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1. Introduction

The estimation of the number of closed orbits for certain flows has been studied by many au-

thors such as Refs.[2], [4] and [9]. The error terms of asymptotic expansion were not known until

the works of Dolgopyat[3] on Anosov flows, where he obtained strong results on the contractivity

of the transfer operator. These results led Anantharaman[1], Pollicott and Sharp[10] and Liu[5]

to find full expansions of expression for the number of closed orbits for Anosov flows. The key

to these methods lies in reduction of calculating closed orbits of an Anosov flow to calculating

closed orbits of a suspended flow or to calculating periodic points of a subshift of finite type[8].

This strategy led us to consider the number of cycles of a connected graph in this article.

A graph G is defined to be a pair (V, E), where V is a set {V1, V2, . . . , Vn} of elements called

vertices, and E is a family {e1, e2, . . . , em} of (undirected) edges joining elements of V . There

may be more than one edge joining the two vertices. If a vertex is joined to itself by an edge, we

call this edge a loop. We will only consider the connected finite graphs in this article.

It is convenient to speak of graph in which each edge has an orientation attached to it. In

this case, we call the graph an oriented graph. We can associate to an undirected graph G with

n vertices and m edges, and an oriented graph Go with n vertices and 2m edges. An oriented

graph Go is a pair (V, E), where E is a set of ordered pairs of elements of V . For e ∈ E, we

denote by I(e) the initial endpoint of e and T (e) the terminal endpoint of e.
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We label the edges of oriented graph Go by 1, 2, . . . , 2m. For example, Figure 1.1 is a

undirected graph with 3 vertices and 4 edges and Figure 1.2 is the corresponding oriented graph

to Figure 1.1.
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A chain is a sequence u = (u1, u2, . . . , uq) of edges of Go such that each edge in the sequence

has one endpoint in common with its predecessor in the sequence and its other endpoint in

common with its successor in the sequence, i.e., T (ui) = I(ui+1), i = 1, 2, . . . , q − 1.

A cycle γ is a chain such that the two endpoints of the chain are the same vertex, i.e., a

chain (u1, u2, . . . , uq) is a cycle if T (uq) = I(u1). The edge length of a cycle γ is defined by the

number of edges in γ. We say a cycle γ = (u1 . . . , uq) has backtracking if ui = −ui+1 for some

i, 1 ≤ i ≤ q − 1, where −ui+1 is the reverse of ui+1.

We assign a length to each edge and denote the length of ei by l(ei). For the corresponding

oriented graph, we have l(ei) = l(−ei). The length of a chain (u1, u2, . . . , un) is l(u1) + l(u2) +

· · · + l(un).

We denote by H1(G, Z) the homology group of G. For convenience, we assume that H1(G, Z) =

Zb. Otherwise, we can write H1(G, Z) = Zb ⊕ H . Since the torsion subgroup H is finite, the

results then will only differ by a multiplicative constant.

Let Γ be the set of cycles in graph G. For γ ∈ Γ we denote by [γ] the homology class in

H1(G, Z). Let l(γ) be the length of γ.

For α ∈ H1(G, Z), let

π(T, α) = #{γ ∈ Γ, l(γ) ≤ T, [γ] = α}.

We will give the asymptotic formulae for π(T, α) which is similar to the case of homologically

full transitive Anosov flow Ref. [5]. But we will concentrate on how to calculate the first error

term for special cases in this paper.

We briefly outline the contents of this article. In Section 2, we explain how, through the

use of symbolic dynamics, the counting problem for cycles can be reduced to one for periodic

points for a subshift of finite type. In Section 4, we introduce a function Z(s, v) and derive

some important properties of its analytic extension which can be used to obtain the formula for

distribution of cycles including error terms, that is, Theorem 1. We specify the coefficient for

the first error term in this section. In the last two sections we will give two examples for how

to calculate the coefficient of the first error term, where we use two different methods. Since the
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calculating of coefficient of first error term involves the derivatives of a function β(u) which will

be introduced in Section 3, we will give some formulae of derivatives of β(u) in this section.

2. Symbolic dynamics

For a graph G with m edges there exists a 2m×2m matrix AG with zero-one entries associated

with the corresponding oriented graph Go. The matrix AG can be defined in the following way.

