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1. Introduction

The problem that we consider in this paper is the determination of the conjugacy classes of

torsion matrices in the 4×4 integral symplectic group. Our original motivation for studying this

problem came not from algebra but rather from Riemann surfaces[5].

Let Mn(Z) be the set of n×n matrices over Z. Let In be the identity matrix in Mn(Z) and

J =

(

0 In

−In 0

)

.

Definition 1 The set of 2n×2n unimodular matrices X in M2n(Z) such that

X ′JX = J, (1)

where X ′ is the transpose of X , is called the symplectic group of genus n over Z and is denoted

by SP 2n(Z). Two symplectic matrices X , Y of SP 2n(Z) are said to be conjugate or similar,

denoted by X ∼ Y , if there is a matrix Q ∈ SP 2n(Z) such that Y = Q−1XQ.

A complete set of non-conjugate classes of torsion in SP 4(Z) will be given in this paper.

Given a matrix X ∈ M2n(Z), we denote the characteristic polynomial of X by

f
X

(x) = |xI − X |.

If X ∈ SP 2n(Z), then fX(x) is “palindromic” and monic, that is,

x2nf( 1
x
) = f(x) and f(0) = 1. (2)
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Definition 2 A polynomial f(x) in Z[x] of degree 2n (n ≥ 1) is called an S-polynomial if it

is a palindromic monic polynomial. An S-polynomial f(x) ∈ Z[x] is said to be irreducible over

Z, or is an irreducible S-polynomial in Z[x], if it cannot be expressed as the product of two

S-polynomials (in Z[x]) of positive degree. Otherwise, f(x) is called reducible over Z.

It is known that every S-polynomial is a product of irreducible S-polynomials. Apart from

the order of the factors, this factorization is unique.

We consider torsion elements of SP 4(Z). The first question we consider is: for what positive

integer d (d ≥ 2), is there a matrix X ∈ SP 2n(Z) having order d? If X has order d, then

its minimal polynomial mX(x) is a factor of xd − 1, i.e., mX(x) is a product of some different

cyclotomic polynomials, and its characteristic polynomial fX(x) is a product of some cyclotomic

polynomials. Suppose d = ps1

1 · · · pst

t , where p1, p2, . . . , pt are different primes. According to a

result of D. Sjerve[4], the degree of fX(x) is not less than ϕ(ps1

1 ) + · · · + ϕ(pst

t ) − 1, where ϕ is

the Euler totient function, so

ϕ(ps1

1 ) + · · · + ϕ(pst

t ) ≤ 2n + 1.

We get

(i) If n = 1, then d must be 2, 3, 4, 6;

(ii) If n = 2, then d must be 2, 3, 4, 5, 6, 8, 10, 12.

We denote by Td the set of d-torsion elements in SP 4(Z). Let X ∈ Td. The possible minimal

polynomials mX(x) and characteristic polynomials fX(x) are as follows:

When d = 2,

m(x) = (x + 1), f(x) = (x + 1)4, (3)

m(x) = (x − 1)(x + 1), f(x) = (x − 1)2(x + 1)2. (4)

When d = 3,

m(x) = (x2 + x + 1), f(x) = (x2 + x + 1)2, (5)

m(x) = (x − 1)(x2 + x + 1), f(x) = (x − 1)2(x2 + x + 1). (6)

When d = 4,

m(x) = (x2 + 1), f(x) = (x2 + 1)2, (7)

m(x) = (x − 1)(x2 + 1), f(x) = (x − 1)2(x2 + 1), (8)

m(x) = (x + 1)(x2 + 1), f(x) = (x + 1)2(x2 + 1). (9)

When d = 5,

m(x) = f(x) = x4 + x3 + x2 + x1 + 1. (10)

When d = 6,

m(x) = (x2 − x + 1), f(x) = (x2 − x + 1)2, (11)

m(x) = (x − 1)(x2 − x + 1), f(x) = (x − 1)2(x2 − x + 1), (12)

m(x) = (x + 1)(x2 − x + 1), f(x) = (x + 1)2(x2 − x + 1), (13)

m(x) = (x + 1)(x2 + x + 1), f(x) = (x + 1)2(x2 + x + 1), (14)
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m(x) = (x2 − x + 1)(x2 + x + 1), f(x) = (x2 − x + 1)(x2 + x + 1). (15)

When d = 8,

m(x) = f(x) = x4 + 1. (16)

When d = 10,

m(x) = f(x) = x4 − x3 + x2 − x + 1, (17)

When d = 12,

m(x) = f(x) = (x4 − x2 + 1), (18)

m(x) = f(x) = (x2 + 1)(x2 + x + 1), (19)

m(x) = f(x) = (x2 + 1)(x2 − x + 1). (20)

I. Reiner gave a list of the non-conjugate classes of involutions in all symplectic groups

SP 2n(Z)[3]. From Reiner’s result, there is only one conjugate class of characteristic polynomials

(3) and two classes of (4).

