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1. Introduction

A linear algebraic monoid is an affine variety defined over an algebraically closed field K

together with an associative morphism and an identity. An algebraic monoid is irreducible if

it is irreducible as a variety. The unit group of an algebraic monoid is an algebraic group. An

irreducible monoid is reductive if its unit group is a reductive group.

Let M be a reductive monoid with unit group G, and let B ⊂ G be a Borel subgroup, T ⊂ B

be the maximal torus, and W = NG(T )/T be the Weyl group. Let NG(T ) be the Zariski closure

of NG(T ) in M . Then R = NG(T )/T , called the Renner monoid of M , is an inverse monoid

with unit group W . Let T be the Zariski closure of T in M and E(T ) = {e ∈ T | e2 = e} be the

set of idempotents in T . Then we have R = 〈W, Λ〉, where Λ = {e ∈ E(T ) | Be = eBe} is the

cross-section lattice of M .

Definition 1.1[7] Let M , G, B, T ⊂ B, W be as above. Let ∆ be the fundamental root system

relative to T and B, and S = {sα | α ∈ ∆} be the set of simple reflections that generate the Weyl

group. The Putcha’s type map λ : Λ → 2∆ is defined by λ(e) = {α ∈ ∆ | sαe = esα, sα ∈ S}.

Definition 1.2[7] Let M be a reductive monoid with zero. The monoid M is called J -irreducible

if Λ \ {0} has a unique minimal idempotent.

Let G be a simple algebraic group, and let ρ : G → GL(V ) be an irreducible representation.

Then M = K∗ρ(G) is a J -irreducible monoid[8, Corollary 8.3.3]. Let λ∗(e) = ∩f≤eλ(f), λ∗(e) =

∩f≥eλ(f), and W (e) = Wλ(e), the associated parabolic subgroup of W as in Section 7.5 of

Ref. [9]. Then we have the following theorem[1], which offers a general formula for the order of a
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Renner monoid of a reductive monoid with zero.

Theorem 1.1 (Theorem 3.2 of Ref. [1]) Let M be a reductive monoid with zero and type map

λ. Let λ∗ and λ∗ be defined as above. Then the order of the Renner monoid R of M is:

|R| = 1 +
∑

e∈Λ\{0}

|WeW | = 1 +
∑

e∈Λ\{0}

|W |2

|Wλ∗(e)| × |Wλ∗(e)|2
.

Note that λ∗(e) and λ∗(e) are subsets of the set S given in Definition 1.1. Let Wλ∗(e) and

Wλ∗(e) be the parabolic subgroups associated with λ∗(e) and λ∗(e) of W respectively. We put

a brief and alternate proof of the above theorem in the next section, and after that we give a

complete list of the orders of the Renner monoids of all J -irreducible monoids for adjoint type

in Section 3.

2. An alternate proof of Theorem 1.1

Let W × W act on R by: (w1, w2) · r = w1rw
−1
2 . Then the set of (W × W )-orbits of R is

isomorphic to Λ as a lattice and R =
⊔

e∈Λ WeW . Clearly, |R| =
∑

e∈Λ |WeW |. This tells us

that as long as a formula for the number of elements in each WeW is obtained, where e ∈ Λ,

then the order of R is done. We give a basic proof here. First of all, we need the following

results, which are due to Putcha and Renner[9,Section 7.5.1].

(i) λ∗(e) = {a ∈ ∆ | sαe = esα 6= e}.

(ii) λ∗(e) = {a ∈ ∆ | sαe = esα = e}.

(iii) For e ∈ Λ, λ(e) = λ∗(e) ⊔ λ∗(e).

(iv) For e ∈ Λ, W (e) ∼= Wλ∗(e)×Wλ∗(e) and w∗w∗ = w∗w
∗ for w∗ ∈ Wλ∗(e) and w∗ ∈ Wλ∗(e).