For 1 ≤ i, j ≤ 2m, if the terminal endpoint of edge i is equal to the initial endpoint of edge j,

then A(i, j) = 1, otherwise A(i, j) = 0. For example, the matrix associated with Figure 1.2 is

AG =



















1 1 1 0 0 0 0 1

1 1 1 0 0 0 0 1

0 0 0 1 1 0 0 0

1 1 1 0 0 0 0 1

0 0 0 0 0 1 1 0

0 0 0 1 1 0 0 0

1 1 1 0 0 0 0 1

0 0 0 0 0 1 1 0



















.

Let A = (aij) be a k × k matrix. We say A is non-negative if aij ≥ 0 for all i, j. Such a

matrix is called irreducible if for any pair i, j there is some n such that a
(n)
i,j > 0, where a

(n)
ij is

(i, j)-th element of An, i.e., a
(n)
ij = An

ij . The matrix A is aperiodic if there exists n > 0 such that

a
(n)
ij > 0 for all i, j.

It is easy to see that the graph G is connected if and only if associated AG is irreducible. So

if AG is aperiodic, then G is connected. But if G is connected, AG may be not aperiodic. For

example, a bipartite graph is connected but the associated matrix is not aperiodic. Where we

say a graph G is bipartite if its vertex set can be partitioned into two classes such that no two

adjacent vertices belong to the same class. A graph is bipartite if and only if it possesses no

cycles of odd edge length. However, It is easy to prove that

Lemma 1 If G is connected and it is not bipartite, then associated matrix AG is aperiodic.

We will only consider connected graph G whose corresponding matrix AG is aperiodic.

We define ΣA by

ΣA = {x ∈
∞∏

0

{1, 2, . . . , 2m} : AG(xi, xi+1) = 1, ∀i ∈ Z
+}.

The subshift of finite type σ : ΣA → ΣA is defined by subshift

(σx)i = xi+1.

We define r : ΣA → R+ by r(x) = l(x0). Then

l(x0, x1, . . . , xn−1) = r(x) + r(σx) + · · · + r(σn−1x) =: rn(x).

There is a one-one correspondence between closed orbits {x, σx, . . . , σn−1x} for σ : ΣA → ΣA
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and cycles of the graph G. The least length of corresponding cycle is rn(x).

There exists f = (f1, f2, . . . , fb) : ΣA → Rb such that for γ ∈ Γ, [γ] = fn(x) for some n, x

with σnx = x. We can even make f(x) just depend on one co-ordinate, i.e., f(x) = f(x0)
[8].

Remark If AG is connected but not aperiodic, then it is a bipartite graph. In this case, we can

decompose ΣA by ΣA = Σ0

⋃
Σ1, which satisfies

σ : Σ0 −→ Σ1, Σ1 −→ Σ0.

So σ2 : ΣA → ΣA satisfies σ2 : Σ0 → Σ0, Σ1 → Σ1. We define

R(x) := r2(x) = r(x) + r(σx),

and

F (x) := f2(x) = f(x) + f(σx).

There is one-one correspondence between closed orbits {x, (σ2)x, . . . , (σ2)n−1x} for σ2 : Σ0 → Σ0

or (Σ1 → Σ1) and cycles of the graph G. The least length of corresponding cycle is Rn(x), which

is the same as AG is aperiodic.

In order to obtain a positive result, we shall only consider the graphs satisfying the following

conditions[10].

(A) Weak-Mixing. The closed subgroup of R generated by {l(γ)}(γ ∈ Γ) is R.

(B) Approximability Condition. There exist three cycles γ1, γ2 and γ3 with least lengths

l(γ1), l(γ2) and l(γ3), respectively, such that

ζ =
l(γ1) − l(γ2)

l(γ2) − l(γ3)

is badly approximable, i,e., there exist α > 0 and C > 0 such that |ζ − p
q | ≥ C

qα , for all p, q ∈ Z,

q > 0.

The set of ζ satisfying this condition is a large set. For example, it is a set of full measure in

the real line. Moreover, its complement has Hausdorff dimension zero.

3. Derivatives of function β(u)

In this section, we first briefly review the pressure function and then calculate the derivatives

of associated function β(u). The pressure function P : C(ΣA) → R is defined by

P (g) = sup
m∈Mσ

{hm(σ) +

∫

gdm},

where Mσ is the set of σ-invariant probability measures and hm(σ) is the entropy of σ with

respect to m. Let h be the unique number such that P (−hr) = 0. Without loss of generality,

we assume
∫

fdµ−hr = 0, where µ−hr is the equilibrium state of −hr.

