\delta_X f = \delta_X^{-1}h^*f^{**}\delta_K = \delta_X^{-1}(f^*h)^*\delta_K =$ $\delta_X^{-1}f^{**}\delta_K = f$. Note that *f* is an add*M*-envelope of *K*, hence $\delta_X^{-1}h^*\delta_X$ is an isomorphism, and so $h = \delta_{X^*}^{-1}h^{**}\delta_{X^*}$ is also an isomorphism. This proves that f^* is a projective cover of K^* . Conversely, let $h: P \to K^*$ be a projective cover of K^* . Note that $_SM$ is (m, n)-coherent, K^* is a finitely generated left *S*-module and so *P* is finitely generated. It is clear that $P^* \in \text{add}M$. Let $f = h^*\delta_K : K \to P^*$. For any $\alpha : K \to X$ with $X \in \text{add}M$, X^* is a projective left *S*-module, hence there is a homomorphism $\beta : X^* \to P$ such that $h\beta = \alpha^*$. Put $\gamma = \delta_X^{-1}\beta^* : P^* \to X$, then we have $\gamma f = \delta_X^{-1}\beta^* f = \delta_X^{-1}\beta^* h^*\delta_K = \delta_X^{-1}(h\beta)^*\delta_K = \delta_X^{-1}\alpha^{**}\delta_K = \alpha$. Therefore *f* is an add*M*-preenvelope of *K*. If $\varphi : P^* \to P^*$ satisfies $\varphi f = f$. Note that $h^{**}\delta_P = \delta_{K^*}h^*$ and $\delta_K^*\delta_{K^*} = 1_{K^*}$, it follows that $h = \delta_K^*h^{**}\delta_P$. Hence we have $h(\delta_P^{-1}\varphi^*\delta_P) = \delta_K^*h^{**}\varphi^*\delta_P =$ $(\varphi h^*\delta_K)^*\delta_P = (\varphi f)^*\delta_P = f^*\delta_P = \delta_K^*h^{**}\delta_{P^*}$ is also an isomorphism. This proves that *f* is an add*M*-envelope.

Corollary 2.8 Let R be a left (m, n)-coherent ring and K be an (n, m)-presented right R-module. Then K has a projective envelope if and only if Hom(K, R) has a projective cover.

3. Preenvelopes which are monomorphism

In this section, we mainly investigate when every right R-module has an (m, n)-M-flat preenvelope which is a monomorphism.

Theorem 3.1 Let M be a finitely presented right R-module, $S = \text{End}(M_R)$.

(1) $_{S}M$ is (m, n)-coherent, every injective right *R*-module is (m, n)-*M*-flat.

(2) $_{S}M$ is (m, n)-coherent, injective envelope of every (n, m)-presented right R-module is (m, n)-M-flat.

(3) $_{S}M$ is (m, n)-coherent, injective envelope of every simple right R-module is (m, n)-M-flat.

(4) $_{S}M$ is (m, n)-coherent, every (n, m)-presented right R-module is cogenerated by M_{R} .

(5) $_{S}M$ is (m, n)-coherent, every (n, m)-presented right *R*-module may be embedded in a module in add*M*.

(6) Every right R-module has an (m, n)-M-flat preenvelope which is a monomorphism.

(7) Every (n,m)-presented right R-module has an (m,n)-M-flat preenvelope which is a monomorphism.

(8) Every (n, m)-presented right R-module has an addM-preenvelope which is a monomorphism.

Proof $(1) \Rightarrow (2), (1) \Rightarrow (3), (1) \Rightarrow (6), (6) \Rightarrow (7), (8) \Rightarrow (5)$ are trivial.

(2) \Rightarrow (1). Let *E* be an injective right *R*-module and *K* be an (n, m)-presented right *R*-module. For any homomorphism $f: K \to E$, by hypothesis of (2), E(K) is an (m, n)-*M*-flat. Hence there are a right *R*-module *X* in add*M* and homomorphisms $g: K \to X$, $h: X \to E(K)$

such that i = hg. Note that E is injective, there exists a homomorphism $k : E(K) \to E$ such that f = ki = khg. Therefore E is (m, n)-M-flat.

