Conjugacy Classes of Torsion in 4×4 Integral Symplectic Group

YANG Qing-jie
(School of Information, Renmin University of China, Beijing 100872, China)
(E-mail: yangqj@ruc.edu.cn)

Abstract

A complete list of representatives of conjugacy classes of torsion in 4×4 integral symplectic group is given in this paper. There are 55 distinct such classes and each torsion element has order of $2,3,4,5,6,8,10$ and 12 .

Keywords integral symplectic group; torsion; symplectic group space; symplectic direct sum; quasi-direct sum; palindromic monic polynomial; symplectic complement.

Document code A
MR(2000) Subject Classification 53D30; 15A36
Chinese Library Classification O151.2

1. Introduction

The problem that we consider in this paper is the determination of the conjugacy classes of torsion matrices in the 4×4 integral symplectic group. Our original motivation for studying this problem came not from algebra but rather from Riemann surfaces ${ }^{[5]}$.

Let $M_{n}(\mathbb{Z})$ be the set of $n \times n$ matrices over \mathbb{Z}. Let I_{n} be the identity matrix in $M_{n}(\mathbb{Z})$ and

$$
J=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right)
$$

Definition 1 The set of $2 n \times 2 n$ unimodular matrices X in $M_{2 n}(\mathbb{Z})$ such that

$$
\begin{equation*}
X^{\prime} J X=J \tag{1}
\end{equation*}
$$

where X^{\prime} is the transpose of X, is called the symplectic group of genus n over \mathbb{Z} and is denoted by $S P_{2 n}(\mathbb{Z})$. Two symplectic matrices X, Y of $S P_{2 n}(\mathbb{Z})$ are said to be conjugate or similar, denoted by $X \sim Y$, if there is a matrix $Q \in S P_{2 n}(\mathbb{Z})$ such that $Y=Q^{-1} X Q$.

A complete set of non-conjugate classes of torsion in $S P_{4}(\mathbb{Z})$ will be given in this paper.
Given a matrix $X \in M_{2 n}(\mathbb{Z})$, we denote the characteristic polynomial of X by

$$
f_{X}(x)=|x I-X|
$$

If $X \in S P_{2 n}(\mathbb{Z})$, then $f_{X}(x)$ is "palindromic" and monic, that is,

$$
\begin{equation*}
x^{2 n} f\left(\frac{1}{x}\right)=f(x) \text { and } f(0)=1 \tag{2}
\end{equation*}
$$

Received date: 2006-02-20; Accepted date: 2007-03-22
Foundation item: the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Definition 2 A polynomial $f(x)$ in $\mathbb{Z}[x]$ of degree $2 n(n \geq 1)$ is called an S-polynomial if it is a palindromic monic polynomial. An S-polynomial $f(x) \in \mathbb{Z}[x]$ is said to be irreducible over \mathbb{Z}, or is an irreducible S-polynomial in $\mathbb{Z}[x]$, if it cannot be expressed as the product of two S-polynomials (in $\mathbb{Z}[x]$) of positive degree. Otherwise, $f(x)$ is called reducible over \mathbb{Z}.

It is known that every S-polynomial is a product of irreducible S-polynomials. Apart from the order of the factors, this factorization is unique.

We consider torsion elements of $S P_{4}(\mathbb{Z})$. The first question we consider is: for what positive integer $d(d \geq 2)$, is there a matrix $X \in S P_{2 n}(\mathbb{Z})$ having order d ? If X has order d, then its minimal polynomial $m_{X}(x)$ is a factor of $x^{d}-1$, i.e., $m_{X}(x)$ is a product of some different cyclotomic polynomials, and its characteristic polynomial $f_{X}(x)$ is a product of some cyclotomic polynomials. Suppose $d=p_{1}^{s_{1}} \cdots p_{t}^{s_{t}}$, where $p_{1}, p_{2}, \ldots, p_{t}$ are different primes. According to a result of D. Sjerve ${ }^{[4]}$, the degree of $f_{X}(x)$ is not less than $\varphi\left(p_{1}^{s_{1}}\right)+\cdots+\varphi\left(p_{t}^{s_{t}}\right)-1$, where φ is the Euler totient function, so

$$
\varphi\left(p_{1}^{s_{1}}\right)+\cdots+\varphi\left(p_{t}^{s_{t}}\right) \leq 2 n+1
$$

We get
(i) If $n=1$, then d must be $2,3,4,6$;
(ii) If $n=2$, then d must be $2,3,4,5,6,8,10,12$.

