
Journal of Mathematical Research & Exposition

Feb., 2008, Vol. 28, No. 1, pp. 169–176
DOI:10.3770/j.issn:1000-341X.2008.01.022
Http://jmre.dlut.edu.cn

Approximating Fixed Points of Pseudocontractive
Mapping in Banach Spaces

YAO Yong-hong, CHEN Ru-dong
(Department of Mathematics, Tianjin Polytechnic University, Tianjin 300160, China)

(E-mail: yuyanrong@tjpu.edu.cn)

Abstract Let K be a nonempty closed convex subset of a real p-uniformly convex Banach

space E and T be a Lipschitz pseudocontractive self-mapping of K with F (T ) := {x ∈ K : Tx =

x} 6= ∅. Let a sequence {xn} be generated from x1 ∈ K by xn+1 = anxn + bnTyn + cnun,

yn = a′

n
xn + b′

n
Txn + c

′

n
vn for all integers n ≥ 1. Then ‖xn − Txn‖ → 0 as n → ∞. Moreover,

if T is completely continuous, then {xn} converges strongly to a fixed point of T .
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1. Introduction

Let K be a nonempty subset of a real Banach space E with dual E∗. We denote by J the

normalized duality mapping from E to 2E∗

defined by

J(x) = {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖2 = ‖f∗‖2},

where 〈·, ·〉 denotes the generalized duality pairing.

Recall that a mapping T : K → K is called pseudocontractive if there exists j(x−y) ∈ J(x−y)

such that

〈Tx − Ty, j(x− y)〉 ≤ ‖x − y‖2

for all x, y ∈ K. A mapping T : K → K is called Lipschitzian if there exists a constant L ≥ 0

such that ‖Tx − Ty‖ ≤ L‖x− y‖ for each x, y ∈ K. If L = 1, then T is called nonexpansive.

Apart from being an important generalization of nonexpansive mappings, interest in pseu-

docontractive mappings stems mainly from their firm connection with the important class of

nonlinear accretive operators, where a mapping U with domain D(U) and range R(U) in E is

called accretive if the inequality

‖x − y‖ ≤ ‖x − y + s(Ux − Uy)‖

holds for every x, y ∈ D(U) and for all s > 0. It is well known[1] that if T is accretive, then the

solutions of the equation Tx = 0 correspond to the equilibrium points of some evolution systems.
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Consequently, considerable research efforts, especially within the past 20 years or so, have been

devoted to iterative methods for approximating fixed points of T when T is pseudocontractive

(see, for example, Refs. [2–6] and the references therein).

Let T : K → K be a nonexpansive self-mapping on a convex subset K of a normed linear

space E. Let Sλ := λI + (1 − λ)T , λ ∈ (0, 1), where I denotes the identity mapping of K. Then

for fixed x0 ∈ K, {Sn
λ (x0)} is defined by Sn

λ(x0) := λxn + (1 − λ)Txn, where xn := Sn−1
λ (x0).

In 1955, Krasnoseleskii[7] proved that if E is uniformly convex and K is compact, then for any

x0 ∈ K, the iterative sequence {Sn
1

2

(x0)} converges to a fixed point of T , where S 1

2

:= 1
2 (I + T ).

Schaefer[8] observed that the same result holds for any Sλ with λ ∈ (0, 1), and Edelstein[9]

proved that strict convexity of E suffices. The important and natural question of whether strict

convexity can be removed remained open for many years. In 1976, this question was resolved in

the affirmative in the following theorem.

Theorem I
[10] Let K be a nonempty subset of a Banach space E and let T : K → E be a

nonexpansive mapping. For x0 ∈ K, define the sequence {xn} by

xn+1 = (1 − cn)xn + cnTxn, (1)

where the real sequence {cn} satisfies the following conditions: (a)
∑

∞

n=0 cn = ∞; (b) 0 ≤ cn ≤ 1

for all positive integers n; and (c) xn ∈ K for all positive integers n. If {xn} is bounded, then

limn→∞ ‖xn − Txn‖ = 0.

The iteration method of Theorem I is now referred to as the Mann iteration method in the

light of Ref. [3] and has been studied extensively by various authors. One consequence of this

theorem is that if K is closed and T is completely continuous, then T has a fixed point and the

sequence {xn} defined by (1) converges strongly to a fixed point of T (see, for example, Theorem

1 of Ref. [10]). Any sequence satisfying the conclusion of Theorem I, i.e., limn→∞ ‖xn−Txn‖ = 0,

is called an approximate fixed point sequence for T .