For u ∈ Rb, the function β(u) : Rb → R is defined by

P (−β(u)r + 〈u, f〉) = 0. (1)
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Then β(u) is an analytic function on Rb and β(u) is strictly convex in each ui, i = 1, 2, . . . , b,

where 〈u, f〉 =
∑b

i=1 uifi. Now we can extend β(u) to complex values of the argument. For

all u ∈ Rb, P (−β(u)r + 〈u, f〉) = 0 and P (−sr + 〈u + iv, f〉) is analytic for (s, u + iv) in a

neighbourhood of R × Rb in C × Cb. Since

[
∂P (−sr + 〈u, f〉)

∂s
]s=s0 = −

∫

rdµ−s0r+〈u,f〉 6= 0,

by the implicit function theorem, β(u) can extend to an analytic function on a neighbourhod of

Rb in Cb by the equation

P (−β(u + iv)r + 〈u + iv, f〉) = 0.

We have β(0) = h, since P (−hr) = 0.

When estimating π(T, α), the arising formulae involve derivatives of the function β(u). In

this section, we shall calculate these derivatives up to the fourth order. Differentiating (1) with

respect to ui yields
∂P

∂β

∂β

∂ui
+

∂P

∂ui
= 0. (2)

Since

[
∂P (−β(u)r)

∂β
]β=β(0)=h = −

∫

rdµ−hr,

and

[
∂P (−hr + 〈u, f〉)

∂ui
]u=0 =

∫

fidµ−hr,

we have
∂β(0)

∂ui
=

∫
fidµ−hr
∫

rdµ−hr
= 0.

To obtain the expression of ∇β2(0), we differentiate (2) with respect to uj, and note ∇β(0) = 0.

It follows
∂2β(0)

∂ui∂uj
=

1
∫

rdµ−hr
[
∂2P (−hr + 〈u, f〉)

∂ui∂uj
]u=0.

There is another expression for ∂2β(0)/∂ui∂uj, that is,

∂2β(0)

∂ui∂uj
=

1
∫

rdµ−hr
lim

n→∞

1

n

∫

fn
i fn

j dµ−hr.

We refer to Ref. [4] for this formula.

The third and fourth order derivatives of β with respect to ui are as follows.

∂3β(0)

∂ui∂uj∂um
=

1
∫

rdµ−hr
{[∂

3P (−hr + 〈u, f〉)
∂ui∂uj∂um

]u=0+

[(
∂2P

∂β∂ui

∂2β

∂uj∂um
+

∂2P

∂β∂uj

∂2β

∂ui∂um
+

∂2P

∂β∂um

∂2β

∂ui∂uj
)(−βr + 〈u, f〉)]β=h,u=0}.

∂4β(0)

∂ui∂uj∂um∂un
=

1
∫

rdµ−hr
{[∂

4P (−hr + 〈u, f〉)
∂ui∂uj∂um∂un

]u=0+

[
∂2P

∂β2
(

∂2β

∂ui∂uj

∂2β

∂um∂un
+

∂2β

∂ui∂um

∂2β

∂uj∂un
+

∂2β

∂ui∂un

∂2β

∂uj∂um
)]+
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(
∂3P

∂β∂ui∂uj

∂2β

∂um∂un
+ · · · + ∂3P

∂β∂um∂un

∂β

∂ui∂uj
︸ ︷︷ ︸

6 items

)+

(
∂2P

∂β∂ui

∂3β

∂uj∂um∂un
+ · · ·

︸ ︷︷ ︸

4 items

)(−βr + 〈u, f〉)|β=h,u=0}.

For k > 4, ∇βk(0) is more complicated. But for some special graph G, ∇βk(0) may be easy to

calculate.

4. Distribution of cycles

Let g be of class C∞ with compact support. For α ∈ H1(G, Z), we first estimate the auxiliary

function

πg(T, α) =
∑

γ∈Γ,[γ]=α

g(l(γ)− T ).