We denote by T_{d} the set of d-torsion elements in $S P_{4}(\mathbb{Z})$. Let $X \in T_{d}$. The possible minimal polynomials $m_{X}(x)$ and characteristic polynomials $f_{X}(x)$ are as follows:
When $d=2$,

$$
\begin{gather*}
m(x)=(x+1), \quad f(x)=(x+1)^{4} \tag{3}\\
m(x)=(x-1)(x+1), \quad f(x)=(x-1)^{2}(x+1)^{2} \tag{4}
\end{gather*}
$$

When $d=3$,

$$
\begin{array}{cl}
m(x)=\left(x^{2}+x+1\right), & f(x)=\left(x^{2}+x+1\right)^{2} \\
m(x)=(x-1)\left(x^{2}+x+1\right), & f(x)=(x-1)^{2}\left(x^{2}+x+1\right) \tag{6}
\end{array}
$$

When $d=4$,

$$
\begin{array}{cl}
m(x)=\left(x^{2}+1\right), & f(x)=\left(x^{2}+1\right)^{2} \\
m(x)=(x-1)\left(x^{2}+1\right), & f(x)=(x-1)^{2}\left(x^{2}+1\right) \\
m(x)=(x+1)\left(x^{2}+1\right), & f(x)=(x+1)^{2}\left(x^{2}+1\right) \tag{9}
\end{array}
$$

When $d=5$,

$$
\begin{equation*}
m(x)=f(x)=x^{4}+x^{3}+x^{2}+x^{1}+1 \tag{10}
\end{equation*}
$$

When $d=6$,

$$
\begin{array}{cl}
m(x)=\left(x^{2}-x+1\right), & f(x)=\left(x^{2}-x+1\right)^{2} \\
m(x)=(x-1)\left(x^{2}-x+1\right), & f(x)=(x-1)^{2}\left(x^{2}-x+1\right) \\
m(x)=(x+1)\left(x^{2}-x+1\right), & f(x)=(x+1)^{2}\left(x^{2}-x+1\right) \\
m(x)=(x+1)\left(x^{2}+x+1\right), & f(x)=(x+1)^{2}\left(x^{2}+x+1\right) \tag{14}
\end{array}
$$

$$
\begin{equation*}
m(x)=\left(x^{2}-x+1\right)\left(x^{2}+x+1\right), \quad f(x)=\left(x^{2}-x+1\right)\left(x^{2}+x+1\right) \tag{15}
\end{equation*}
$$

When $d=8$,

$$
\begin{equation*}
m(x)=f(x)=x^{4}+1 \tag{16}
\end{equation*}
$$

When $d=10$,

$$
\begin{equation*}
m(x)=f(x)=x^{4}-x^{3}+x^{2}-x+1 \tag{17}
\end{equation*}
$$

When $d=12$,

$$
\begin{gather*}
m(x)=f(x)=\left(x^{4}-x^{2}+1\right) \tag{18}\\
m(x)=f(x)=\left(x^{2}+1\right)\left(x^{2}+x+1\right) \tag{19}\\
m(x)=f(x)=\left(x^{2}+1\right)\left(x^{2}-x+1\right) \tag{20}
\end{gather*}
$$

I. Reiner gave a list of the non-conjugate classes of involutions in all symplectic groups $S P_{2 n}(\mathbb{Z})^{[3]}$. From Reiner's result, there is only one conjugate class of characteristic polynomials (3) and two classes of (4).

The characteristic polynomials (10), (16)-(18) are irreducible over \mathbb{Z}. A complete set of conjugacy classes for these cases was given by Q. Yang ${ }^{[6]}$.

The last two characteristic polynomials (19) and (20) are products of two strictly coprime S-polynomials. We have proved that there are four conjugacy classes for each of these cases in another paper.

In Section 2, we shall state our results for all other 10 cases. To prove our results we need to develop some new tools. In Section 3, we shall use symplectic complements to study the case where ± 1 is an eigenvalue of X, i.e., the cases of characteristic polynomials (6), (8)-(9) and (12)-(14). In Section 4, we discuss the case where the minimal polynomial of X is an irreducible quadratic, i.e. the cases of characteristic polynomials (5), (7) and (11). Then in Section 5, we consider the last remaining case of characteristic polynomial (15). We use the program Maple V to calculate most of our results in this paper.