The characteristic polynomials (10), (16)–(18) are irreducible over Z. A complete set of

conjugacy classes for these cases was given by Q.Yang[6].

The last two characteristic polynomials (19) and (20) are products of two strictly coprime

S-polynomials. We have proved that there are four conjugacy classes for each of these cases in

another paper.

In Section 2, we shall state our results for all other 10 cases. To prove our results we need

to develop some new tools. In Section 3, we shall use symplectic complements to study the case

where ±1 is an eigenvalue of X , i.e., the cases of characteristic polynomials (6), (8)–(9) and

(12)–(14). In Section 4, we discuss the case where the minimal polynomial of X is an irreducible

quadratic, i.e. the cases of characteristic polynomials (5), (7) and (11). Then in Section 5, we

consider the last remaining case of characteristic polynomial (15). We use the program Maple V

to calculate most of our results in this paper.

2. Main results

To explain our results, we need to develop some notations. For A ∈ Mn1
(Z), B ∈ Mn2

(Z),

we define the direct sum of A and B as

A ∔ B =

(

A 0

0 B

)

∈ Mn1+n2
(Z). (21)

Obviously, when n1 = n2 = n, A ∔ B ∈ SP 2ni
(Z) if and only if A′B = I or AB′ = I.

Given two matrices

X1 =

(

A1 B1

C1 D1

)

∈ M2n1
(Z) and X2 =

(

A2 B2

C2 D2

)

∈ M2n2
(Z),
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we define the symplectic direct sum of X1 and X2 by

X1∗X2 =













A1 0 B1 0

0 A2 0 B2

C1 0 D1 0

0 C2 0 D2













∈ M2(n1+n2)(Z). (22)

It is easy to check that X1∗X2 ∈ SP 2(n1+n2)(Z) if and only if Xi ∈ SP 2ni
(Z), for i = 1, 2.

Given two matrices

Y1 =

(

C11 C12

C21 C22

)

∈ M2n1×2n2
(Z) and Y2 =

(

D11 D12

D21 D22

)

∈ M2n2×2n1
(Z),

where Cij ∈ Mn1×n2
(Z), Dij ∈ Mn2×n1

(Z), we define the quasi-direct sum by

Y1 ◦ Y2 =













0 C11 0 C12

D11 0 D12 0

0 C21 0 C22

D21 0 D22 0













∈ M2(n1+n2)(Z). (23)

By simple calculation, we see that if n1 = n2 = n, then Y1 ◦ Y2 ∈ SP 4n(Z) if and only if

Y1, Y2 ∈ SP 2n(Z).

Definition 3 A matrix X ∈ SP 2n(Z) is said to be decomposable if it is conjugate to a symplectic

direct sum of two symplectic matrices which have smaller genera; otherwise, X is said to be

indecomposable. When n is even, X is said to be quasi-decomposable if it is conjugate to X1◦X2

for some X1, X2 ∈ SPn(Z).

Our results are given in following theorems. For the cases where 1 is an eigenvalue of X , we

have

Theorem 1 Suppose X ∈ SP 4(Z) and m
X

(x) = (x − 1)(x2 + λx + 1), where λ = 0, ±1. Then

X is conjugate to one of two matrices

I ∗ Wλ, I ∗ W ′

λ,

where Wλ =

(

0 −1

1 −λ

)

. Moreover, these matrices are not conjugate.

Similarly, for the cases where −1 is an eigenvalue of X , we have

Theorem 2 Suppose X ∈ SP 4(Z) and m
X

(x) = (x + 1)(x2 + λx + 1), where λ = 0, ±1. Then

X is conjugate to one of two matrices

(−I) ∗ Wλ, (−I) ∗ W ′

λ

and these matrices are not conjugate.

Next for the cases when the minimal polynomial is an irreducible quadratic, we obtain

Theorem 3 Suppose X ∈ SP 4(Z) and m
X

(x) = x2 + λx + 1, where λ = 0, ±1.
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1) If X is decomposable, then X is conjugate to one of

Wλ ∗ Wλ, W ′

λ ∗ W ′

λ, Wλ ∗ W ′

λ;

2) If X is indecomposable, then λ = 0 and X is conjugate to (−I2) ◦ I2.

Moreover, these matrices are not conjugate.