Let ĝ be the Fourier transform of g. By Fourier’s Inverse Transform Formula,

πg(T, α) =
∑

γ∈Γ

1

2π

∫

R

∫

Rb/Zb

ĝ(−iσ + t)e−(σ+it)(l(γ)−T )e〈2πiv,[γ]〉e−〈2πiv,α〉dvdt

=
1

2π

∫

R

∫

Rb/Zb

Z(σ + it, v)e(σ+it)T ĝ(−iσ + t)e−2πi〈v,α〉dvdt,

where we have defined

Z(s, v) = Z(σ + it, v) =

∞∑

n=1

1

n

∑

x∈Fixn

e−(σ+it)rn(x)+2πi〈v,fn(x)〉 + A(σ + it, v),

with Fixn = {x ∈ ΣA, σnx = x} and A(σ + it, v) is analytic when σ > h − ǫ for some ǫ > 0.

It is well-known that when Res = σ > β(0) = h, Z(s, v) is absolutely convergent. For the

behaviour of Z(s, v) in Res < h, we can determine the domain of Z(s, v) by studying the norm

of the transfer operator Ls,v, which was discussed in detail in Ref. [3]. Proceeding the same way

as in Ref. [5] or more originally in Ref. [10], we obtain the following proposition.

Proposition 1 Under conditions (A) and (B), there exist B > 0, c > 0, ǫ > 0, λ > 0, ρ > 0

and an open set V0 which is a neighbourhood of zero in Rb/Zb such that

(i) Z(s, v) is analytic in {s = σ + it : σ > h − c
|t|ρ , |t| > B}. And in this domain |Z(s, v)| =

O(|t|λ);

(ii) Z(s, v) + log(s − β(iv)) is analytic in {(s, v) : v ∈ V0, σ > h − ǫ, |t| ≤ B};
(iii) Z(s, v) is analytic in {(s, v) : v /∈ V̄0, σ > h − ǫ, |t| ≤ B}.
Using Proposition 1, we can estimate

πg(T, α) =
1

2π

∫

R

∫

Rb/Zb

Z(σ + it, v)e(σ+it)T ĝ(−iσ + t)e−2πi〈v,α〉dvdt.

We divide Rb/Zb into V0 and Rb/Zb − V0 (V0 is a neighbourhood of 0 in Rb/Zb in Proposition

1). For v ∈ Rb/Zb − V0, Z(s, v) is analytic in {s = σ + it : σ > h− ǫ, |t| < B} ∪ {s = σ + it : σ >
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h − c
|t|ρ , |t| > B}. It is easy to estimate the integral over Rb/Zb − V0. For v ∈ V0, using suitable

contour integral and Residue Formula, we can transfer the integral over σ > h to integral over

{σ + it : σ > h − c
|t|ρ , |t| > B}. Then expanding the integral function by Taylor Formula, we

can estimate the integral over V0. The details are similar to that for estimating closed orbits in

homology class for Anosov flow Ref. [5]. We have

Theorem 1 Let G be connected finite undirected graph. Assume that H1(G, Z) = Zb. If g is

of class C∞ with compact support, then there exists h > 0 such that

πg(T, α) =
eTh

T b/2+1
(

N∑

n=0

cn,g(α)

T n
+ O(

1

T N+1
)) as T → ∞, (3)

for all N ∈ N. If we write α = (α1, α2, . . . , αb), then

cn,g(α) =

2n∑

i1+i2+···+ib=0

ci1i2...ib
αi1

1 αi2
2 · · ·αib

b , ci1...ib

are constants which only depend on the lengths of edges of graph G and g.

Assume ρ < 1 in Proposition 1 and let δ = [ 1ρ ]− 1. Same as that in Ref. [5] for homologically

full transitive Anosov flow, the error term is not worse than O( 1
T δ ) when we use approximation

argument to estimate π(T, α). We have the following theorem.

Theorem 2 Let G be connected finite undirected graph and H1(G, Z) = Zb. Then there exist

h > 0 and δ > 0 such that

π(T, α) =
eTh

T b/2+1
(c0 +

N∑

n=1

cn(α)

T n
+ O(

1

T δ
)) as T → ∞

for N = δ − 1, where c0 > 0 is a constant. If we write α = (α1, α2, . . . , αb), then the constants

cn(α) =
∑2n

i1+i2+···+ib=0 ci1i2...ib
αi1

1 αi2
2 · · ·αib

b , ci1...ib
only depend on the lengths of edges of graph

G.