2. Main results

To explain our results, we need to develop some notations. For $A \in M_{n_{1}}(\mathbb{Z}), B \in M_{n_{2}}(\mathbb{Z})$, we define the direct sum of A and B as

$$
A \dot{+} B=\left(\begin{array}{cc}
A & 0 \tag{21}\\
0 & B
\end{array}\right) \in M_{n_{1}+n_{2}}(\mathbb{Z})
$$

Obviously, when $n_{1}=n_{2}=n, A \dot{+} B \in S P_{2 n_{i}}(\mathbb{Z})$ if and only if $A^{\prime} B=I$ or $A B^{\prime}=I$.
Given two matrices

$$
X_{1}=\left(\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right) \in M_{2 n_{1}}(\mathbb{Z}) \text { and } X_{2}=\left(\begin{array}{cc}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right) \in M_{2 n_{2}}(\mathbb{Z})
$$

we define the symplectic direct sum of X_{1} and X_{2} by

$$
X_{1} * X_{2}=\left(\begin{array}{cccc}
A_{1} & 0 & B_{1} & 0 \tag{22}\\
0 & A_{2} & 0 & B_{2} \\
C_{1} & 0 & D_{1} & 0 \\
0 & C_{2} & 0 & D_{2}
\end{array}\right) \in M_{2\left(n_{1}+n_{2}\right)}(\mathbb{Z})
$$

It is easy to check that $X_{1} * X_{2} \in S P_{2\left(n_{1}+n_{2}\right)}(\mathbb{Z})$ if and only if $X_{i} \in S P_{2 n_{i}}(\mathbb{Z})$, for $i=1,2$.
Given two matrices

$$
Y_{1}=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right) \in M_{2 n_{1} \times 2 n_{2}}(\mathbb{Z}) \text { and } Y_{2}=\left(\begin{array}{cc}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right) \in M_{2 n_{2} \times 2 n_{1}}(\mathbb{Z})
$$

where $C_{i j} \in M_{n_{1} \times n_{2}}(\mathbb{Z}), D_{i j} \in M_{n_{2} \times n_{1}}(\mathbb{Z})$, we define the quasi-direct sum by

$$
Y_{1} \circ Y_{2}=\left(\begin{array}{cccc}
0 & C_{11} & 0 & C_{12} \tag{23}\\
D_{11} & 0 & D_{12} & 0 \\
0 & C_{21} & 0 & C_{22} \\
D_{21} & 0 & D_{22} & 0
\end{array}\right) \in M_{2\left(n_{1}+n_{2}\right)}(\mathbb{Z})
$$

By simple calculation, we see that if $n_{1}=n_{2}=n$, then $Y_{1} \circ Y_{2} \in S P_{4 n}(\mathbb{Z})$ if and only if $Y_{1}, Y_{2} \in S P_{2 n}(\mathbb{Z})$.

Definition 3 A matrix $X \in S P_{2 n}(\mathbb{Z})$ is said to be decomposable if it conjugate to a symplectic direct sum of two symplectic matrices which have smaller genera; otherwise, X is said to be indecomposable. When n is even, X is said to be quasi-decomposable if it is conjugate to $X_{1} \circ X_{2}$ for some $X_{1}, X_{2} \in S P_{n}(\mathbb{Z})$.

Our results are given in following theorems. For the cases where 1 is an eigenvalue of X, we have

Theorem 1 Suppose $X \in S P_{4}(\mathbb{Z})$ and $m_{X}(x)=(x-1)\left(x^{2}+\lambda x+1\right)$, where $\lambda=0, \pm 1$. Then X is conjugate to one of two matrices

$$
I * W_{\lambda}, \quad I * W_{\lambda}^{\prime}
$$

where $W_{\lambda}=\left(\begin{array}{cc}0 & -1 \\ 1 & -\lambda\end{array}\right)$. Moreover, these matrices are not conjugate.
Similarly, for the cases where -1 is an eigenvalue of X, we have
Theorem 2 Suppose $X \in S P_{4}(\mathbb{Z})$ and $m_{x}(x)=(x+1)\left(x^{2}+\lambda x+1\right)$, where $\lambda=0, \pm 1$. Then X is conjugate to one of two matrices

$$
(-I) * W_{\lambda}, \quad(-I) * W_{\lambda}^{\prime}
$$

and these matrices are not conjugate.
Next for the cases when the minimal polynomial is an irreducible quadratic, we obtain
Theorem 3 Suppose $X \in S P_{4}(\mathbb{Z})$ and $m_{X}(x)=x^{2}+\lambda x+1$, where $\lambda=0, \pm 1$.