For the last case characteristic polynomial (15) we have

Theorem 4 Suppose X ∈ SP 4(Z) and m
X

(x) = x4 + x2 + 1.

1) If X is decomposable, then X is conjugate to one of

W ∗ (−W ), W ∗ (−W ′), W ′ ∗ (−W ), W ′ ∗ (−W ′);

2) If X is quasi-decomposable, then X is conjugate to one of

I2 ◦ W, I2 ◦ W ′;

3) If X is neither decomposable nor quasi-decomposable, then X is conjugate to one of

R, −R,

where

W =

(

0 −1

1 −1

)

, R =













0 0 −1 0

0 0 0 −1

1 0 0 1

0 1 1 0













.

Moreover, these matrices are not conjugate.

It is clear that W1 = W , W−1 = −W ′ and W0 = J2. From above theorems and some results

before, we obtain the main theorem.

Main Theorem A complete list of representatives of the conjugacy classes of d-torsion in

SP 4(Z) is given as follows:

d = 2

char. poly. (3): −I4; (24)

char. poly. (4): I2 ∗ (−I2), U ∔ U ′; (25)

d = 3

char. poly. (5): W ∗ W, W ′ ∗ W ′, W ∗ W ′; (26)

char. poly. (6): I2 ∗ W, I2 ∗ W ′; (27)

d = 4

char. poly. (7): J2 ∗ J2, − (J2 ∗ J2), J2 ∗ (−J2), (−I2) ◦ I2; (28)

char. poly. (8): I2 ∗ J2, I2 ∗ (−J2); (29)

char. poly. (9): (−I2) ∗ J2, − (I2 ∗ J2); (30)

d = 5

char. poly. (10): S, S2, S3, S4; (31)

d = 6

char. poly. (11): −(W ∗ W ), − (W ′ ∗ W ′), − (W ∗ W ′); (32)
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char. poly. (12): I2 ∗ (−W ), I2 ∗ (−W ′); (33)

char. poly. (13): −(I2 ∗ W ), − (I2 ∗ W ′); (34)

char. poly. (14): (−I2) ∗ W, (−I2) ∗ W ′; (35)

char. poly. (15): W ∗ (−W ), W ∗ (−W ′), W ′ ∗ (−W ), W ′ ∗ (−W ′),

I ◦ W, I ◦ W ′, R, − R; (36)

d = 8

char. poly. (16): I2 ◦ J2, I2 ◦ (−J2), T, − T ; (37)

d = 10

char. poly. (17): −S, − S2, − S3, − S4; (38)

d = 12

char. poly. (18): I2 ◦ (−W ), I2 ◦ (−W ′); (39)

char. poly. (19): J2 ∗ W, J2 ∗ W ′, J ′

2 ∗ W, J ′

2 ∗ W ′; (40)

char. poly. (20): J2 ∗ (−W ), J2 ∗ (−W ′), J ′

2 ∗ (−W ); J ′

2 ∗ (−W ′), (41)

where U =

(

1 0

1 −1

)

, S =













0 1 0 0

0 0 −1 0

0 0 −1 1

1 1 −1 0













and T =













0 −1 1 0

−1 0 1 1

−1 1 0 0

0 −1 0 0













.

The rest of the paper is the proof of the above theorems. First we state some properties of

symplectic direct sum and quasi-direct sum,

(X1 ∗ X2)
′ = X ′

1 ∗ X ′

2,

(Y1 ◦ Y2)
′ = Y ′

2 ◦ Y ′

1 ,

(X1 ∗ X2)(Y1 ◦ Y2) = (X1Y1) ◦ (X2Y2),

(X1 ◦ X2)(Y1 ∗ Y2) = (X1Y2) ◦ (X2Y1),

(X1 ∗ X2)(Y1 ∗ Y2) = (X1Y1) ∗ (X2Y2),

(X1 ◦ X2)(Y1 ◦ Y2) = (X1Y2) ∗ (X2Y1).

Here we assume that all matrix multiplications are suitable. The following three lemmas are

useful.

Lemma 1 Let X1, X2, X3, Y1, Y2 be symplectic matrices. Then

1) X1 ∗ X2 ∼ X2 ∗ X1.

2) (X1 ∗ X2) ∗ X3 = X1 ∗ (X2 ∗ X3).

3) If X1 ∼ Y1 and X2 ∼ Y2, then X1 ∗ X2 ∼ Y1 ∗ Y2.

In what follows, we assume that X1 and X2 have the same genus

4) X1 ◦ X2 ∼ X2 ◦ X1.

5) X1 ◦ X2 ∼ (−X1) ◦ (−X2).

6) X1 ◦ X2 ∼ I ◦ (X1X2).