Then let e and f be two arbitrary idempotents in E(R)(= E(T )) and let w be an arbitrary

element in the Weyl group W . Firstly, if we = f , then f = we = wee = fe. Since we = f , we

get e = w−1f = w−1ff = ef . Therefore, e = f . Similarly, if ew = f then e = f . Secondly, if

we = e, then wew−1w = e, which means wew−1 = e. Hence, ew = we = e. Similarly, if ew = e,

then we = e. Finally, we come to the conclusion that {w ∈ W | we = ew = e} = {w ∈ W | we =

e} = {w ∈ W | ew = e}. Hence, it follows from Definition 1.1, Definition 1.2 and (ii) that if

e ∈ Λ, then Wλ(e) = {w ∈ W | we = ew}, and Wλ∗(e) = {w ∈ W | we = e} = {w ∈ W | ew = e}.

For e ∈ Λ, let (W ×W )e = {(w1, w2) ∈ W ×W | w1, w2 ∈ W , w1ew
−1
2 = e} be the isotropic

group of e. Now we prove that (W × W )e = {(w, ww∗) ∈ W | w ∈ Wλ(e) andw∗ ∈ Wλ∗(e)}.

Actually, it is straightforward to check that the set on the right-hand side is contained in the one

of the left-hand side. On the other hand, for any (w1, w2) ∈ (W × W )e, w1ew
−1
2 = e and then

w1ew
−1
1 (w1w

−1
2 ) = e. According to the former argument, we know it means that w1ew

−1
1 = e.

Hence w1 ∈ Wλ(e). Similarly, w2 ∈ Wλ(e). It follows from w1ew
−1
1 = e and w1ew

−1
1 w1w

−1
2 = e

that ew1w
−1
2 = e. Thus, w1w

−1
2 ∈ Wλ∗(e), and (w1, w2) = (w1, w1(w

−1
1 w2)) belongs to the set

on the right-hand side. As a natural result, we finally get

(i) |(W × W )e| = |Wλ(e)| × |Wλ∗(e)| = |Wλ∗(e)| × |Wλ∗(e)|
2,

(ii) |WeW | = |W |2

|(W×W )e|
= |W |2

|Wλ∗(e)|×|Wλ∗(e)|2
.



96 LEI J, et al

Then Theorem 1.1 follows from (ii).

3. Application to J -irreducible monoids

For completeness, we list all Dynkin diagrams and orders of the Weyl groups of simple groups

here for the reference of the next subsections.

Al:

α0 = λ1 + λl = α1 + α2 + · · · + αl; |W | = (l + 1)!, l ≥ 1.

f f f f
1 2 l − 1 l

. . . . . .

Bl :

α0 = λ2 = α1 + 2α2 + · · · + 2αl; |W | = (l!)2l, l ≥ 2.

f f f f
1 2 l − 1 l

. . . . . . . >

Cl :

α0 = 2λ1 = 2α1 + · · · + 2αl−1 + αl; |W | = (l!)2l, l ≥ 3.

f f . . . . . . . f < f
1 2 l − 1 l

Dl:

α0 = λ2 = α1 + 2α2 + · · · + 2αl−2 + αl−1 + αl; |W | = (l!)2l−1, l ≥ 4.

f f f

f

f

1 2 l − 2

l − 1

l

. . . . . . �
�

H
H

E6:

α0 = λ6 = α1 + 2α2 + 3α3 + 2α4 + α5 + 2α6; |W | = 27345.

f f f f f

f

1 2 3 4 5

6

E7:

α0 = λ1 = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7; |W | = 210345 × 7.

f f f f f f

f

1 3 4 5 6 7

2
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E8:

α0 = λ1 = 2α1 + 3α2 + 4α3 + 5α4 + 6α5 + 4α6 + 2α7 + 3α8; |W | = 21435527.

f f f f f f f

f

1 2 3 4 5 6 7

8

F4:

α0 = λ1 = 2α1 + 3α2 + 4α3 + 2α4; |W | = 2732.

f f> f f
1 2 3 4

G2:

α0 = λ1 = 2α1 + 3α2; |W | = 12.

f> f

1 2

Note that the number above or beside each node is the index of the associated fundamental

root, α0 is the highest root and λi is the i-th fundamental dominant weight relative to the

fundamental root system ∆.