(3) \Rightarrow (4). Let K be an (n, m)-presented right R-module. By [10], we need to prove that for any nonzero $x \in K$, there is a homomorphism $\varphi : K \to M$ such that $\varphi(x) \neq 0$. In fact, there exists a maximal submodule L of xR, then E(xR/L) is (m, n)-M-flat. We let $\lambda : xR \to K$ denote an inclusion map and $\pi : xR \to xR/L$ be the canonical epimorphism. By the injectivity of E(xR/L), there exists a homomorphism $f : K \to E(xR/L)$ such that $f\lambda = i\pi$. Note that E(xR/L) is (m, n) - M-flat, it follows that there are a positive integer n and homomorphisms $g : K \to M^n$, $h : M^n \to E(xR/L)$ such that hg = f. Since $x \neq 0$, we have $i\pi(x) \neq 0$, thus $g(x) \neq 0$. Suppose $g(x) = (m_1, \ldots, m_i, \ldots, m_n)$. Then there is a nonzero element $m_i \in M$ for some $1 \le i \le n$. Hence $p_ig(x) \ne 0$. Therefore (4) holds.

 $(4) \Rightarrow (5)$. Let K be an (n, m)-presented right R-module. By hypothesis, there is a monomorphism $\lambda : K \to M^I$ for some index set I. Note that ${}_SM$ is (m, n)-coherent, hence M^I is (m, n)-M-flat. It follows that there are a right R-module X in addM and homomorphisms $g : K \to X$, $h : X \to M^I$ such that $\lambda = hg$. Since λ is monomorphism, g is a monomorphism, i.e., (5) holds.

 $(5) \Rightarrow (1)$. Let *E* be an injective right *R*-module, *K* an (n, m)-presented right *R*-module and $f: K \to E$ a homomorphism. By hypothesis, there is a monomorphism $\lambda : K \to X$ with $X \in \text{add}M$. Note that *E* is injective, there is a homomorphism $g: X \to E$ such that $f = g\lambda$. Hence *E* is (m, n)-*M*-flat.

 $(7) \Rightarrow (8)$. For any (n, m)-presented right *R*-module *K*, by hypothesis, there is an (m, n)-*M*-flat preenvelope $f: K \to F$ which is a monomorphism. Then there exist a right *R*-module *X* in add*M* and homomorphisms $g: K \to X, h: X \to F$ such that f = hg. It is easy to see that g is an add*M*-preenvelope which is a monomorphism. Therefore (8) holds.

Corollary 3.2 The following statements are equivalent:

(1) R is a left (m, n)-coherent ring, every injective right R-module is (m, n)-flat;

(2) R is a left (m, n)-coherent ring, injective envelope of every (n, m)-presented right R-module is (m, n)-flat;

(3) R is a left (m, n)-coherent ring, injective envelope of every simple right R-module is (m, n)-flat;

(4) R is a left (m, n)-coherent ring, every (n, m)-presented right R-module is torsionless;

(5) R is a left (m, n)-coherent ring, every (n, m)-presented right R-module may be embedded in a finitely generated projective right R-module;

(6) Every right R-module has an (m, n)-flat preenvelope which is monomorphism;

(7) Every (n, m)-presented right *R*-module has an (m, n)-flat preenvelope which is monomorphism;

(8) Every (n, m)-presented right *R*-module has a finitely generated projective preenvelope which is monomorphism.

Proposition 3.3 Let M be an injective right R-module. The following statements are equivalent:

(1) Every (n, m)-presented right *R*-module has an (m, n)-*M*-flat envelope which is a monomorphism;

- (2) Injective envelope of every (n, m)-presented right *R*-module is in add*M*;
- (3) Every injective right R-module is (m, n)-M-flat;

(4) For any (n, m)-presented right R-module K, (m, n)-M-flat envelope of K exists, and coincides with its injective envelope.

Proof (1) \Rightarrow (2). For any (n, m)-presented right *R*-module *K*, by hypothesis, *K* has an (m, n)-*M*-flat envelope $f: K \to F$ which is a monomorphism. Hence there are a right *R*-module *X* in add*M* and homomorphisms $g: K \to X$, $h: X \to F$ such that f = hg. Note that *g* is a monomorphism since *f* is a monomorphism and *X* is injective since *M* is injective, it follows that there are $\alpha: X \to E(K)$ and $\beta: E(K) \to X$ such that $\alpha g = i, \beta i = g$. Then $\alpha \beta = 1$ since E(K) is an injective envelope, i.e., E(K) is isomorphic to a direct summand of *X*. Therefore E(K) is in add*M*.

 $(2) \Rightarrow (3)$. Let *E* be an injective right *R*-module and *K* be an (n, m)-presented right *R*-module. By hypothesis, E(K) is in add*M*. For any homomorphism $f : K \to E$, there is a homomorphism $g : E(K) \to E$ such that f = gi. This shows that f factors through a right *R*-module in add*M* and hence *E* is (m, n)-*M*-flat.