7) If X1 ∼ X2, then I ◦ X1 ∼ I ◦ X2.

Proof 2) and 3) are easy. To prove 1), we let Q = I2n1
◦ I2n2

∈ SP 2(n1+n2)(Z), where ni is
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the genus of Xi, i = 1, 2. Then Q−1(X1 ∗ X2)Q = X2 ∗ X1. Similarly we prove 4) by using

Q = I ◦ I, 5) by using Q = I ∗ (−I) and 6) by using Q = I ∗ X−1
1 . For 7), if X2 = Q−1X1Q,

then (Q−1 ∗ Q−1)(I ◦ X1)(Q ∗ Q) = I ◦ X2. 2

In general the converse of 3) in Lemma 1 is not true, but we have

Lemma 2 Suppose X1, X2, Y1 and Y2 are symplectic matrices, f
Xi

(x) = f
Yi

(x) = fi(x), for

i = 1, 2. Suppose f1(x) and f2(x) are coprime. Then X1 ∗ X2 ∼ Y1 ∗ Y2 if and only if X1 ∼ Y1

and X2 ∼ Y2.

Proof The sufficiency part has been proved. We consider the necessity.

Note that any P ∈ M2(n1+n2)(Z) can be expressed in the form

P = P1 ∗ P2 + P3 ◦ P4,

where P1 ∈ M2n1
(Z), P2 ∈ M2n2

(Z), P3 ∈ M2n1×2n2
(Z), and P4 ∈ M2n2×2n1

(Z) are blocks of

P . Let P be a symplectic matrix such that (X1 ∗ X2)P = P (Y1 ∗ Y2). We obtain X1P1 = P1Y1,

X2P2 = P2Y2, X1P3 = P3Y2 and X2P4 = P4Y2. Then f2(X1)P3 = P3f2(Y1) = 0, which yields

P3 = 0 since f2(X1) is invertible. Similarly, we get P4 = 0. Hence P1, P2 are symplectic,

therefore X1 ∼ Y1 and X2 ∼ Y2. 2

Lemma 3 If X ∈ SP 2(Z) has order 3 (resp. 4, 6). Then f
X

(x) = m
X

(x) = x2 + λx + 1, and

X ∼ Wλ or W ′

λ and λ = 1 (resp. 0,−1).

For a proof, see Ref. [6] or corollary of Lemma 6.

3. Symplectic complements

A primitive integral 2n × (j + k) matrix

(A2n×j B2n×k), j, k ≤ n

which satisfies the conditions

A′JA = 0, B′JB = 0, and A′JB =

(

Ik

0

)

or (Ij 0)

(depending on whether j ≥ k or j ≤ k) will be called a normal (j, k)-array. According to Ref. [2]

every normal (j, k)-array can be completed to a symplectic matrix by placing n− j columns after

the first j columns and n − k columns after the last k columns.

Remark 1 Let α, β ∈ Z
2n. Clearly, α is (1, 0)-array if and only if α is a primitive vector, and

(α, β) is a normal (1, 1)-array if and only if α′Jβ = 1.

Lemma 4 Suppose that X ∈ SP 2n(Z) and f
X

(1) = 0. Then

X ∼













1 γ′ a δ′

0 A α B

0 0 1 0

0 C β D













,



184 YANG Q J

where Y =

(

A B

C D

)

∈ SP 2(n−1)(Z), f
X

(x) = (x − 1)2f
Y
(x), a ∈ Z, and α, β, γ, δ ∈ Z

n−1

with






















α = Aδ − Bγ,

β = Cδ − Dγ,

γ = C′α − A′β,

δ = D′α − B′β.

(42)

Furthermore, if Y ∼ Y1 =

(

A1 B1

C1 D1

)

, then

X ∼













1 γ′

1 a1 δ′1

0 A1 α1 B1

0 0 1 0

0 C1 β1 D1













.

Proof Since the number 1 is an eigenvalue of X , there is a primitive vector η ∈ Z
2n such that

Xη = η. We can find an integral symplectic matrix P with η as its first column. Then

P−1XP = X1 =













1 γ′ a δ′

0 A α B

0 ∗ b ∗

0 C β D













∈ SP 2n(Z).

By simple calculation we can see that the ∗’s are 0, b = 1, Y =

(

A B

C D

)

∈ SP 2(n−1)(Z), and

α, β, γ, δ satisfy (42). Thus f
X

(x) = (x − 1)2g
Y
(x).

The second part is easy, merely conjugate by I ∗ Q, where Q ∈ SP2(Z) and Q−1Y Q = Y1.

Now we can prove Theorems 1 and 2.