Analogously to the calculating of the closed geodesics in Ref. [6], the coefficient c1,g(α) in (3)

is as follows.

c1,g(α) = −
b∑

i,j=1

aijαiαj +

b∑

i=1

biαi + c1

with

aij = 2π2ĝ(−ih)

∫

Rb

e−
1
2β′′(0)(v,v)vivjdv,

bi =

∫

Rb

e−
1
2β′′(0)(v,v)F1(iv) · (2πiv)dv,

c1 =

∫

Rb

e−
1
2β′′(0)(v,v)F2(iv)dv.

Where

F1(iv) =
1

6
ĝ(−ih)β(3)(0) · (iv)3 + ḡ

(1)
0 (0) · (iv),

F2(iv) =
1

72
ĝ(−ih)[2(β(3)(0) · (iv)3)2 + 3β(4)(0) · (iv)4]+
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1

6
ḡ
(1)
0 (0) · (iv)β(3)(0) · (iv)3 +

1

2
ḡ
(2)
0 (0) · (iv)2 + ḡ

(0)
1 (0)

with ḡj(iv) = dj ĝ(−iβ(iv))
dsj .

Since β′′(0) is positive definite, there exists a linear transformation v = Mu such that

〈v, β′′(0)v〉 =
∑b

k=0 u2
k, where v = (v1, v2, . . . , vb)

T, u = (u1, u2, . . . , ub)
T and M is a b × b

matrix with detM > 0. That is, there exists a matrix M such that MTβ′′(0)M = Id. Hence

aij = 2π2ĝ(−ih)

∫

Rb

e−
1
2

∑ b
k=1 u2

k(
b∑

l=1

Milul)(
b∑

m=1

Mjmum) detMdu

= 2π2ĝ(−ih) detM

b∑

l=1

MilMjl

∫

Rb

e−
1
2

∑ b
k=1 u2

ku2
l du

= (2π)
b
2+2 ĝ(−ih)

2
detM

b∑

l=1

MilMjl.

It is easy to see bi = 0 because πg(T, α) = πg(T,−α). The formula for the constant c is still

complicated since we need to calculate β(3)(0) and β(4)(0).

We take g close to χ[−∞,0]. Then πg(T, α) = π(T, α). Furthermore,

ĝ(−is) =

∫ 0

−∞

esydy =
1

s
.

Hence ĝ(−ih) = 1
h and ḡ0(−is) = ĝ(−is) = 1

s . However ḡ0(iv) = ĝ(−iβ(iv)) = 1
β(iv) and

ḡ1(iv) = − 1
β2(iv) . In this case, ḡ

(1)
0 (0) = 0, ḡ

(2)
0 (0) = ∇2β(0)

h2 and ḡ
(0)
1 (0) = − 1

h2 . So

aij =
(2π)

b
2+2

2h
detM

b∑

l=1

MilMjl.

Theorem 3 Let G be connected finite undirected graph. Then there exist h > 0 and δ > 0

such that

π(T, α) =
eTh

T b/2+1
(c0 +

N∑

n=1

cn(α)

T n
+ O(

1

T δ
)) as T → ∞

with

c1(α) = − (2π)
b
2 +2

2h
detM

b∑

i,j=1

b∑

l=1

MilMjlαiαj + c1,0,

where M = (Mij) is a b × b matrix such that (MMT)−1 = β′′(0) and c1,0 is a constant which is

independent of α.

5. Example 1

Let us consider the simple case, where G is a graph with one vertex and k edges which form

k loops. In this case,

AG =







1 . . . 1
...

...

1 . . . 1







.
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Let the lengths of edges be l1, l2, . . . , lk respectively such that conditions (A) and (B) are satisfied.

We define r : ΣA → R by

r(x) = r(x0) =







l1, if x0 = 1,

l1, if x0 = 2,

· · · · · ·
lk, if x0 = 2k − 1,

lk, if x0 = 2k

and the homology group of G by H1(G, Z) ∼= Zk.

f : ΣA → Zk is defined by f(x) = f(x0) = (f1(x0), . . . , fk(x0)) such that

fi(x) = fi(x0) =







1, if x0 = 2i − 1,

−1, if x0 = 2i,

0, otherwise.

In order to obtain the formula c1(α), we need to calculate β′′(0), F1(iv) and F2(iv) which involve

β(3)(0) and β(4)(0). Next we compute β′′(0), β(3)(0) and β(4)(0).

Noting P (−hr) = 0, we have

eP (−hr+〈u,f〉) =

2k∑

l=1

e−hr(l)+〈u,f(l)〉. (4)

In this case,
∫

rdµ−hr =
2k∑

l=1

r(l)e−hr(l) = 2
k∑

i=1

lie
−hli .