The importance of approximate fixed point sequences is that once a sequence has been con-

structed and proved to be an appropriate fixed point sequence for a nonexpansive mapping T ,

convergence of that sequence to a fixed point of T is then achieved under some mild compactness-

type assumptions either on T or on its domain.

Our concern now is the following: Is it possible to extend Theorem I to the case where T is a

Lipschitz pseudocontractive mapping? In this connection, Chidume and Mutangadura[11] have

recently given an example of a Lipschitz pseudocontractive self-mapping of a compact convex

subset of a Hilbert space with a unique fixed point to which no Mann sequence converges.

Consequently, for this class of mappings, the Mann sequence cannot give the conclusion of

Theorem I.

In 1974, Ishikawa[12] introduced an iteration process which, in some sense, is more general

than that of Mann and which converges to a fixed point of Lipschitzian pseudocontractive self-

mapping T of K. He proved the following theorem.

Theorem IS
[12] Suppose K is a compact convex subset of a Hilbert space H and T : K → K
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is a Lipschitzian pseudocontractive mapping. For x0 ∈ K, define the sequence {xn} by

xn+1 = (1 − αn)xn + αnTyn; yn = (1 − βn)xn + βnTxn, n ≥ 0, (2)

where {αn}, {βn} are sequences of positive numbers satisfying the conditions

(i) 0 ≤ αn ≤ βn < 1; (ii) limn→∞ βn = 0; (iii)
∑

∞

n=1 αnβn = ∞.

Then the sequence {xn} defined by (2) converges strongly to a fixed point of T .

The iteration method of Theorem IS, now referred to as the Ishikawa iteration method, has

been studied extensively by various authors. However, it is still an open question whether or

not this method can be employed to approximate fixed points of Lipschitz pseudocontractive

mappings in space more general than Hilbert spaces[5,13,14].

It is our purpose in this paper to give affirmative answer to the above question. Let K be a

nonempty closed convex subset of a real p-uniformly convex Banach space and T be a Lipschitz

pseudocontractive self-mapping of K with F (T ) := {x ∈ K : Tx = x} 6= ∅. Let a sequence {xn}

be generated from x1 ∈ K by xn+1 = anxn + bnTyn + cnun, yn = a′

nxn + b′nTxn + c′nvn for all

integers n ≥ 1. Then ‖xn −Txn‖ → 0 as n → ∞. Moreover, if T be completely continuous, then

{xn} converges strongly to a fixed point of T .

2. Preliminaries

Let E be a Banach space, the modulus of convexity of E is the function δE : (0, 2] → [0, 1]

defined by

δE(ǫ) = inf{1 −
1

2
‖x + y‖ : ‖x‖ = 1, ‖y‖ = 1, ‖x − y‖ ≥ ǫ}.

A Banach space E is called uniformly convex if and only if δE(ǫ) > 0 for all ǫ ∈ (0, 2]. For

p > 1, the (generalized) duality mapping Jp : E → 2E∗

is defined as Jp(x) := {f ∈ E : 〈x, f〉 =

‖x‖p, ‖f‖ = ‖x‖p−1}. In particular, J = J2 is the normalized duality mapping on E. It is known

that Jp(x) = ‖x‖p−2J(x), x 6= 0. A Banach space E is called p-uniformly convex if there exists

a constant c > 0 such that δE(ǫ) ≥ cǫp, ∀ 0 < ǫ ≤ 2. It is known[15] that Lp is

2-uniformly convex, if 1 < p ≤ 2,

p-uniformly convex, if p ≥ 2.

Lemma 2.1
[5] Let p > 1 be a given real number. Then the following statements about a Banach

space E are equivalent:

(i) E is p-uniformly convex;

(ii) There is a constant cp > 0 such that for every x, y ∈ E, jp(x) ∈ Jp(x), the following

inequality holds:

‖x + y‖p ≥ ‖x‖p + p〈y, jp(x)〉 + cp‖y‖
p. (3)

Remark 2.1 Replacing x by (x + y) and y by (−y) in Inequality (3) and using the Cauchy-

Schwarz inequality, we can obtain

‖x + y‖p ≤ ‖x‖p + p‖y‖ · ‖x + y‖p−1.
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Lemma 2.2
[15] Let p > 1 be a given real number. Let E be a p-uniformly convex Banach space.