Proof of Theorem 1 It is clear that I ∗ Wλ ≁ I ∗ W ′

λ (cf. Lemma 2).

By Lemma 4, we get

X ∼ X1 =













1 a1 b1 c1

0 A d1 B

0 0 1 0

0 C e1 D













,

where Y =

(

A B

C D

)

∈ SP 2(Z) with f
Y
(x) = x2 + λx + 1. Then, from Lemma 3, we have

Y ∼ Wλ or W ′

λ. Without loss of the generality, we assume Y ∼ Wλ. Then

X ∼ X2 =













1 a2 b2 c2

0 0 a2 −1

0 0 1 0

0 1 λa2 + c2 −λ













∼ X3 =













1 0 b c

0 0 0 −1

0 0 1 0

0 1 c −λ













,
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where the last conjugacy is achieved by Q =

(

1 −a2

0 1

)

∔

(

1 0

a2 1

)

∈ SP 4(Z). We obtain

(λ + 2)b + c2 = 0 since m
X

(x) = (x− 1)(x2 + λx + 1). This implies (λ + 2) | c. Now we see that

X3 is decomposable and use Lemma 3 to complete the proof. In fact let

P =













1 k 0 k

0 −1 −k 0

0 0 1 0

0 0 k −1













∈ SP 4(Z),

where k = c
λ+2 ∈ Z. It is easy to check that P−1X3P = I ∗ Wλ. The proof is completed. 2

Proof of Theorem 2 Since m
−X

(x) = (x−1)(x2−λx+1), we have −X ∼ I ∗W−λ or I ∗W ′

−λ.

Note that −Wλ = W ′

λ. Hence X ∼ (−I) ∗ W ′

λ or (−I) ∗ Wλ. The proof is completed. 2

4. Minimal representatives

Let X ∈ SP 2n(Z) and η = (x1, x2, . . . , x2n)′ ∈ Z
2n. If a = η′JXη, then we say that X

represents a. The set of values represented by X will be denoted by q(X). It is clear that q(X)

is a conjugacy invariant, for if Y = Q−1XQ, where Q ∈ SP 2n(Z), then

q(Y ) = q(Q−1XQ) =
{

η′JQ−1XQη | η ∈ Z
2n
}

,

and so putting ξ = Qη gives

ξ′JXξ = η′Q′JXQη = η′JQ−1XQη = η′JY η.

Thus q(Y ) = q(X). Unfortunately, the converse is not necessarily true.

The set q(X) is a set of integers, and consequently there is a non-zero η0 in Z
2n such that

|η′

0JXη0| is least. If both η′

0JXη0 and −η′

0JXη0 = η′

1JXη1 occur, we resolve the ambiguity by

choosing the non-negative value. We write µ(X) = η′

0JXη0. Clearly, if µ(X) 6= 0, the minimizing

vector x0 must be primitive, and if µ(X) = 0, we can also choose a primitive vector η0 such that

η′

0JXη0 = 0.

Example If X is quasi-decomposable, then µ(X) = 0.

Lemma 5 Let f(x) = f
X

(x) be the characteristic polynomial of X . Then

|µ(X)| ≤ (
4

3
)n− 1

2

|f(1)f(−1)|
1

2n

2
. (43)

Proof Note that η′JXη is a quadratic form over Z. If M is a symmetric matrix belonging to

Mn(Z), and a = min {|η′Mη| | η ∈ Z
n, η 6= 0}, then

a ≤ (
4

3
)

n−1

2 | detM |
1

n ,

see Ref. [1]. Clearly, it is also true if M is a rational symmetric matrix.

We know that η′JXη = 1
2η′(JX + (JX)′)η, where 1

2 (JX + (JX)′) is a rational symmet-

ric matrix. Because (JX)′ = X ′J ′ = −X ′J = −JX−1, and |J | = |X | = 1, we see that
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|JX + (JX)′| = |JX − JX−1| = |J ||X−1||X2 − I| = f(1)f(−1). Hence

|µ(X)| ≤ (
4

3
)n− 1

2

|f(1)f(−1)|
1

2n

2
.

Remark 2 Note that if X ∈ SP 4(Z) is a torsion element, then |µ(X)| ≤ 1 since |µ(X)| is

integer and the maximum of |f(1)f(−1)| is 16.

Lemma 6 Suppose X ∈ SP 2n(Z), and 1 ∈ q(X). Then

X ∼













0 0 −1 0

0 A α B

1 γ′ a δ′

0 C β D













,

where

(

A B

C D

)

∈ SP 2(n−1)(Z), a ∈ Z, and α, β, γ, δ ∈ Z
n−1 satisfy Eq.(42).