1) If X is decomposable, then X is conjugate to one of

$$
W_{\lambda} * W_{\lambda}, \quad W_{\lambda}^{\prime} * W_{\lambda}^{\prime}, \quad W_{\lambda} * W_{\lambda}^{\prime}
$$

2) If X is indecomposable, then $\lambda=0$ and X is conjugate to $\left(-I_{2}\right) \circ I_{2}$.

Moreover, these matrices are not conjugate.
For the last case characteristic polynomial (15) we have
Theorem 4 Suppose $X \in S P_{4}(\mathbb{Z})$ and $m_{X}(x)=x^{4}+x^{2}+1$.

1) If X is decomposable, then X is conjugate to one of

$$
W *(-W), \quad W *\left(-W^{\prime}\right), \quad W^{\prime} *(-W), \quad W^{\prime} *\left(-W^{\prime}\right)
$$

2) If X is quasi-decomposable, then X is conjugate to one of

$$
I_{2} \circ W, \quad I_{2} \circ W^{\prime}
$$

3) If X is neither decomposable nor quasi-decomposable, then X is conjugate to one of

$$
R, \quad-R,
$$

where

$$
W=\left(\begin{array}{cc}
0 & -1 \\
1 & -1
\end{array}\right), \quad R=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

Moreover, these matrices are not conjugate.
It is clear that $W_{1}=W, W_{-1}=-W^{\prime}$ and $W_{0}=J_{2}$. From above theorems and some results before, we obtain the main theorem.

Main Theorem A complete list of representatives of the conjugacy classes of d-torsion in $S P_{4}(\mathbb{Z})$ is given as follows:
$d=2$
char. poly. (3): $\quad-I_{4}$;
char. poly. (4): $I_{2} *\left(-I_{2}\right), \quad U \dot{+} U^{\prime}$;
$d=3$
char. poly. (5): $\quad W * W, \quad W^{\prime} * W^{\prime}, \quad W * W^{\prime} ;$
char. poly. (6): $I_{2} * W, \quad I_{2} * W^{\prime}$;
$d=4$
char. poly. (7): $J_{2} * J_{2}, \quad-\left(J_{2} * J_{2}\right), \quad J_{2} *\left(-J_{2}\right), \quad\left(-I_{2}\right) \circ I_{2}$;
char. poly. (8): $I_{2} * J_{2}, I_{2} *\left(-J_{2}\right)$;
char. poly. (9): $\left(-I_{2}\right) * J_{2}, \quad-\left(I_{2} * J_{2}\right)$;
$d=5$
char. poly. (10): S, S^{2}, S^{3}, S^{4};
$d=6$
char. poly. (11): $\quad-(W * W), \quad-\left(W^{\prime} * W^{\prime}\right), \quad-\left(W * W^{\prime}\right) ;$
char. poly. (12): $\quad I_{2} *(-W), \quad I_{2} *\left(-W^{\prime}\right)$;
char. poly. (13): $\quad-\left(I_{2} * W\right), \quad-\left(I_{2} * W^{\prime}\right)$;
char. poly. (14): $\left(-I_{2}\right) * W, \quad\left(-I_{2}\right) * W^{\prime}$;
char. poly. (15): $W *(-W), W *\left(-W^{\prime}\right), \quad W^{\prime} *(-W), \quad W^{\prime} *\left(-W^{\prime}\right)$,

$$
\begin{equation*}
I \circ W, \quad I \circ W^{\prime}, \quad R, \quad-R \tag{36}
\end{equation*}
$$

$d=8$
char. poly. (16): $I_{2} \circ J_{2}, \quad I_{2} \circ\left(-J_{2}\right), \quad T, \quad-T$;
$d=10$
char. poly. (17): $\quad-S, \quad-S^{2}, \quad-S^{3}, \quad-S^{4}$;
$d=12$
char. poly. (18): $\quad I_{2} \circ(-W), \quad I_{2} \circ\left(-W^{\prime}\right)$;
char. poly. (19): $J_{2} * W, \quad J_{2} * W^{\prime}, \quad J_{2}^{\prime} * W, \quad J_{2}^{\prime} * W^{\prime}$;
char. poly. (20): $J_{2} *(-W), \quad J_{2} *\left(-W^{\prime}\right), \quad J_{2}^{\prime} *(-W) ; \quad J_{2}^{\prime} *\left(-W^{\prime}\right)$,
where $U=\left(\begin{array}{cc}1 & 0 \\ 1 & -1\end{array}\right), S=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 1 \\ 1 & 1 & -1 & 0\end{array}\right)$ and $T=\left(\begin{array}{cccc}0 & -1 & 1 & 0 \\ -1 & 0 & 1 & 1 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0\end{array}\right)$.
The rest of the paper is the proof of the above theorems. First we state some properties of symplectic direct sum and quasi-direct sum,