3.1. Type map of J -irreducible monoids

Putcha and Renner found the type maps of the J -irreducible monoids in Ref. [7].

Theorem 3.1 (Theorem 4.16 of Ref. [7]) Let M be a J -irreducible monoid associated with a

dominant weight µ and J0 = {α ∈ ∆ | 〈µ, α〉 = 0}(see [9, p.16] for the bracket 〈 , 〉). Let e0 be

the unique minimal idempotent in Λ \ {0}. Then

(i) λ∗(Λ \ {0}) = {X ⊂ ∆ | X has no connected component that lies entirely in J0}.

(ii) λ∗(e) ∈ λ∗(Λ \ {0}) and λ∗(e) = {a ∈ J0 \ λ∗(e) | sasβ = sβsα for all β ∈ λ∗(e)} for

e ∈ Λ \ {0}. Specially, λ(e0) = λ∗(e0) = J0.

For the remainder of this paper, we assume that M = K∗ρ(G) where G is a simple algebraic

group over K, and ρ : G → GL(V ) is an irreducible representation associated with the highest

root α0.

3.2. Orders of Renner monoids for adjoint type

The orders of Renner monoids of J -irreducible monoids associated with the first fundamental

dominant weight λ1 were found by Li, Li and Cao[1]. Since the highest root is just the first

fundamental dominant weight in the cases of type E7, E8, F4, G2, and two times in the case of

Cl. For these cases the orders of the Renner monoids are completely the same as those in Ref. [1].

Therefore, we list the orders for all the cases but omit the proof for types Cl, E7, E8, F4 and G2.

Theorem 3.2 Let R be the Renner monoids of J -irreducible monoids M associated with the

highest root. Then

(Al) |R| = 2(l +1)2
∑l

r=0

(

l

r

)2
r!+

∑l−2
i=1

∑l−1−i

j=1

(

l+1
i+1

)2
(i+1)!

(

l−i

j+1

)2
(j +1)!− l4− 2l3− 3l2−
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4l − 1 + (l + 1)!.

(Bl) |R| =
∑l

r=0 4r
(

l
r

)2
(r + 1)! − 20l4 + 40l3 − 28l2 + 2l+1l · l! + 2ll!.

(Cl) |R| =
∑l

r=0 4r
(

l
r

)2
r! + 2ll!.

(Dl) |R| =
∑l

r=0 4r
(

l

r

)2
(r + 1)! − 20l4 + 40l3 − 28l2 − 22l−1(l + 1)! + 2ll · l! + 2l−1l!.

(E6) |R| = 113068225 = 52 × 4522729.

(E7) |R| = 44520456709 = 281 × 158435789.

(E8) |R| = 332011601568001 = 4969 × 7187× 9296867.

(F4) |R| = 103105 = 5 × 17 × 1213.

(G2) |R| = 121 = 112.

Proof The main procedure of the proof for each case is to calculate the orders of two-sided W

orbits WeW for e ∈ Λ \ {0} by using Theorem 1.1.

(a) Type Al: J0 = {α2, α3, . . . , αl−1}. It follows from Theorem 3.1 that

λ∗(Λ \ {0}) =
{

φ, {α1}, {α1, α2}, . . . , {α1, α2, . . . , αl−1},

{αl}, {αl−1, αl}, . . . , {α2, α3, . . . , αl},

{α1, α2, . . . , αl}, {α1, . . . , αi−1, αi, αl−j+1, . . . , αl} : 1 ≤ i ≤ l − j − 1 ≤ l − 2
}

.

