Journal of Mathematical Research & Exposition Feb., 2008, Vol. 28, No. 1, pp. 74–80 DOI:10.3770/j.issn:1000-341X.2008.01.011 Http://jmre.dlut.edu.cn

f-Projective and *f*-Injective Modules

GENG Yu-xian (School of Mathematics and Physics, Jiangsu Teachers University of Technology, Jiangsu 213001, China) (E-mail: yxgeng@jstu.edu.cn)

Abstract Let R be a ring. A right R-module M is called f-projective if $\text{Ext}^1(M, N) = 0$ for any f-injective right R-module N. We prove that $(\mathcal{F}\text{-proj}, \mathcal{F}\text{-inj})$ is a complete cotorsion theory, where $\mathcal{F}\text{-proj}$ ($\mathcal{F}\text{-inj}$) denotes the class of all f-projective (f-injective) right R-modules. Semihereditary rings, von Neumann regular rings and coherent rings are characterized in terms of f-projective modules and f-injective modules.

Keywords f-projective module; f-injective module; finitely presented cyclic module; (pre)envelope; (pre)cover.

Document code A MR(2000) Subject Classification 16D40; 16D50; 16E10; 16E30 Chinese Library Classification 0153

1. Introduction

Throughout this paper, R is an associative ring with identity and all modules are unitary. We use M_R to indicate a right R-module, $FI(M_R)$ stands for the f-injective envelope of M_R , the character module M^+ is defined by $M^+ = Hom(M, \mathbb{Q}/\mathbb{Z})$, and $pd(M_R)$ denotes the projective dimension of M_R . Hom(M, N) (Extⁿ(M, N)) means $Hom_R(M, N)$ (Extⁿ(M, N)) for an integer $n \geq 1$. General background material can be found in Ref. [1, 6, 12, 15].

A module M_R is called f-injective (or \aleph_0 -injective; coflat)^[3,4,8] if $\operatorname{Ext}^1_R(R/I, M) = 0$ for any finitely generated right ideal I of R. f-injective modules have been studied in many papers such as Ref. [2-4, 8]. In Section two of this paper, we first introduce the notion of f-projective modules, and then give some equivalent characterizations of these modules when R is a self finjective ring. For instance, it is shown that if R is self f-injective, then M is f-projective if and only if M is a cokernel of an f-injective preenvelope $K \to F$ with F projective. We also prove that (\mathcal{F} -proj, \mathcal{F} -inj) is a complete cotorsion theory, where \mathcal{F} -proj (\mathcal{F} -inj) denotes the class of all f-projective (f-injective) right R-modules. In Section three, some new characterizations of semihereditary rings, von Neumann regular rings and coherent rings are given. For example, it is proven that R is a right semihereditary ring if and only if $pd(M) \leq 1$ for every f-projective right R-module M has a monic \mathcal{F} -inj-cover if and only if $pd(M) \leq 1$ for every f-projective right R-module

Received date: 2006-04-19; Accepted date: 2007-07-13

Foundation item: the Jiangsu Teachers University of Technology of China (No. Kyy06109).

has a monic \mathcal{F} -inj-cover; R is a von Neumann regular ring if and only if every cotorsion right R-module is f-injective if and only if every f-projective right R-module is projective if and only if every f-projective right R-module has an \mathcal{F} -inj-envelope with the unique mapping property if and only if (\mathcal{F} -proj, \mathcal{F} -inj) is hereditary and every f-projective right R-module has an \mathcal{F} -inj-envelope with the unique mapping property if and only if (\mathcal{F} -proj, \mathcal{F} -inj) is hereditary and every f-projective right R-module has an \mathcal{F} -inj-envelope with the unique mapping property if and only if (\mathcal{F} -proj, \mathcal{F} -inj) is hereditary and every f-projective right R-module has an \mathcal{F} -inj-envelope with the unique mapping property if and only if (\mathcal{F} -proj, \mathcal{F} -inj) is hereditary and every f-projective right R-module is f-injective. Finally, as a generalization of the well known result that R is a right coherent ring if and only if every direct limit of FP-injective right R-modules is FP-injective, we get that R is a right coherent ring if and only if every direct limit of f-injective right R-modules is f-injective.