$$
\begin{aligned}
\left(X_{1} * X_{2}\right)^{\prime} & =X_{1}^{\prime} * X_{2}^{\prime}, \\
\left(Y_{1} \circ Y_{2}\right)^{\prime} & =Y_{2}^{\prime} \circ Y_{1}^{\prime}, \\
\left(X_{1} * X_{2}\right)\left(Y_{1} \circ Y_{2}\right) & =\left(X_{1} Y_{1}\right) \circ\left(X_{2} Y_{2}\right), \\
\left(X_{1} \circ X_{2}\right)\left(Y_{1} * Y_{2}\right) & =\left(X_{1} Y_{2}\right) \circ\left(X_{2} Y_{1}\right), \\
\left(X_{1} * X_{2}\right)\left(Y_{1} * Y_{2}\right) & =\left(X_{1} Y_{1}\right) *\left(X_{2} Y_{2}\right), \\
\left(X_{1} \circ X_{2}\right)\left(Y_{1} \circ Y_{2}\right) & =\left(X_{1} Y_{2}\right) *\left(X_{2} Y_{1}\right)
\end{aligned}
$$

Here we assume that all matrix multiplications are suitable. The following three lemmas are useful.

Lemma 1 Let $X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}$ be symplectic matrices. Then

1) $X_{1} * X_{2} \sim X_{2} * X_{1}$.
2) $\left(X_{1} * X_{2}\right) * X_{3}=X_{1} *\left(X_{2} * X_{3}\right)$.
3) If $X_{1} \sim Y_{1}$ and $X_{2} \sim Y_{2}$, then $X_{1} * X_{2} \sim Y_{1} * Y_{2}$.

In what follows, we assume that X_{1} and X_{2} have the same genus
4) $X_{1} \circ X_{2} \sim X_{2} \circ X_{1}$.
5) $X_{1} \circ X_{2} \sim\left(-X_{1}\right) \circ\left(-X_{2}\right)$.
6) $X_{1} \circ X_{2} \sim I \circ\left(X_{1} X_{2}\right)$.
7) If $X_{1} \sim X_{2}$, then $I \circ X_{1} \sim I \circ X_{2}$.

Proof 2) and 3) are easy. To prove 1), we let $Q=I_{2 n_{1}} \circ I_{2 n_{2}} \in S P_{2\left(n_{1}+n_{2}\right)}(\mathbb{Z})$, where n_{i} is
the genus of $X_{i}, i=1,2$. Then $Q^{-1}\left(X_{1} * X_{2}\right) Q=X_{2} * X_{1}$. Similarly we prove 4) by using $Q=I \circ I, 5)$ by using $Q=I *(-I)$ and 6) by using $Q=I * X_{1}^{-1}$. For 7), if $X_{2}=Q^{-1} X_{1} Q$, then $\left(Q^{-1} * Q^{-1}\right)\left(I \circ X_{1}\right)(Q * Q)=I \circ X_{2}$.

In general the converse of 3) in Lemma 1 is not true, but we have
Lemma 2 Suppose X_{1}, X_{2}, Y_{1} and Y_{2} are symplectic matrices, $f_{X_{i}}(x)=f_{Y_{i}}(x)=f_{i}(x)$, for $i=1,2$. Suppose $f_{1}(x)$ and $f_{2}(x)$ are coprime. Then $X_{1} * X_{2} \sim Y_{1} * Y_{2}$ if and only if $X_{1} \sim Y_{1}$ and $X_{2} \sim Y_{2}$.