Proof Since there is a primitive vector η ∈ Z
2n such that η′JXη = 1, we see that (η, Xη) is a

normal (1, 1)-array. Let P be the completion of the normal (1, 1)-array (η, Xη) to a symplectic

matrix. Then

P =











... ∗
... ∗

η ∗ Xη ∗
... ∗

... ∗











and therefore

P−1XP = X1 =













0 ∗ b ∗

0 A α B

1 γ′ a δ′

0 C β D













∈ SP 2n(Z).

The remainder of the proof is similar to that of Lemma 4. 2

Corollary 1 Suppose X ∈ SP 2n(Z) and m
X

(x) = x2+λx+1 with 1 ∈ q(X). Then X ∼ Wλ∗Y ,

where Y ∈ SP 2(n−1)(Z) with m
Y
(x) = m

X
(x).

Proof Since X2η = −λXη − η, we see that the entries of the matrix in Lemma 6 are: a = −λ,

α = 0, β = 0, and so γ = 0, δ = 0. 2

Lemma 7 Suppose X ∈ SP 2n(Z), and µ(X) = 0. Then

X ∼













0 A α B

1 γ′ a δ

0 C β D

0 0 1 0













,

where

(

A B

C D

)

∈ SP 2(n−1)(Z), a ∈ Z, and α, β, γ, δ ∈ Z
n−1 satisfy Eq.(42).
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Proof Note that we have a normal (2, 0)-array (η, Xη), where η ∈ Z
2n is primitive. 2

Proof of Theorem 3 Note that |µ(X)| ≤ 1. We consider following four cases:

Case 1. If µ(X) = 1, then by Corollary 1, X ∼ Wλ ∗ Y , for some Y ∈ SP 2(Z), with m
Y
(x) =

x2+λx+1. From Lemma 3, Y ∼ Wλ or W ′

λ. Then X ∼ Wλ∗Wλ or Wλ∗W
′

λ. But µ(Wλ∗W
′

λ) = 0,

hence X ∼ Wλ ∗ Wλ.

Case 2. If µ(X) = −1, then µ(−X) = 1. It is clear that m
−X

(x) = x2 − λx + 1, hence

−X ∼ W−λ ∗ W−λ, and thus X ∼ −(W−λ ∗ W−λ) = W ′

λ ∗ W ′

λ.

Case 3. If µ(X) = 0 and 1 ∈ q(X), we also have that X ∼ Wλ ∗Wλ or Wλ ∗W ′

λ by Corollary 1

and Lemma 3. But µ(Wλ ∗ Wλ) = 1, hence X ∼ Wλ ∗ W ′

λ.

Case 4. Now we assume that µ(X) = 0 and 1 /∈ q(X). By Lemma 7, we get

X ∼ X1 =

(

Wλ Y

0 W ′−1
λ

)

,

where Y =

(

a b

b λb − a

)

, a, b ∈ Z.

Let P =













1 0 0 0

0 1 0 b

0 0 1 0

0 0 0 1













, Q =













1 0 0 1

0 1 1 0

0 0 1 0

0 0 0 1













∈ SP 4(Z) and X(a) =













0 −1 a 0

1 −λ 0 −a

0 0 −λ −1

0 0 1 0













.

It is easy to verify that

P−1X1P = X(a) and Q−1X(a)Q = X(a − 2).

So we obtain X ∼ X(0) or X(1).

It is clear that 1 ∈ q(X(0)) if and only if λ is odd, and always 1 ∈ q(X(1)). Thus λ = 0 in

the case 1 /∈ q(X). We get X ∼ X(0) = (−I2) ◦ I2, which is indecomposable.

The proof is completed. 2

5. The Case of f(x) = x4 + x2 + 1

In this section we discuss the last case that X ∈ SP 4(Z) has characteristic polynomial (15),

that means f
X

(x) = x4 +x2 +1 and prove Theorem 4. The first two parts are very easy to verify.

Proof of the first two parts of Theorem 4 If X is decomposable, then X is conjugate to Y ∗Z,

where Y, Z ∈ SP 2(Z) with characteristic polynomials fY (x) = x2 +x+1 and fZ(x) = x2−x−1.

From Lemma 3, Y ∼ W or W ′, Z ∼ −W or −W ′. Hence X is conjugate to one of four matrices,

W ∗ (−W ), W ∗ (−W ′), W ′ ∗ (−W ) and W ′ ∗ (−W ′). Clearly, they are not conjugate to each

other, see Lemma 2.