2. Definition and general results

We start with the following

Definition 2.1 Let M be a right R-module. M is called an f-projective module if $Ext^{1}(M, N) = 0$ for any f-injective right R-module N.

Remark 2.2 Any finitely presented cyclic R-module is f-projective, and it is easily seen that all (left) right R-modules are f-projective if and only if ring R is (left)right Noetherian.

Recall that a pair $(\mathcal{F}, \mathcal{C})$ of classes of right *R*-modules is called a cotorsion theory^[6] if $\mathcal{F}^{\perp} = \mathcal{C}$ and $^{\perp}\mathcal{C} = \mathcal{F}$, where $\mathcal{F}^{\perp} = \{C : \operatorname{Ext}^{1}(F, C) = 0 \text{ for all } F \in \mathcal{F}\}$, and $^{\perp}\mathcal{C} = \{F : \operatorname{Ext}^{1}(F, C) = 0 \text{ for all } C \in \mathcal{C}\}$.

Let \mathcal{C} be a class of right R-modules and M a right R-module. A homomorphism $\varphi: M \to F$ with $F \in \mathcal{C}$ is called a \mathcal{C} -preenvelope of $M^{[6]}$ if for any homomorphism $f: M \to F'$ with $F' \in \mathcal{C}$, there is a homomorphism $g: F \to F'$ such that $g\varphi = f$. Moreover, if the only such g are automorphisms of F when F' = F and $f = \varphi$, the \mathcal{C} -preenvelope φ is called a \mathcal{C} -envelope of M. Following Ref. [6, Definition 7.1.6], a monomorphism $\alpha: M \to C$ with $C \in \mathcal{C}$ is said to be a special \mathcal{C} -preenvelope of M if coker $(\alpha) \in {}^{\perp}\mathcal{C}$. Dually we have the definitions of a (special) \mathcal{C} -preenvelopes (resp., \mathcal{C} -precovers).

A \mathcal{C} -envelope $\varphi: M \to F$ is said to have the unique mapping property^[5] if for any homomorphism $f: M \to F'$ with $F' \in \mathcal{C}$, there is a unique homomorphism $g: F \to F'$ such that $g\varphi = f$.

Proposition 2.3 Let R be a right self f-injective ring and M a right R-module. Then the following are equivalent:

(1) M is f-projective;

(2) *M* is projective with respect to every exact sequence $0 \to A \to B \to C \to 0$, where *A* is *f*-injective;

(3) For every exact sequence $0 \to K \to F \to M \to 0$, where F is f-injective, $K \to F$ is an f-injective preenvelope of K;

(4) M is a cokernel of an f-injective preenvelope $K \to F$ with F projective.

Proof $(1) \Rightarrow (2)$ is obvious.

 $(2) \Rightarrow (1)$. For every f-injective right R-module N, there is a short exact sequence $0 \to N \to E \to L \to 0$ with E injective, which induces an exact sequence $\operatorname{Hom}(M, E) \to \operatorname{Hom}(M, L) \to \operatorname{Ext}^1(M, N) \to 0$. Since $\operatorname{Hom}(M, E) \to \operatorname{Hom}(M, L) \to 0$ is exact by (2), $\operatorname{Ext}^1(M, N) = 0$. So (1) follows.

 $(1) \Rightarrow (3)$ is easy to verify.

 $(3) \Rightarrow (4)$. Let $0 \to K \to P \to M \to 0$ be an exact sequence with P projective. Note that P is f-injective by hypothesis, thus $K \to P$ is an f-injective preenvelope.