Then, there exists a constant d > 0 such that

‖λx + (1 − λ)y‖p ≤ λ‖x‖p + (1 − λ)‖y‖p − Wp(λ)d‖x − y‖p (4)

for all λ ∈ [0, 1] and x, y ∈ E, where Wp(λ) = λp(1 − λ) + λ(1 − λ)p.

Lemma 2.3
[16] Let {ρn}, {σn} be two nonnegative sequences and for all integers n ≥ N0 (for

some fixed N0), ρn+1 ≤ ρn + σn.

(a) If
∑

∞

n=1 σn < ∞, then limn→∞ ρn exists;

(b) If
∑

∞

n=1 σn < ∞ and {ρn} has a sequence converging to zero, then limn→∞ ρn = 0.

3. Main results

In the sequel, cp, d will denote the constants appearing in Inequalities (3) and (4), respectively.

For the rest of this paper, we shall assume that E be a real p-uniformly convex Banach space

such that 2−(p−2)dp > (p − 1)c−1
p and p ≤ 1 + cp. For Lp spaces with 1 < p ≤ 2, the following

inequalities hold[15,p1131−1132]:

‖x + y‖2 ≥ ‖x‖2 + 2〈y, J(x)〉 + cp‖y‖
2,

and

‖λx + (1 − λ)y‖2 ≤ λ‖x‖2 + (1 − λ)‖y‖2 − W2(λ)(p − 1)‖x − y‖2

for λ ∈ [0, 1] and ∀ x, y ∈ E, where cp = [1 + t
(p−1)
p ][(1 + tp)

−(p−1)] and for 0 < tp < 1, tp is the

unique solution of the equation g(t) = (p− 2)t(p−1) + (p− 1)t(p−2) − 1 = 0. We observe that the

function h : [0, 1] → [0,∞) defined by h(x) = 1+xp−1

(1+x)p−1 is increasing on

[0, 1](h
′

(x) =
(1 + x)p−2(p − 1)(xp−2 − 1)

(1 + x)2p−2
≥ 0),

hence for Lp(1 < p ≤ 2) we have cp ≥ 1 and d = p − 1. Therefore, the conditions 2−(p−2)dp >

(p − 1)c−1
p and p ≤ 1 + cp are satisfied.

Lemma 3.1 Let E be a real p-uniformly convex Banach space, ∅ 6= K ⊂ E be convex and

bounded, T : K → K be a pseudocontractive mapping. Then, for each x, y ∈ K and for each

integer n ≥ 1, the following inequality holds:

cp‖Tx− Ty‖p ≤ (p − 1)‖x − y‖p + ‖(I − T )x − (I − T )y‖p.

Proof Replacing x by 1
2 (x − y) and y by − 1

2 (Tx − Ty) in Inequality (3), we can get

‖x − y − (Tx − Ty)‖p ≥‖x − y‖p − p2p−1〈Tx − Ty, jp(
1

2
(x − y))〉+

cp‖Tx − Ty‖P

≥‖x − y‖p − p‖x − y‖p + cp‖Tx − Ty‖p.

Since

jp(
1

2
(x − y)) ∈ Jp(

1

2
(x − y)) = 2−(p−1)‖x − y‖(p−2)J(x − y),
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we have

cp‖Tx− Ty‖p ≤ (p − 1)‖x − y‖p + ‖x − y − (Tx − Ty)‖p. (5)

The proof is completed. 2

Remark 3.1 We observe that the function f : [0,∞) → (−∞, +∞) defined by f(x) = Lpxp −

dp(1 − x)2−(p−2) + (p− 1)c−1
p is strictly increasing on (0,∞). Hence, it has at most one zero on

(0,∞), provided that f(0) = (p − 1)c−1
p − dp2−(p−2) < 0. In this case, since f(1) = Lp + (p −

1)c−1
p > 0, it follows that the zero tp ∈ (0, 1).

Lemma 3.2 Let E be a real p-uniformly convex Banach space such that 2−(p−2)dp > (p−1)c−1
p

and p ≤ 1 + cp. Let K be a nonempty bounded convex subset of E, T : K → K be a Lipschitz

pseudocontractive mapping with Lipschitz constant L ≥ 0 and F (T ) 6= ∅. Let {an}, {bn}, {cn},

{a
′

n}, {b
′

n}, and {c
′

n} be real sequences in [0, 1] satisfying the following conditions:

(i) an + bn + cn = a
′

n + b
′

n + c
′

n = 1, ∀ n ≥ 1;