If e = e0 is the minimal idempotent in Λ \ {0}, we get λ∗(e0) = φ, λ∗(e0) = J0. Hence

|We0W | =
|W |2

|WJ0 |
2

=
|W (Al)|

2

|W (Al−2)|2
=

((l + 1)!)2

((l − 1)!)2
= l2(l + 1)2. (1)

If e is any idempotent other than e0 in Λ \ {0}, and when λ∗(e) = {α1, . . . , αr} with 1 ≤

r ≤ l − 1, then by Theorem 3.1, λ∗(e) = {αr+2, . . . , αl−1} for 1 ≤ r ≤ l − 3 and λ∗(e) = φ for

r = l − 2 and l − 1. Hence, for 1 ≤ r ≤ l − 3, Wλ∗(e)
∼= W (Ar), Wλ∗(e)

∼= W (Al−r−2).

For r = l − 2 and l − 1, Wλ∗(e)
∼= W (Ar), Wλ∗(e)

∼= 1.

So, |Wλ∗(e)| = (r + 1)! and |Wλ∗(e)| = (l − r − 1)! for 1 ≤ r ≤ l − 1. It follows from Theorem

1.1 that,

|WeW | =
((l + 1)!)2

(r + 1)!((l − r − 1)!)2
. (2)

Obviously, when λ∗(e) = {αl−r+1, αl−r, . . . , αl} with 1 ≤ r ≤ l − 1, this case is complete the

same as the above case.

When λ∗(e) = {α1, α2, . . . , αl}, e is the identity element in Λ \ {0}. Hence,

|WeW | = |W | = (l + 1)!. (3)

When λ∗(e) = {α1, . . . , αi−1, αi, αl−j+1, . . . , αl}, 1 ≤ i ≤ l − j − 1 ≤ l − 2, we have λ∗(e) =

{αi+2, αi+3, . . . , αl−j−2, αl−j−1} for l − j − i ≥ 3 and λ∗(e) = φ for l − j − i = 2 and 1. Hence,

for l − j − i ≥ 3, Wλ∗(e)
∼= W (Ai) × W (Aj), Wλ∗(e)

∼= W (Al−j−i−2) and for l − j − i = 2 and

1, Wλ∗(e)
∼= W (Ai) × W (Aj), Wλ∗(e)

∼= 1. Thus, |Wλ∗(e)| = (i + 1)!(j + 1)! and |Wλ∗(e)| =

(l − j − i − 1)!, for 1 ≤ i ≤ l − j − 1 ≤ l − 2. Hence,

|WeW | =
((l + 1)!)2

(i + 1)!(j + 1)!((l − j − i − 1)!)2
. (4)
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Therefore, from (1)–(4) and Theorem 1.1, we have

|R| =1 + l2(l + 1)2 + 2
l−1
∑

r=1

((l + 1)!)2

(r + 1)!((l − r − 1)!)2
+ (l + 1)!+

∑

1≤i≤l−j−1≤l−2

((l + 1)!)2

(i + 1)!(j + 1)!((l − j − i − 1)!)2

=2(l + 1)2
l

∑

r=0

(

l

r

)2

r! +

l−2
∑

i=1

l−1−i
∑

j=1

(

l + 1

i + 1

)2

(i + 1)!

(

l − i

j + 1

)2

(j + 1)!−

l4 − 2l3 − 3l2 − 4l − 1 + (l + 1)!.

(b) Type Bl: J0 = {α1, α3, . . . , αl}. It follows from Theorem 3.1 that

λ∗(Λ \ {0}) =
{

φ, {α2}, {α2, α3}, . . . , {α2, α3, . . . , αl},

{α1, α2}, {α1, α2, α3}, . . . , {α1, α2, . . . , αl}
}

.