(4) \Rightarrow (1). By (4), there is an exact sequence $0 \to K \to P \to M \to 0$, where $K \to P$ is an *f*-injective preenvelope with *P* projective. It gives rise to the exactness of $\operatorname{Hom}(P, N) \to$ $\operatorname{Hom}(K, N) \to \operatorname{Ext}^1(M, N) \to 0$ for each *f*-injective right *R*-module *N*. Note that $\operatorname{Hom}(P, N) \to$ $\operatorname{Hom}(K, N) \to 0$ is exact by (4). Hence $\operatorname{Ext}^1(M, N) = 0$, as desired.

Denote by \mathcal{F} -proj (\mathcal{F} -inj) the class of all f-projective (f-injective) right R-modules. Then we have

Theorem 2.4 Let R be a ring. Then (\mathcal{F} -proj, \mathcal{F} -inj) is a cotorsion theory. Moreover, every right R-module has a special \mathcal{F} -inj-preenvelope and every right R-module has a special \mathcal{F} -proj-precover.

Proof Let X be the set of representatives of finitely presented cyclic right *R*-modules. Thus \mathcal{F} -inj= X^{\perp} . Since \mathcal{F} -proj= $^{\perp}(X^{\perp})$, the results follow from Ref. [6, Definition 7.1.5] and [7, Theorem 10].

Remark 2.5 The statement of Theorem 2.4 is the best possible in the sense that (\mathcal{F} -proj, \mathcal{F} -inj) is not a perfect cotorsion theory because f-injective envelopes may not exist in general^[14, Proposition 4.8]. However, if \mathcal{F} -proj is closed under direct limits, then (\mathcal{F} -proj, \mathcal{F} -inj) is a perfect cotorsion theory by Theorem 2.4 and Ref. [6, Theorem 7.2.6].

Corollary 2.6 The following are equivalent for a ring R:

- (1) Every right *R*-module is *f*-projective;
- (2) Every cyclic right *R*-module is *f*-projective;
- (3) Every *f*-injective right *R*-module is injective;
- (4) $(\mathcal{F}\text{-}\mathrm{proj}, \mathcal{F}\text{-}\mathrm{inj})$ is hereditary, and every $f\text{-}\mathrm{injective}$ right $R\text{-}\mathrm{module}$ is $f\text{-}\mathrm{projective}$.

In this case, R is right Noetherian.

Proof $(1) \Rightarrow (2)$ is clear.

(2) \Rightarrow (3). Let N be any f-injective right R-module and I any right ideal of R. Then $\text{Ext}^1(R/I, N) = 0$ by (2). Thus N is injective, as desired.

 $(3) \Rightarrow (1)$ holds by Theorem 2.4.

 $(1) \Rightarrow (4)$ is clear.

(4) \Rightarrow (1). By Theorem 2.4, for any right *R*-module *M*, there is a short exact sequence $0 \rightarrow M \rightarrow F \rightarrow L \rightarrow 0$, where *F* is *f*-injective and *L* is *f*-projective. So (1) follows from (4).

In this case, R is right Noetherian since every f-injective right R-module is injective.

3. Applications

Recall that a ring R is right semihereditary if and only if every finitely generated right ideal of R is projective.

Theorem 3.1 The following are equivalent for a ring R:

(1) R is a right semihereditary ring;

(2) Every quotient module of any (f-)injective right R-module is f-injective;

(3) Every (quotient module of any injective) right R-module M has a monic \mathcal{F} -inj-cover $\varphi: F \to M$;

(4) $pd(R/I) \leq 1$ for every right *R*-module R/I with *I* finitely generated right ideal of *R*;

(5) $pd(M) \leq 1$ for every *f*-projective right *R*-module *M*;

(6) $(\mathcal{F}\text{-proj}, \mathcal{F}\text{-inj})$ is hereditary, and every $f\text{-projective right }R\text{-module has a monic }\mathcal{F}\text{-inj-cover.}$

Proof (1) \Leftrightarrow (2) holds by Ref. [8, Theorem 3.2].