By direct calculation, we have

[
∂P (−hr + 〈u, f〉)

∂ui
]u=0 =

2k∑

l=1

e−hr(l)fi(l) = e−hli [1 + (−1)] = 0,

[
∂2P (−hr + 〈u, f〉)

∂ui∂uj
]u=0 =

{

2e−hli, if i = j,

0, if i 6= j,

[
∂2P

∂β∂ui
(−βr + 〈u, f〉)]β=h,u=0 = 0, ∀i,

[
∂3P (−hr + 〈u, f〉)

∂ui∂uj∂um
]u=0 =

2k∑

l=1

fi(l)fj(l)fm(l)e−hr(l) = 0.

By means of the formulae in Section 3, we have

∇β(0) = 0,

∂2β(0)

∂ui∂uj
=

{
e−hli

∑
k
i=1 lie−hli

, if i = j,

0, if i 6= j,

∂3β(0)

∂ui∂uj∂um
= 0.
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To calculate β(4)(0), we also need the following

[
∂4P (−hr + 〈u, f〉)

∂ui∂uj∂um∂un
]u=0 =







−4e−h(li+lm), if i = j 6= m = n,

−4e−h(li+ln), if i = m 6= j = n,

−4e−h(li+lj), if i = n 6= j = m,

2e−hli − 12e−2hli, if i = j = m = n,

0, otherwise,

[
∂2P

∂β2
(−βr + 〈u, f〉)]β=h,u=0 = 2

k∑

i=1

l2i e
−hli − 4(

k∑

i=1

lie
−hli)2,

and

[
∂3P (−hr + 〈u, f〉)

∂β∂ui∂uj
]u=0 =

{

−2lie
−hli + 4e−hli

∑k
s=1 lse

−hls , if i = j,

0, if i 6= j.

All the above implies that
∂4β(0)

∂u4
i

=
8die

−2hli

∑k
s=1 lse−hls

,

where

di =
1

16
{2ehli − 12li

∑k
s=1 lse−hls

+
6
∑k

s=1 l2se
−hls

(
∑k

s=1 lse−hls)2
}. (5)

And
∂4β(0)

∂u2
i ∂u2

j

=
24dij

∑k
s=1 lse−hls

e−h(li+lj),

where

dij =
1

24
{
∑k

s=1 l2se
−hls

(
∑k

s=1 lse−hls)2
− li + lj
∑k

s=1 lse−hls
}. (6)

Otherwise,
∂4β(0)

∂ui∂uj∂um∂un
= 0.

Let
∑k

i=1 lie
−hli = 1

c′ . By the argument in the preceding section we have

aij = 2π2ĝ(−ih)

∫

Rk

e−
1
2 c′

∑k
m=1 e−hlm v2

mvivjdv.

So if i 6= j, aij = 0. For i = j,

aii = 2π2ĝ(−ih)

∫

Rk

e−
1
2 c′

∑k
m=1 e−hlm v2

mv2
i dv =

(2π)
k
2 +2ĝ(−ih)ehli

2c′
k
2 +1

√
e−h(l1+···+lk)

.

Substituting ĝ(−ih) = 1/h and let ξ = (2π)
k
2

+2

2hc′
k
2

+1
√

e−h(l1+···+lk)
, we have

aij =

{

ξehli , if i = j,

0, if i 6= j.

In order to obtain constant c1,0, we first calculate F2(iv). Since

β(4)(0) · (iv)4 = 24c′
∑

i6=j

dije
−h(li+lj)(ivi)

2(ivj)
2 + 8c′

k∑

i=1

die
−2hli(ivi)

4,
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we have

F2(iv) =
3ĝ(−ih)

72
×

[24c′
∑

i6=j

dije
−h(li+lj)(ivi)

2(ivj)
2 + 8c′

k∑

i=1

die
−2hli(ivi)

4] +
ḡ
(2)
0 (0)

2
· (iv)2 + ḡ

(0)
1 (0)

= c′ĝ(−ih)
∑

i6=j

dije
−h(li+lj)v2

i v2
j +

c′ĝ(−ih)

3

k∑

i=1

die
−2hliv4

i +
ḡ
(2)
0 (0)

2
· (iv)2 + ḡ

(0)
1 (0).