If X is quasi-decomposable, then by (6) in Lemma 1, X ∼ I ◦ Y, where Y ∈ SP 2(Z). Since

X has order 6, (I ◦ Y )2 = Y ∗ Y 6= I and (I ◦ Y )6 = (Y ∗ Y )3 = Y 3 ∗ Y 3 = I. Thus Y 6= I,
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Y 3 = I, and then Y ∼ W or W ′. So according to part 7 in Lemma 1, we have that X ∼ I ◦ W

or I ◦ W ′. Obviously, these two matrices are not conjugate. 2

To prove the third part of Theorem 4, we suppose that X is neither decomposable nor quasi-

decomposable. Note that m
X2

(x) = x2 + x + 1, according to Theorem 3, X2 is conjugate to one

of three non-conjugate matrices

W ∗ W, W 2 ∗ W 2, W ∗ W 2.

Without loss of generality we assume that X2 = X1 ∗X2, where X1 and X2 are either W or W 2.

We can express X as

X = P1 ∗ P2 + P3 ◦ P4, (44)

where the Pi’s are 2×2 matrices. Then

X3 = X(X1 ∗ X2) = P1X1 ∗ P2X2 + P3X2 ◦ P4X1,

X3 = (X1 ∗ X2)X = X1P1 ∗ X2P2 + X1P3 ◦ X2P4.

Note that X has order 6, we have (JX3)′ = X ′3J ′ = −JX−3 = −JX3. Therefore,

P1 = aX2
1 , P2 = −aX2

2 , P3P4 = (1 − a2)X1, P4P3 = (1 − a2)X2, (45)

and det P3 = detP4 = 1 − a2 for some a ∈ Z. Also, since X ∈ SP 4(Z), we have










P ′

1JP1 + P ′

4JP4 = J,

P ′

2JP2 + P ′

3JP3 = J,

P ′

1JP3 + P ′

4JP2 = 0,

and











P1JP ′

1 + P3JP ′

3 = J,

P2JP ′

2 + P4JP ′

4 = J,

P1JP ′

4 + P3JP ′

2 = 0.

(46)

We state the following lemmas without proof. They are very easy to verify.

Lemma 8 Let P ∈ M2(Z). We have

1) If PW = WP , then P = bI + cW, for some constants b and c;

2) If PW + WP = 0, then P = 0;

3) If PW = W 2P , then P =

(

b c

b + c −b

)

.

Clearly, if P = bI + cW , then det(P ) = b2 − bc + c2.

If X2 = W l ∗ W l, from Eq.(45), we see that P3 = bI + cW , where b2 − bc + c2 = 1 − a2, and

hence a = −1, 0, 1. In this case, when a = ±1, b = c = 0, thus X is decomposable, and when

a = 0, P1 = P2 = 0, we have that X = P3 ◦ P4 is quasi-decomposable.

So we only need consider the case that X2 = W ∗ W 2.

Lemma 9 Suppose that X2 = W ∗ W 2. Then X ∼ X(a, b, c), where

X(a, b, c) =













a b −a c

−c 0 b + c −a

a b + c 0 −b

b a c −a













(47)

for integers a, b, c satisfying a2 − 1 = b2 + bc + c2.
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Proof From Eq.(45), we see that X = (−aW 2) ∗ (aW ) + P3P4, where P3P4 = (1 − a2)W and

P3W = W 2P3. Applying Lemma 8, we get

P3 =

(

b c

b + c −b

)

and P4 =

(

−c b + c

b c

)

.

It is clear that detP3 = −(b2 + bc + c2) = 1 − a2. 2

Remark 3 For any integral solution of a2 − 1 = b2 + bc + c2, X(a, b, c) ∈ SP 4(Z), and its

characteristic polynomial is (15). Clearly, a 6= 0.

Remark 4 A simple calculation proves that X5(a, b, c) ∼ X(−a, b, c).

Lemma 10 X(a, b, c) is decomposable if and only if a is odd.

Proof It is easy to check that 1
2 (X3 − I) ∈ M4(Z) if and only if a is odd. We have proved that

if X(a, b, c) is decomposable if and only if 1
2 (X3 − I) ∈ M4(Z). 2

Lemma 11 µ(X(a, b, c)) has the same sign as the non-zero number a.

Proof Let M = JX(a, b, c) + (JX(a, b, c))′. We want to prove that M is positive definite if

a > 0, and M is negative definite if a < 0. We see

M =













2a 2b + c −a −b + c

2b + c 2a −b + c −a

−a −b + c 2a −b − 2c

−b + c −a −b − 2c 2a













.

Its principal minors are:

M1 = 2a,

M2 = det

(

2a 2b + c

2b + c 2a

)

= 4a2 − 4b2 − 4bc− c2 = 4 + 3c2 > 0,

M3 = det







2a 2b + c −a

2b + c 2a −b + c

−a −b + c 2a






= 6(a3 − ab2 − abc − ac2) = 6a,

M4 = detA = 9.