 $(2) \Rightarrow (3)$. Let M be any right R-module. Write $F = \sum \{N \leq M : N \in \mathcal{F}\text{-inj}\}$ and $G = \bigoplus \{N \leq M : N \in \mathcal{F}\text{-inj}\}$. Then there exists an exact sequence $0 \to K \to G \to F \to 0$. Note that $G \in \mathcal{F}\text{-inj}$, so $F \in \mathcal{F}\text{-inj}$ by (2). Next we prove that the inclusion $i : F \to M$ is an $\mathcal{F}\text{-inj}\text{-cover of } M$. Let $\psi : F' \to M$ with $F' \in \mathcal{F}\text{-inj}$ be an arbitrary right R-homomorphism. Note that $\psi(F') \leq F$ by (2). Define $\zeta : F' \to F$ via $\zeta(x) = \psi(x)$ for $x \in F'$. Then $i\zeta = \psi$, and so $i : F \to M$ is an $\mathcal{F}\text{-inj}\text{-precover of } M$. In addition, it is clear that the identity map 1_F of F is the only homomorphism $g : F \to F$ such that ig = i, and hence (3) follows.

 $(3) \Rightarrow (2)$. Let M be any f-injective right R-module and N any submodule of M. We shall show that M/N is f-injective. Indeed, there exists an exact sequence $0 \to N \to E \to L \to 0$ with E injective. Since L has a monic \mathcal{F} -inj-cover $\varphi : F \to L$ by (3), there is $\alpha : E \to F$ such that the following exact diagram is commutative:

Thus φ is epic, and hence it is an isomorphism. Therefore L is f-injective. For any finitely presented cyclic right R-module K, we have

$$0 = \operatorname{Ext}^{1}(K, L) \to \operatorname{Ext}^{2}(K, N) \to \operatorname{Ext}^{2}(K, E) = 0.$$

Therefore $\text{Ext}^2(K, N) = 0$. On the other hand, the short exact sequence $0 \to N \to M \to M/N \to 0$ induces the exactness of the sequence

$$0 = \operatorname{Ext}^{1}(K, M) \to \operatorname{Ext}^{1}(K, M/N) \to \operatorname{Ext}^{2}(K, N) = 0.$$

Therefore $\operatorname{Ext}^1(K, M/N) = 0$, as desired.

(2) \Rightarrow (5). Let *M* be any *f*-projective right *R*-module and *N* any right *R*-module. There exists an exact sequence $0 \rightarrow N \rightarrow E \rightarrow L \rightarrow 0$ with *E* injective, and hence *L* is *f*-injective by (2), so we have the exact sequence

$$0 = \operatorname{Ext}^{1}(M, L) \to \operatorname{Ext}^{2}(M, N) \to \operatorname{Ext}^{2}(M, E) = 0.$$

Therefore $\operatorname{Ext}^2(M, N) = 0$, which implies $pd(M) \leq 1$.

- $(5) \Rightarrow (4)$ and $(4) \Rightarrow (1)$ are clear.
- $(2) \Rightarrow (6)$ is clear by the equivalence of (2) and (3).

(6) \Rightarrow (2). Let M be any f-injective right R-module and N any submodule of M. We have to prove that M/N is f-injective. In fact, note that N has a special \mathcal{F} -inj-preenvelope, i.e., there exists an exact sequence $0 \to N \to E \to L \to 0$ with $E \in \mathcal{F}$ -Inj and $L \in \mathcal{F}$ -Proj. The rest of the proof is similar to that of (3) \Rightarrow (2) by noting that $\text{Ext}^2(K, E) = 0$ for any finitely presented cyclic right R-module K, since (\mathcal{F} -proj, \mathcal{F} -inj) is hereditary. This completes the proof.