 $(3) \Rightarrow (4)$. Let K be an (n, m)-presented right R-module. By hypothesis, E(K) is (m, n)-M-flat. For any (m, n)-M-flat right R-module F, and any homomorphism $f : K \to F$, there are a right R-module X in addM and homomorphisms $g : K \to X$ and $h : X \to F$ such that f = hg. Note that X is injective since M is injective, it follows that there is a homomorphism $k : E(K) \to X$ with ki = g. Hence hki = hg = f. Therefore i is an (m, n)-M-flat preenvelope. But E(k) is an injective envelope of K, hence i is an (m, n)-M-flat envelope.

 $(4) \Rightarrow (1)$ is trivial.

4. Preenvelopes which are epimorphisms

In this section, we consider when every right R-module has an (m, n)-M-flat preenvelope which is an epimorphism.

Theorem 4.1 Let M be a finitely presented right R-module and $S = End(M_R)$. The following statements are equivalent:

(1) $_{S}M$ is (m, n)-coherent, and a submodule of (m, n)-M-flat right R-module is (m, n)-M-flat;

(2) Every (n, m)-presented right *R*-module has an (m, n)-*M*-flat preenvelope which is an epimorphism;

(3) Every right R-module has an (m, n)-M-flat preenvelope which is an epimorphism;

(4) Every right R-module has an (m, n)-M-flat envelope which is an epimorphism;

(5) Every (n, m)-presented right *R*-module has an add*M*-preenvelope which is an epimorphism.

Proof (1) \Rightarrow (3). By Theorem 2.5, every right *R*-module *A* has an (m, n)-*M*-flat preenvelope

 $f: A \to F$. Let $F_1 = \text{Im} f$. Then F_1 is (m, n) - M-flat by (1). Hence $f: M \to F_1$ is an (m, n)-M-flat preenvelope which is an epimorphism.

 $(3) \Rightarrow (2)$ is trivial.

(2) \Rightarrow (5). Let K be an (n, m)-presented right R-module. Then K has an (m, n)-M-flat preenvelope $f: K \to F$ which is an epimorphism. Since F is (m, n)-M-flat, there exist a right R-module X in addM and homomorphisms $g: K \to X$ and $h: X \to F$ such that f = hg. But X is (m, n)-M-flat, hence there exists $k: F \to X$ with kf = g. Thus f = hkf, and so $hk = 1_F$ since f is epimorphism. Therefore $F \in \text{add}M$ and (5) holds.

 $(5) \Rightarrow (1)$. By Proposition 2.4, ${}_{S}M$ is (m, n)-coherent. Let N be (m, n)-M-flat and N_1 a submodule of N. For any (n, m)-presented right R-module K, and any homomorphism $f: K \to N_1$, let $\lambda: N_1 \to N$ be the inclusion map. Then there exist a right R-module X in addM and homomorphisms $g: K \to X$ and $h: X \to N$ such that $\lambda f = hg$. Note that K has an addM-preenvelope $k: K \to Y$ which is an epimorphism, then there is a homomorphism $\alpha: Y \to X$ with $\alpha k = g$. Thus $\lambda f = h\alpha k$, whence Ker $k \subseteq$ Kerf. Define $\beta: Y \to N_1$ by $\beta(k(x)) = f(x)$ for any $x \in K$. It is clear that β is well-defined and $f = \beta k$. Therefore N_1 is (m, n)-M-flat and (1) holds.

(1) \Leftrightarrow (4). By Remark in Section 2, the class of (m, n)-*M*-flat right *R*-modules is closed under direct summands. Then from Theorem 2 in Ref. [11], it follows that every right *R*-module has an (m, n)-*M*-flat envelope if and only if the class of (m, n)-*M*-flat right *R*-modules is closed under direct products and submodules. Note that M_R is a a finitely presented right *R*-module, hence the class of (m, n)-*M*-flat right *R*-modules is closed under direct products if and only if $_{SM}$ is an (m, n)-coherent module by Theorem 2.5. Therefore (1) \Leftrightarrow (4).

Corollary 4.2 The following statements are equivalent:

(1) R is a left (m, n)-coherent ring, and a submodule of (m, n)-flat right R-module is (m, n)-flat;

(2) Every (n, m)-presented right *R*-module has an (m, n)-flat preenvelope which is an epimorphism;

(3) Every right R-module has an (m, n)-flat preenvelope which is an epimorphism;

(4) Every right R-module has an (m, n)-flat envelope which is an epimorphism;

(5) Every (n, m)-presented right R-module has a finitely generated projective preenvelope which is an epimorphism.