Hence M is positive or negative definite dependent according as a > 0 or a < 0. 2

Corollary 2 X(a, b, c) is quasi-indecomposable.

Corollary 3 X(a1, b1, c1) 6∼ X(a2, b2, c2) if a1a2 < 0.

If a is even, then X(a, b, c) is also indecomposable. It is known that the Diophantine equation

a2 − 1 = b2 + bc + c2 has infinitely many solutions with a even. There are infinitely many

X ∈ SP 4(Z), which are neither quasi-decomposable nor decomposable, of the form X(a, b, c).
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In the following, we want to show that there are just two classes amongst X(a, b, c), where a is

even. For this purpose, we let

R(x, y, z) =













2x 0 −y x

0 −2x −x −z

z x −x z

−x y y x













,

where










x = a − b − c,

y = 2a − 2b − c,

z = 2a − b − 2c,

or











a = −3x + y + z,

b = −2x + z,

c = −2x + y.

Then R(x, y, z) = QX(a, b, c)Q−1, where

Q =













1 1 −1 0

0 −1 −1 1

1 1 0 0

0 0 1 −1













.

It is easy to see that a2 − 1 = b2 + bc + c2 if and only if yz = 3x2 + 1, and a is even if and only

if x + y + z is even, and also a > 0 if and only if y > 0. Furthermore, we have

Lemma 12 Let x, y, z be integers satisfying that yz = 3x2 + 1 and x + y + z is even. Then

1) If y > 0, then R(x, y, z) ∼ R(0, 1, 1);

2) If y < 0, then R(x, y, z) ∼ R(0,−1,−1).

Proof Suppose yz = 3x2 + 1, and x + y + z is even. If y is even, then y = 4k, where k is odd.

The reason for this is that x is odd, and then z is odd and 3x2 + 1 = 4l where l is odd. If p is

an odd prime and y ≡ 0 (mod p), then p ≡ 1 (mod 3). This is because p 6= 3, and 3x2 + 1 ≡ 0

(mod p). Thus we see that y has the form

y = ±4rpr1

1 · · · prt

t ,

where r = 0, 1, ri ≥ 0, and the pi are primes of the form 3k + 1.

Now suppose y > 0. First we want to prove there is a solution (u, v) of the Diophantine

equation y = 3u2 + v2 satisfying u + xv ≡ 0 (mod y).

If y = 1 then (0, 1) is a such solution.

If y = 4, then x ≡ ±1 (mod 4). A solution is (1,∓1).

If y is an odd prime and y ≡ 1 (mod 3), then it is well known that there are a, b ∈ Z such

that 3a2 + b2 = y, which implies (a− xb)(a + xb) = a2 − x2b2 = a2(3x2 + 1)− yx2 ≡ 0 (mod y).

Hence either a − xb ≡ 0 (mod y) or a + xb ≡ 0 (mod y). So either (a,−b) or (a, b) is a such

solution.

In general, we use induction on the factors of y. Suppose y = y1y2, and (ui, vi) are solutions
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for yi (for i = 1, 2), that is, yi = 3u2
i + v2

i and ui + xvi ≡ 0 (mod yi). Let
{

u = u1v2 + u2v1,

v = v1v2 − 3u1u2.

Then 3u2 + v2 = y and

(u + xv)x = (u1v2 + u2v1)x + (v1v2 − 3u1u2)x
2

≡ xv2(u1 + xv1) + u2v1x + u1u2 (mod y)

= (u1 + xv1)(u2 + xv2) ≡ 0 (mod y).

So u + xv ≡ 0 (mod y) since (x, y) = 1. Therefore (u, v) is a solution for y.

Now we can complete the proof. Suppose y = 3u2 + v2 and u + vx ≡ 0 (mod y). Then

v − 3xu ≡ v + 3x2v = (3x2 + 1)v ≡ 0 (mod y). Let

P =













v u −u v
u+xv

y
v−3xu

y
v−3xu

y
−u+xv

y

u+xv
y

3xu−v
y

0 2(u+xv)
y

−v u 2u 0













.

Then P ∈ SP 4(Z) and PR(0, 1, 1)P−1 = R(x, y, z). That is, R(0, 1, 1) ∼ R(x, y, z).

The second part is similar. 2

Remark 5 The u, v in the proof are coprime. We see that there is a primitive solution of the

Diophantine equation 3u2 + v2 = m if m is a product of a power of 4 and odd primes of form

6k + 1.

We have completed the proof of the third part of Theorem 4.
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