If e = e0 is the minimal idempotent in Λ \ {0}, we get

|We0W | =
|W |2

|WJ0 |
2

=
|W (Bl)|

2

|W (A1) × W (Bl−2)|2
=

(2ll!)2

(2!(l − 2)!2l−2)2
= 4(l − 1)2l2. (5)

If e is any idempotent other than e0 in Λ \ {0}, and when λ∗(e) = {α2, α3, . . . , αr+1} with

1 ≤ r ≤ l − 1, by Theorem 3.1, λ∗(e) = {αr+3, . . . , αl} for 1 ≤ r ≤ l − 3 and λ∗(e) = φ for

r = l − 2 and l − 1. Therefore, for 1 ≤ r ≤ l − 3, Wλ∗(e)
∼= W (Ar), Wλ∗(e)

∼= W (Bl−r−2), where

B1
∼= A1 when r = l−3, for r = l−2, Wλ∗(e)

∼= W (Al−2), Wλ∗(e)
∼= 1, and for r = l−1, Wλ∗(e)

∼=

W (Bl−1), Wλ∗(e)
∼= 1.

So, |Wλ∗(e)| = (r+1)! and |Wλ∗(e)| = 2l−r−2(l−r−2)! for 1 ≤ r ≤ l−2, |Wλ∗(e)| = 2l−1(l−1)!

and |Wλ∗(e)| = 1 for r = l − 1. It follows from Theorem 1.1 that for 1 ≤ r ≤ l − 2,

|WeW | =
(2ll!)2

(r + 1)!(2l−r−2(l − r − 2)!)2
= 4r+2(r + 2)

(

l

r + 1

)2

(r + 2)!. (6)

and for r = l − 1,

|WeW | =
(2ll!)2

2l−1(l − 1)!
= 2l+1l l!. (7)

It is similar to calculate the remaining cases:

For λ∗(e) = {α1, α2, . . . , αr+1} with 1 ≤ r ≤ l − 1, we have λ∗(e) = {αr+3, . . . , αl} for

1 ≤ r ≤ l − 3 and λ∗(e) = φ for r = l − 2 and l − 1. It is easy to get that for 1 ≤ r ≤ l − 2 ,

|WeW | =
(2ll!)2

(r + 2)!(2l−r−2(l − r − 2)!)2
= 4r+2

(

l

r + 2

)2

(r + 2)!. (8)

and for r = l − 1, λ∗(e) = {α1, α2, . . . , αl}, e is the identity element and so

|WeW | = |W | = 2ll!. (9)

Therefore, from (5)–(9) and Theorem 1.1, we have

|R| =1 + 4(l − 1)2l2 +

l−2
∑

r=1

4r+2(r + 2)

(

l

r + 2

)2

(r + 2)! + 2l+1l · l!+
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l−2
∑

r=1

4r+2

(

l

r + 2

)2

(r + 2)! + 2ll!

=
l

∑

r=0

4r

(

l

r

)2

(r + 1)! − 20l4 + 40l3 − 28l2 + 2l+1l · l! + 2ll!.

(d) Type Dl: J0 = {α1, α3, . . . , αl}. It follows from Theorem 3.1 that

λ∗(Λ \ {0}) =
{

φ, {α2}, {α2, α3}, . . . , {α2, α3, . . . , αl−2},

{α2, . . . , αl−2, αl−1}, {α2, . . . , αl−2, αl}, {α2, . . . , αl−2, αl−1, αl},

{α1, α2}, {α1, α2, α3}, . . . , {α1, α2, α3, . . . , αl−2},

{α1, . . . , αl−2, αl−1}, {α1, . . . , αl−2, αl}, {α1, . . . , αl−2, αl−1, αl}
}

.

If e = e0 is the minimal idempotent in Λ \ {0}, we get

|We0W | =
|W |2

|WJ0 |
2

=
|W (Dl)|

2

|W (A1) × W (Dl−2)|2
=

(2l−1l!)2

(2! 2l−3 (l − 2)!)2
= 4(l − 1)2l2. (10)

For 1 ≤ r ≤ l − 5 and λ∗(e) = {α2, α3, . . . , αr+1}, by Theorem 3.1, we have λ∗(e) =

{αr+3, . . . , αl}. So, Wλ∗(e)
∼= W (Ar) and Wλ∗(e)

∼= W (Dl−r−2), where D3
∼= A3 when r = l − 5.