Hence

c1,0 =

∫

Rk

e−
1
2 c′

∑k
i=1 e−hli v2

i F2(iv)dv =
1

2π2
(d̄1 + d̄2)ξ + C,

where

d̄1 =
∑

i6=j

dij , d̄2 =
k∑

i=1

di, (7)

and

C =

∫

Rk

e−
1
2 c′

∑k
i=1 e−hli v2

i (
ḡ
(2)
0 (0)

2
· (iv)2 + ḡ

(0)
1 (0))dv = −k + 2

4hπ2
c′ξ.

So we have

Theorem 4 If G is a graph with one vertex and k edges which form k loops, then we have

π(T, α) =
eTh

T b/2+1
(c0 +

N∑

n=1

cn(α)

T n
+ O(

1

T N+1
)) as T → ∞.

The first error term c1(α) is given by

c1(α) = −
k∑

i=1

ξehliα2
i + c1,0,

where

ξ =
1

2h
(2π)

k
2 +2
√

eh(l1+l2+···+lk)(
k∑

i=1

lie
−hli)

k
2 +1

and

c1,0 =
1

2π
(d̄1 + d̄2 −

k + 2

2h
∑k

i=1 lie−hli
)ξ,

and d̄1 and d̄2 are specified by (5)–(7).

Especially, if k = 2 and α = (α1, α2) ∈ Z2, then

c1(α) = −4π3(l1e
−hl1 + l2e

−hl2)2
√

eh(l1+l2)

h
(ehl1α2

1 + ehl2α2
2) + c1,0.

Since h satisfies e−hl1 + e−hl2 = 1
2 , the constant c1,0 is given by

c1,0 =
4π3

√
eh(l1+l2)

96h
{[108 + 12(ehl1 + ehl2)](l1e

−hl1 + l2e
−hl2)2−

38l1l2 − 63(l21e
−hl1 + l22e

−hl2)}.
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6. Example 2

Let G be a graph with two vertices and three edges which form two loops (Figure 6.1). It

can be coded with the following directed graph (Figure 6.2).

V

e

e e

1 2

3

56

1

2 3

4

V2

1

Figure 6.1 Figure 6.2

The matrix AG associated with Go (Figure 6.2) is as follows.

AG =














1 1 1 0 0 1

1 1 1 0 0 1

0 0 0 1 1 0

1 1 1 0 0 1

1 1 1 0 0 1

0 0 0 1 1 0














.

Let the lengths of e1, e2 and e3 be l1, l2 and l3, respectively such that conditions (A) and (B) are

satisfied.

We define

r(x) = r(x0) =







l1, if x0 = 1 or x0 = 2,

l2, if x0 = 3 or x0 = 4,

l3, if x0 = 5 or x0 = 6

and f(x) = f(x0) = (f1(x0), f2(x0)) such that

f1(x) = f1(x0) =







1, if x0 = 1,

−1, if x0 = 2,

0, otherwise,

and

f2(x) = f2(x0) =







1
2 , if x0 = 3 or x0 = 5,

− 1
2 , if x0 = 4 or x0 = 6,

0, otherwise.
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In this case, H1(G, Z) = Z2. There exists a measure µ−hr which is Markov measure. If we denote

by µ−hr(x0, x1, . . . , xn) the measure of cylinder {x : x = x0x1 · · ·xn ∗ · · · }, then

(i) µ−hr(x0, x1, . . . , xn) ≥ 0;

(ii)
∑

x0
µ−hr(x0) = 1;

(iii) µ−hr(x0, x1, . . . , xn) =
∑

xn+1
µ−hr(x0, x1, . . . , xn+1).

Moreover,

µ−hr(1) = µ−hr(2), µ−hr(3) = µ−hr(4), µ−hr(5) = µ−hr(6).

In order to calculate ∇2β(0), we will use another expression for ∇2β(0) in the form

∂2β(0)

∂ui∂uj
=

1
∫

rdµ−hr
lim

n→∞

1

n

∫

fn
i fn

j dµ−hr.

We first prove the following lemma by induction.

Lemma 2 ∀n ∈ N,
∫

fn
1 fn

2 dµ−hr = 0.

Proof (i) Since f1(x)f2(x) ≡ 0, by definition of f , the conclusion holds for n = 1.