A right *R*-module *M* is called cotorsion^[6, Definition 5.3.22] if $\text{Ext}^1(F, M) = 0$ for all flat right *R*-modules *F*. It is well known that a ring *R* is von Neumann regular if and only if every (cyclic) right *R*-module is flat if and only if every cotorsion right *R*-module is flat if and only if every cotorsion right *R*-module is flat if and only if every cotorsion right *R*-module is injective. Now we have

Theorem 3.2 The following are equivalent for a ring R:

- (1) R is a von Neumann regular ring;
- (2) Every right *R*-module is *f*-injective;
- (3) Every cotorsion right *R*-module is *f*-injective;
- (4) Every *f*-projective right *R*-module is projective;
- (5) Every *f*-projective right *R*-module is flat;
- (6) Every finitely presented cyclic right *R*-module is flat;
- (7) Every right R-module has an \mathcal{F} -inj-envelope with the unique mapping property;

(8) $(\mathcal{F}\text{-}\mathrm{proj}, \mathcal{F}\text{-}\mathrm{inj})$ is hereditary and every $f\text{-}\mathrm{projective}$ right $R\text{-}\mathrm{module}$ has an $\mathcal{F}\text{-}\mathrm{inj}\text{-}\mathrm{envelope}$ with the unique mapping property;

(9) $(\mathcal{F}\text{-proj}, \mathcal{F}\text{-inj})$ is hereditary and every f-projective right R-module is f-injective.

Proof (1) \Leftrightarrow (2) holds by Ref. [4, Proposition 1.11], (2) \Rightarrow (3) and (4) through (6) are obvious.

(3) \Leftrightarrow (6) follows from Ref. [10, Proposition 2.10].

(6) \Rightarrow (1). Note that R/I is flat for any finitely generated right ideal I of R by (6). Thus R/I is projective since R/I is finitely presented. It follows that I is a direct summand of R, which implies that R is von Neumann regular.

 $(2) \Rightarrow (7)$ and $(7) \Rightarrow (8)$ are clear.

 $(7) \Rightarrow (2)$. Let M be a right R-module. There is the following exact commutative diagram:

Note that $\sigma_L \gamma \sigma_M = 0 = 0 \sigma_M$, so $\sigma_L \gamma = 0$ by (7). Therefore $L = \operatorname{im}(\gamma) \subseteq \ker(\sigma_L) = 0$, and hence M is f-injective.

 $(8) \Rightarrow (9)$. Let M be an f-projective right R-module. By (8), there is an exact sequence

$$0 \longrightarrow M \xrightarrow{\sigma_M} \operatorname{FI}(M) \xrightarrow{\gamma} L \longrightarrow 0 ,$$

where L is f-projective by Wakamatsu's Lemma^[6, Proposition 7.2.4]. Thus M is f-injective by the proof of $(7) \Rightarrow (2)$.

(9) \Rightarrow (2). Let M be any right R-module. Note that M has a special \mathcal{F} -proj-precover, i.e., there exists an exact sequence $0 \to K \to L \to M \to 0$ with $K \in \mathcal{F}$ -inj and $L \in \mathcal{F}$ -proj. Thus $L \in \mathcal{F}$ -inj, and $M \in \mathcal{F}$ -inj by (9).

By Ref. [13, Theorem 3.2], a ring R is right coherent if and only if every direct limit of FP-injective right R-modules is FP-injective. We generalize this result as follows.

Theorem 3.3 The following are equivalent for a ring R:

- (1) Every factor module of an f-injective right R-module by a pure submodule is f-injective;
- (2) Every direct limit of *f*-injective right *R*-modules is *f*-injective;
- (3) R is a right coherent ring.

Proof $(1) \Rightarrow (2)$. Let $(M_i, f_{ij})_{\Lambda}$ be a direct system of f-injective right R-modules. Then $\oplus M_i$ is f-injective by Ref. [8, Theorem 2.4], and the canonical epimorphism $\oplus M_i \to \lim_{\to} M_i$ is pure by Ref. [15, 33.9]. So $\lim_{\to} M_i$ is f-injective by (1).