(ii)
∑

∞

n=0 cn < ∞,
∑

∞

n=0 c
′

n < ∞;

(iii) ǫ ≤ 1 − dcp(1 − αn)2−(p−2) ≤ βn ≤ b for all integers n ≥ 1, some ǫ > 0 and b ∈ (0, tp),

where αn = bn + cn, βn = b
′

n + c
′

n and tp is the unique solution of the equation:

Lpxp − dp(1 − x)2−(p−2) + (p − 1)c−1
p = 0 (6)

on (0,∞). For arbitrary x1 ∈ K, define the sequence {xn} iteratively by

xn+1 = anxn + bnTyn + cnun, yn = a′

nxn + b′nTxn + c
′

nvn, n ≥ 1,

where {un}, {vn} are arbitrary sequences in K. Then, limn→∞ ‖xn − Txn‖ = 0.

Proof Let x∗ ∈ F (T ). Using Inequality (4) and the boundedness of K, for some constant

M ≥ 0, we have

‖xn+1 − x∗‖p =‖(1 − αn)(xn − x∗) + αn(Tyn − x∗) − cn(Tyn − un)‖p

≤(1 − αn)‖xn − x∗‖p + αn‖Tyn − x∗‖p−

Wp(αn)d‖xn − Tyn‖
p + Mcn. (7)

Notice that

cp‖Txn − x∗‖p ≤ (p − 1)‖xn − x∗‖p + ‖xn − Txn‖
p, (8)

and

cp‖Tyn − x∗‖p ≤ (p − 1)‖yn − x∗‖p + ‖yn − Tyn‖
p. (9)

Moreover, for some constants M1 ≥ 0, M2 ≥ 0, we have

‖yn − x∗‖p =‖(1 − βn)(xn − x∗) + βn(Txn − x∗) − c′n(Txn − vn)‖p

≤(1 − βn)‖xn − x∗‖p + βn‖Txn − x∗‖p−

Wp(βn)d‖xn − Txn‖
p + M1c

′

n, (10)

and

‖yn − Tyn‖
p =‖(1 − βn)(xn − Tyn) + βn(Txn − Tyn) − c′n(Txn − vn)‖p
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≤(1 − βn)‖xn − Tyn‖
p + βn‖Txn − Tyn‖

p−

Wp(βn)d‖xn − Txn‖
p + M2c

′

n. (11)

Substituting (8) into (10), one gets

‖yn − x∗‖p ≤(1 − βn)‖xn − x∗‖p + βnc−1
p {(p − 1)‖xn − x∗‖p+

‖xn − Txn‖
p} − Wp(βn)d‖xn − Txn‖

p + M1c
′

n

=[1 + βnc−1
p (p − 1 − cp)]‖xn − x∗‖p+

[βnc−1
p − Wp(βn)d]‖xn − Txn‖

p + M1c
′

n. (12)

Set tn = βnc−1
p (p − 1 − cp), rn = βnc−1

p − Wp(βn)d. Then

‖yn − x∗‖p ≤ (1 + tn)‖xn − x∗‖p + rn‖xn − Txn‖
p + M1c

′

n. (13)

Substituting (13) and (11) into (9) yields

cp‖Tyn − x∗‖p ≤(p − 1)(1 + tn)‖xn − x∗‖p + (p − 1)rn‖xn − Txn‖
p+

(1 − βn)‖xn − Tyn‖
p + βn‖Txn − Tyn‖

p−

Wp(βn)d‖xn − Txn‖
p + [(p − 1)M1 + M2]c

′

n.

Substituting this inequality into (7) now gives

‖xn+1 − x∗‖p ≤{1 + αn[(p − 1)c−1
p (1 + tn) − 1]}‖xn − x∗‖p−

[Wp(αn)d − c−1
p αn(1 − βn)]‖xn − Tyn‖

p−

c−1
p αn[Wp(βn)d − (p − 1)rn]‖xn − Txn‖

p+

αnβnc−1
p ‖Txn − Tyn‖

p + M3(cn + c′n) (14)

for some M3 > 0. Observe that c−1
p (p− 1)(1 + tn)− 1 = c−2

p (p− 1− cp)[(p− 1)βn + cp] and that

by condition (iii), Wp(αn)d − c−1
p αn(1 − βn) ≥ 0 since Wp(αn) ≥ αn(1 − αn)2−(p−2). Therefore

‖xn+1 − x∗‖p ≤{1 + αnc−2
p (p − 1 − cp)[(p − 1)βn + cp]}‖xn − x∗‖p−

αnc−1
p [Wp(βn)d − (p − 1)rn]‖xn − Txn‖

p+

αnβnc−1
p ‖Txn − Tyn‖

p + M3(cn + c′n).