Thus, |Wλ∗(e)| = (r + 1)! and |Wλ∗(e)| = 2l−r−3(l − r − 2)!. Therefore,

|WeW | =
(2l−1l!)2

(r + 1)!(2l−r−3(l − r − 2)!)2
= 4r+2(r + 2)

(

l

r + 2

)2

(r + 2)!. (11)

For r = l−4 and λ∗(e) = {α2, . . . , αl−3}, we have λ∗(e) = {αl−1, αl}. So, Wλ∗(e)
∼= W (Al−4)

and Wλ∗(e)
∼= W (A1) × W (A1). It follows that |Wλ∗(e)| = (l − 3)! and |Wλ∗(e)| = 4. Therefore,

|WeW | =
(2l−1l!)2

(l − 3)! 42
= 22l−6(l − 2)(l − 1)l · l!. (12)

For r = l − 3 and λ∗(e) = {α2, . . . , αl−2}, we have λ∗(e) = φ. So, Wλ∗(e)
∼= W (Al−3) and

Wλ∗(e)
∼= 1. We have |Wλ∗(e)| = (l − 2)! and |Wλ∗(e)| = 1. Therefore,

|WeW | =
(2l−1l!)2

(l − 2)!
= 22l−2(l − 1)l · l!. (13)

For r = l − 2, it follows that λ∗(e) = {α2, . . . , αl−2, αl−1} or λ∗(e) = {α2, . . . , αl−2, αl},

we have both λ∗(e) = φ, Wλ∗(e)
∼= W (Al−2) and Wλ∗(e)

∼= 1. Thus, |Wλ∗(e)| = (l − 1)! and

|Wλ∗(e)| = 1. Therefore,

|WeW | =
(2l−1l!)2

(l − 1)!
= 22l−2l · l!. (14)

For r = l − 1, λ∗(e) = {α2, . . . , αl}, we have λ∗(e) = φ. So, Wλ∗(e)
∼= W (Dl−1) and

Wλ∗(e)
∼= 1. Thus, |Wλ∗(e)| = 2l−2(l − 1)! and |Wλ∗(e)| = 1. Hence,

|WeW | =
(2l−1l!)2

2l−2(l − 1)!
= 2ll · l!. (15)

The argument is similar for the remaining cases. It is easy to find that:
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For 1 ≤ r ≤ l−5 and λ∗(e) = {α1, . . . , αr+1}, by Theorem 3.1, we have λ∗(e) = {αr+3, . . . , αl},

and

|WeW | =
(2l−1l!)2

(r + 2)!(2l−r−3(l − r − 2)!)2
= 4r+2

(

l

r + 2

)2

(r + 2)!. (16)

For r = l − 4 and λ∗(e) = {α1, . . . , αl−3}, we have λ∗(e) = {αl−1, αl}, and

|WeW | =
(2l−1l!)2

(l − 2)! 42
= 22l−6(l − 1)l · l!. (17)

For r = l − 3 and λ∗(e) = {α1, . . . , αl−2}, we have λ∗(e) = φ, and

|WeW | =
(2l−1l!)2

(l − 1)!
= 22l−2l · l!. (18)

For r = l − 2, it follows that λ∗(e) = {α1, . . . , αl−2, αl−1} or λ∗(e) = {α1, . . . , αl−2, αl}, and

for both of the cases, λ∗(e) = φ,

|WeW | =
(2l−1l!)2

l!
= 22l−2l!. (19)

For r = l − 1, λ∗(e) = {α1, . . . , αl}. Then e is the identity element in Λ \ {0}, and hence

|WeW | = |W | = 2l−1l!. (20)