Proposition 4.3 Let M_R be a finitely presented right *R*-module with $S = \text{End}(M_R)$. The following statements are equivalent:

(1) $_{S}M$ is (m, n)-coherent, for any (n, m)-presented right *R*-module *K*, K^* is a projective left *S*-module and δ_K is an epimorphism;

(2) Every (n, m)-presented right R-module has an add M-envelope which is an epimorphism;

(3) Every (n, m)-presented right *R*-module has an add*M*-envelope with the unique mapping property and δ_K is an epimorphism.

Proof (1) \Rightarrow (2). By (1), K^* is a finitely generated projective left S-module, hence $K^{**} \in \text{add}M$. Next we prove that $\delta_K : K \to K^{**}$ is an add*M*-envelope of *K*. For any $X \in \text{add}M$, and any homomorphism $f : K \to X$, then δ_X is an isomorphism and $\delta_X f = f^{**}\delta_K$. Hence $f = \delta_X^{-1}f^{**}\delta_K$. This proves that δ_K is an add*M*-preenvelope. If $\alpha \in \text{Hom}(K^{**}, K^{**})$ with $\alpha\delta_K = \delta_K$, then $\delta_K^*\alpha^* = \delta_K^*$. Note that K^* is finitely generated projective, δ_{K^*} is an isomorphism, and so δ_K^* is an isomorphism since $\delta_K^*\delta_{K^*} = 1_{K^*}$. It follows that $\delta_{K^*}^{-1}\alpha^*\delta_{K^*} = 1_{K^*}$, whence $\alpha = \delta_{K^{**}}^{-1}\alpha^{**}\delta_{K^{**}}$ is an isomorphism. Therefore *K* has an add*M*-envelope δ_K which is an epimorphism and (2) holds.

 $(2) \Rightarrow (3)$. For any (n, m)-presented right *R*-module *K*, there is an add*M*-envelope $f: K \to X$ which is an epimorphism. Hence we have the following exact sequence $0 \to \text{Hom}(X, L) \to \text{Hom}(K, L) \to 0$ for any $L \in \text{add}M$. Therefore *f* has the unique mapping property. Put L = M. Then f^* is an isomorphism, and so f^{**} is also isomorphism. Since $f^{**}\delta_K = \delta_X f$, it is clear that δ_K is an epimorphism.

 $(3) \Rightarrow (1)$. For any (n, m)-presented right *R*-module *K*, by (3), there is an add*M*-preenvelope $f: K \to X$ and $X^* \cong K^*$. Hence K^* is a finitely generated projective left *S*-module. Therefore ${}_{S}M$ is (m, n)-coherent, K^* is a projective left *S*-module, and (1) holds.

References

- XU Jin-zhong. Flat Covers of Modules [M]. Lecture Notes in Mathematics, 1634, Springer-Verlag, Berlin, 1996.
- [2] DING Nan-qing. On envelopes with the unique mapping property [J]. Comm. Algebra, 1996, 24(6): 1459– 1470.
- [3] MAO Lin-xin, DING Nan-qing. On relative injective modules and relative coherent rings [J]. Comm. Algebra, 2006, 34(7): 2531–2545.
- [4] SHAMSUDDIN A. n-injective and n-flat modules [J]. Comm. Algebra, 2001, 29(5): 2039–2050.
- [5] ZHANG Xiao-xiang, CHEN Jian-long, ZHANG Juan. On (m, n)-injective modules and (m, n)-coherent rings
 [J]. Algebra Colloq., 2005, 12(1): 149–160.
- [6] WARFIELD R B. Purity and algbraic compactness for modules [J]. Pacific J. Math., 1969, 28: 699–719.
- [7] AZUMAYA G. Locally pure projective modules [J]. Contemp. Math., Amer. Math. Soc., 1992, 124: 17–22.
 [8] HÜGEL L A. Endocoherent modules [J]. Pacific J. Math., 2003, 212(1): 1–11.
- [9] ENOCHS E E, JENDA O M G. Relative Homological Algebra [M]. Walter de Gruyter & Co., Berlin, 2000.
- [10] ANDERSON F W, FULLER K R. Rings and Categories of Modules [M]. Springer Verlag, New York, 1974.
- [11] CHEN Jian-long, DING Nan-qing. A note on existence of envelopes and covers [J]. Bull. Austral. Math. Soc., 1996, 54(3): 383–390.