Since T is Lipschitzian, we have, for some constant M4 > 0, that

‖Txn − Tyn‖
p ≤ Lp‖xn − yn‖

p = Lp‖βn(xn − Txn) + c
′

n(Txn − vn)‖p

≤ Lpβp
n‖xn − Txn‖

p + M4c
′

n.

Hence by the assumption p ≤ 1 + cp,

‖xn+1 − x∗‖p ≤‖xn − x∗‖p − αnβnc−1
p [dp(1 − βn)2−(p−2) − (p − 1)c−1

p −

βp
nLp]‖xn − Txn‖

p + M5(cn + c′n) (15)

for some constant M5 ≥ 0. Since b ∈ (0, tp), it follows that

δ = dp(1 − b)2−(p−2) − (p − 1)c−1
p − bpLp > 0.
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We can choose some ǫ such that ǫ′ = 1 − (1 − ǫ)2−(p−2)cpd > 0. Then condition (iii) implies

αn ≥ ǫ′ > 0. Furthermore, Inequality (15) now yields the following estimates

‖xn+1 − x∗‖p ≤ ‖xn − x∗‖p − ǫǫ′c−1
p δ‖xn − Txn‖

p + M5(cn + c′n). (16)

Since
∑

∞

n=0(cn + c′n) < ∞, it follows from Lemma 2.3 that limn→∞ ‖xn − x∗‖p exists. Let

limn→∞ ‖xn − x∗‖p = r. Inequality (16) also yields

0 < ǫǫ
′

c−1
p δ‖xn − Txn‖

p ≤ ‖xn − x∗‖p − ‖xn+1 − x∗‖p + M5(cn + c′n) → 0.

Hence, limn→∞ ‖xn − Txn‖ = 0. The proof is completed. 2

Theorem 3.1 Let E be a real p-uniformly convex Banach space such that 2−(p−2)dp > (p−1)c−1
p

and p ≤ 1 + cp. Let K be a nonempty closed convex and bounded subset of E, T : K → K be a

completely continuous Lipschitz pseudocontractive mapping with Lipschitz constant L ≥ 0 and

F (T ) 6= ∅. Let {an}, {bn}, {cn}, {a′

n}, {b
′

n}, and {c′n} be real sequences in [0, 1] satisfying the

following conditions:

(i) an + bn + cn = a′

n + b′n + c′n = 1, ∀ n ≥ 1;

(ii)
∑

∞

n=0 cn < ∞,
∑

∞

n=0 c′n < ∞;

(iii) ǫ ≤ 1 − dcp(1 − αn)2−(p−2) ≤ βn ≤ b for all integers n ≥ 1, some ǫ > 0 and b ∈ (0, tp),

where αn = bn + cn, βn = b′n + c′n and tp is the unique solution of the equation:

Lpxp − dp(1 − x)2−(p−2) + (p − 1)c−1
p = 0 (17)

on (0,∞). For arbitrary x1 ∈ K, define the sequence {xn} iteratively by

xn+1 = anxn + bnTyn + cnun; yn = a′

nxn + b′nTxn + c′nvn, n ≥ 1,

where {un}, {vn} are arbitrary sequences in K. Then, {xn} converges strongly to a fixed point

of T .

Proof By Lemma 3.2, limn→∞ ‖xn − Txn‖ = 0. Since T is completely continuous, there exists

a subsequence {Txni
} of {Txn} such that Txni

→ y∗. This implies, by Lemma 3.2, that

xni
→ y∗. (18)

By the continuity of T and Lemma 3.2, we obtain Ty∗ = y∗, i.e., y∗ is a fixed point of T .

Replacing the x∗ by y∗ in Inequality (16), we obtain that

‖xn+1 − y∗‖p ≤ ‖xn − y∗‖p − ǫǫ′c−1
p δ‖xn − Txn‖

p + M5(cn + c′n). (19)

From (18) we know that {‖xn − y∗‖} has a sequence converging to zero. In view of the

conditions
∑

∞

n=0 cn < ∞ and
∑

∞

n=0 c′n < ∞, from Inequality (19) and Lemma 2.3, we can

conclude that ‖xn − x∗‖ → ∞ as n → ∞, i.e., {xn} converges to a fixed point of T . The proof

is completed. 2
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