(2) \Leftrightarrow (3). Let I be any finitely generated right ideal of R and $(M_i, f_{ij})_{\Lambda}$ a direct system of right R-module with M_i f-injective for all $i \in \Lambda$. Then the exactness of the sequence $0 \to I \to R$ induces the following commutative diagram:

with φ being an isomorphism and φ_I being a monomorphism by Ref. [15, 24.9] (for I is finitely generated), where the first row is exact since $M_i \in \mathcal{F}$ -inj for all $i \in \Lambda$. So we have that R is right coherent if and only if I_R is a finitely presented right R-module if and only if φ_I is an isomorphism if and only if the bottom row is exact if and only if $\lim M_i$ is f-injective. $(3) \Rightarrow (1)$ is clear.

Remark 3.4 Let m and n be fixed positive integers. Recall that a right R-module M is said to be (m, n)-injective^[16] if $Ext^1(P, M) = 0$ for any (m, n)-presented right R-module P; A ring R is called right (m, n)-coherent in case each n-generated submodule of the right R-module R^m is finitely presented.

From the proof of Theorem 3.3, we may obtain the following general result:

R is right (m, n)-coherent if and only if every direct limit of (m, n)-injective right R-modules is (m, n)-injective.

We conclude the paper with the following

Corollary 3.5 If R is a left (m, n)-coherent ring, then M^+ has an (m, n)-injective cover for any right R-module M.

Proof By Ref. [11, Corollary 3.3], [6, Corollary 5.2.7] and Remark 3.4.

References

- ANDERSON F W, FULLER K R. Rings and Categories of Modules [M]. Springer-Verlag: New York-Heidelberg, 1974.
- [2] AHSAN J, IBRAHIM A S. Some homological characterizations of regular rings [J]. Comm. Algebra, 1982, 10(9): 887–912.
- [3] COLBY R R. Rings which have flat injective modules [J]. J. Algebra, 1975, 35: 239–252.
- [4] DAMIANO R F. Coflat rings and modules [J]. Pacific J. Math., 1979, 81(2): 349–369.
- [5] DING Nan-qing. On envelopes with the unique mapping property [J]. Comm. Algebra, 1996, 24(4): 1459– 1470.
- [6] ENOCHS E E, JENDA O M G. Relative Homological Algebra [M]. Walter de Gruyter & Co., Berlin, 2000.
- [7] EKLOF P C, TRLIFAJ J. How to make Ext vanish [J]. Bull. London Math. Soc., 2001, 33(1): 41–51.
- [8] GUPTA R N. On f-injective modules and semi-hereditary rings [J]. Proc. Nat. Inst. Sci. India Part A, 1969, 35: 323–328.
- [9] LAM T Y. Lectures on Modules and Rings [M]. Springer-Verlag, New York, 1999.
- [10] MAO Li-xin, DING Nan-qing. Notes on cotorsion modules [J]. Comm. Algebra, 2005, 33(1): 349–360.
- [11] MAO Li-xin, DING Nan-qing. On relative injective modules and relative coherent rings [J]. Comm. Algebra, 2006, 34(7): 2531–2545
- [12] ROTMAN J J. An Introduction to Homological Algebra [M]. Academic Press, New York-London, 1979.
- [13] STENSTRÖM B. Coherent rings and FP-injective modules [J]. J. London Math. Soc., 1970, 2: 323–329.
 [14] TRLIFAJ J. Covers, Envelopes, and Cotorsion Theories; Lecture notes for the workshop, "Homological
- Methods in Module Theory [C]. Cortona, September 10-16, 2000.
- [15] WISBAUER R. Foundations of Module and Ring Theory [M]. Gordon and Breach Science Publishers, Philadelphia, 1991.
- [16] ZHANG Xiao-xiang, CHEN Jian-long, ZHANG Juan. On (m, n)-injective modules and (m, n)-coherent rings
 [J]. Algebra Colloq., 2005, 12(1): 149–160.