(ii) Assume that the conclusion holds for n = k ∈ N. Then
∫

fk
1 fk

2 dµ−hr = 0. For n = k + 1,

by induction assumption and property (3) of Makkov measure, we have

∑

x0,...,xk−1,xk

(f1(x0) + · · · + f1(xk−1))(f2(x0) + · · · + f2(xk−1))µ−hr(x0, . . . , xk−1, xk)

=

∫

fk
1 fk

2 dµ−hr = 0.

Since A(xk−1, 1) = 1 ⇐⇒ A(xk−1, 2) = 1, and µ−hr(x0, . . . , xk−1, 1) = µ−hr(x0, . . . , xk−1, 2), we

have

h1 :=
∑

x0,...,xk−1,xk

f1(xk)(f2(x0) + · · · + f2(xk−1))µ−hr(x0, . . . , xk−1, xk) = 0,

h2 :=
∑

x0,...,xk−1,xk

f2(xk)(f1(x0) + · · · + f1(xk−1))µ−hr(x0, . . . , xk−1, xk) = 0.

It is always true for

h3 :=
∑

x0,...,xk−1,xk

f1(xk)f2(xk)µ−hr(x0, . . . , xk−1, xk) = 0.

So ∫

fk+1
1 fk+1

2 dµ−hr =

∫

fk
1 fk

2 dµ−hr + h1 + h2 + h3 = 0.

(iii) Hence

∀n ∈ N,

∫

fn
1 fn

2 dµ−hr = 0.

Similarly,

∀n ∈ N,

∫

fn
2 fn

1 dµ−hr = 0.

We also need to calculate
∫
(fn

1 )2dµ−hr and
∫

(fn
2 )2dµ−hr. We have
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Lemma 3 ∀n ∈ N,
∫

(fn
1 )2dµ−hr = n(µ−hr(1) + µ−hr(2)) = 2nµ−hr(1)

and
∫

(fn
2 )2dµ−hr =

1

4
n(µ−hr(3) + µ−hr(4) + µ−hr(5) + µ−hr(6)) =

1

2
n(µ−hr(3) + µ−hr(5)).

Proof We prove this lemma by induction as we did for Lemma 2. We have

β′′(0) =
1

∫
rdµ−hr

(

2µ−hr(1) 0

0 1
2 (µ−hr(3) + µ−hr(5))

)

.

It is easy to see that µ−hr(1) = µ−hr(2) = e−hl1 , µ−hr(3) = µ−hr(4) = e−hl2 , and µ−hr(5) =

µ−hr(6) = e−hl3 . Hence

β′′(0) =
1

2(l1e−hl1 + l2e−hl2 + l3e−hl3)

(

2e−hl1 0

0 1
2 (e−hl2 + e−hl3)

)

.

Now we can calculate aij . Since β′′(0) is diagonal, we still have a12 = a21 = 0. Let

c′ =
1

∫
rdµ−hr

=
1

2(l1e−hl1 + l2e−hl2 + l3e−hl3)
.

Then

a11 =
2π2

h

∫ +∞

−∞

∫ +∞

−∞

e−
1
2 c′(2e−hl1v2

1+ 1
2 (e−hl2+e−hl3 )v2

2)v2
1dv1dv2

=
2π3

c′2h

ehl1

√
e−h(l1+l2) + e−h(l1+l3)

,

and

a22 =
2π2

h

∫ +∞

−∞

∫ +∞

−∞

e−
1
2 c′(2e−hl1v2

1+ 1
2 (e−hl2+e−hl3 )v2

2)v2
2dv1dv2

=
8π3

c′2h

eh(l2+l3)

(ehl2 + ehl3)
√

e−h(l1+l2) + e−h(l1+l3)
.

Let

c =
8π3(l1e

−hl1 + l2e
−hl2 + l3e

−hl3)2

h
√

e−h(l1+l2) + e−h(l1+l3)
.

We have

Theorem 5 Let G be a graph with two vertices and three edges which form two loops.

π(T, α) =
eTh

T b/2+1
(c0 +

N∑

n=1

cn(α)

T n
+ O(

1

T δ
)) as T → ∞

with

c1(α) = −cehl1α2
1 − 4c

eh(l2+l3)

ehl2 + ehl3
α2

2 + c1,0,

where

c =
8π3(l1e

−hl1 + l2e
−hl2 + l3e

−hl3)2

h
√

e−h(l1+l2) + e−h(l1+l3)
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and c1,0 is a constant (which we do not specify here since it is rather complicated).
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