Therefore, by (10)–(20), and Theorem 1.1, we have

|R| =1 + 4(l − 1)2l2 +

l−5
∑

r=1

4r+2(r + 2)

(

l

r + 2

)2

(r + 2)! + 22l−6(l − 2)(l − 1)l · l!+

22l−2(l − 1)l · l! + 2 × 22l−2l · l! + 2ll · l! +

l−5
∑

r=1

4r+2

(

l

r + 2

)2

(r + 2)!+

22l−6(l − 1)l · l! + 22l−2l · l! + 2 × 22l−2l! + 2l−1l!

=
l

∑

r=0

4r

(

l

r

)2

(r + 1)! − 20l4 + 40l3 − 28l2 − 22l−1(l + 1)! + 2ll · l! + 2l−1l!.

(e6) Type E6: J0 = {α1, α2, α3, α4, α5}. It follows from Theorem 3.1 that

λ∗(Λ \ {0}) =
{

φ, {α6}, {α6, α3}, {α6, α3, α2}, {α6, α3, α4},

{α6, α3, α2, α1}, {α6, α3, α4, α5}, {α6, α3, α2, α4},

{α6, α3, α2, α4, α1}, {α6, α3, α2, α4, α5}, {α6, α3, α2, α4, α1, α5}
}

.

If e = e0 is the minimal idempotent in Λ \ {0}, we have

|We0W | =
|W |2

|WJ0 |
2

=
|W (E6)|

2

|W (A5)|2
=

(27345)2

(6!)2
= 2634. (21)

For λ∗(e) = {α6}, by Theorem 3.1 we have λ∗(e) = {α1, α2, α4, α5}. So, Wλ∗(e)
∼= W (A1)

and Wλ∗(e)
∼= W (A2) × W (A2). Therefore,

|WeW | =
(27345)2

2!(3!)4
= 293452. (22)
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For λ∗(e) = {α6, α3}, we have λ∗(e) = {α1, α5}. So, Wλ∗(e)
∼= W (A2) and Wλ∗(e)

∼=

W (A1) × W (A1), Therefore,

|WeW | =
(27345)2

3! 42
= 293752. (23)

For λ∗(e) = {α6, α3, α2}, this case is the same as λ∗(e) = {α6, α3, α4}. By Theorem 3.1, we

have λ∗(e) = {α5}. So, Wλ∗(e)
∼= W (A3) and Wλ∗(e)

∼= W (A1), Therefore,

|WeW | =
(27345)2

4!(2!)2
= 293752. (24)

For λ∗(e) = {α6, α3, α2, α1}, this case is the same as λ∗(e) = {α6, α3, α4, α5}. By Theorem

3.1, we have λ∗(e) = {a5}. So, Wλ∗(e)
∼= W (A4) and Wλ∗(e)

∼= W (A1). Therefore,

|WeW | =
(27345)2

5! 22
= 29375. (25)

For λ∗(e) = {α6, α3, α2, α4}, by Theorem 3.1, we have λ∗(e) = φ. So, Wλ∗(e)
∼= W (D4) and

Wλ∗(e)
∼= 1. Therefore,

|WeW | =
(27345)2

234!
= 283752. (26)

For λ∗(e) = {α6, α3, α2, α4, α1}, this case is the same as λ∗(e) = {α6, α3, α2, α4, α5}. By

Theorem 3.1, we have λ∗(e) = φ. So, Wλ∗(e)
∼= W (D5) and Wλ∗(e)

∼= 1. Therefore,

|WeW | =
(27345)2

245!
= 27375. (27)

For λ∗(e) = {α6, α3, α2, α4, α1, α5}, e is the identity element, and hence

|WeW | = |W (E6)| = 27345. (28)

It follows from (21)–(28), and Theorem 1.1 that

|R| = 113068225 = 52 × 4522729.

The proof for the case E6 is completed. 2
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