Proof The sufficiency part has been proved. We consider the necessity.
Note that any $P \in M_{2\left(n_{1}+n_{2}\right)}(\mathbb{Z})$ can be expressed in the form

$$
P=P_{1} * P_{2}+P_{3} \circ P_{4},
$$

where $P_{1} \in M_{2 n_{1}}(\mathbb{Z}), P_{2} \in M_{2 n_{2}}(\mathbb{Z}), P_{3} \in M_{2 n_{1} \times 2 n_{2}}(\mathbb{Z})$, and $P_{4} \in M_{2 n_{2} \times 2 n_{1}}(\mathbb{Z})$ are blocks of P. Let P be a symplectic matrix such that $\left(X_{1} * X_{2}\right) P=P\left(Y_{1} * Y_{2}\right)$. We obtain $X_{1} P_{1}=P_{1} Y_{1}$, $X_{2} P_{2}=P_{2} Y_{2}, X_{1} P_{3}=P_{3} Y_{2}$ and $X_{2} P_{4}=P_{4} Y_{2}$. Then $f_{2}\left(X_{1}\right) P_{3}=P_{3} f_{2}\left(Y_{1}\right)=0$, which yields $P_{3}=0$ since $f_{2}\left(X_{1}\right)$ is invertible. Similarly, we get $P_{4}=0$. Hence P_{1}, P_{2} are symplectic, therefore $X_{1} \sim Y_{1}$ and $X_{2} \sim Y_{2}$.

Lemma 3 If $X \in S P_{2}(\mathbb{Z})$ has order 3 (resp. 4,6). Then $f_{X}(x)=m_{x}(x)=x^{2}+\lambda x+1$, and $X \sim W_{\lambda}$ or W_{λ}^{\prime} and $\lambda=1$ (resp. $0,-1$).

For a proof, see Ref. [6] or corollary of Lemma 6.

3. Symplectic complements

A primitive integral $2 n \times(j+k)$ matrix

$$
\left(A_{2 n \times j} \quad B_{2 n \times k}\right), \quad j, k \leq n
$$

which satisfies the conditions

$$
A^{\prime} J A=0, \quad B^{\prime} J B=0, \quad \text { and } A^{\prime} J B=\binom{I_{k}}{0} \text { or }\left(\begin{array}{ll}
I_{j} & 0
\end{array}\right)
$$

(depending on whether $j \geq k$ or $j \leq k$) will be called a normal (j, k)-array. According to Ref. [2] every normal (j, k)-array can be completed to a symplectic matrix by placing $n-j$ columns after the first j columns and $n-k$ columns after the last k columns.

Remark 1 Let $\alpha, \beta \in \mathbb{Z}^{2 n}$. Clearly, α is (1,0)-array if and only if α is a primitive vector, and (α, β) is a normal $(1,1)$-array if and only if $\alpha^{\prime} J \beta=1$.

Lemma 4 Suppose that $X \in S P_{2 n}(\mathbb{Z})$ and $f_{X}(1)=0$. Then

$$
X \sim\left(\begin{array}{cccc}
1 & \gamma^{\prime} & a & \delta^{\prime} \\
0 & A & \alpha & B \\
0 & 0 & 1 & 0 \\
0 & C & \beta & D
\end{array}\right)
$$

where $Y=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in S P_{2(n-1)}(\mathbb{Z}), f_{X}(x)=(x-1)^{2} f_{Y}(x), a \in \mathbb{Z}$, and $\alpha, \beta, \gamma, \delta \in \mathbb{Z}^{n-1}$ with

$$
\left\{\begin{align*}
\alpha & =A \delta-B \gamma \tag{42}\\
\beta & =C \delta-D \gamma \\
\gamma & =C^{\prime} \alpha-A^{\prime} \beta \\
\delta & =D^{\prime} \alpha-B^{\prime} \beta
\end{align*}\right.
$$

Furthermore, if $Y \sim Y_{1}=\left(\begin{array}{cc}A_{1} & B_{1} \\ C_{1} & D_{1}\end{array}\right)$, then

$$
X \sim\left(\begin{array}{cccc}
1 & \gamma_{1}^{\prime} & a_{1} & \delta_{1}^{\prime} \\
0 & A_{1} & \alpha_{1} & B_{1} \\
0 & 0 & 1 & 0 \\
0 & C_{1} & \beta_{1} & D_{1}
\end{array}\right)
$$

Proof Since the number 1 is an eigenvalue of X, there is a primitive vector $\eta \in \mathbb{Z}^{2 n}$ such that $X \eta=\eta$. We can find an integral symplectic matrix P with η as its first column. Then

$$
P^{-1} X P=X_{1}=\left(\begin{array}{cccc}
1 & \gamma^{\prime} & a & \delta^{\prime} \\
0 & A & \alpha & B \\
0 & * & b & * \\
0 & C & \beta & D
\end{array}\right) \in S P_{2 n}(\mathbb{Z})
$$

By simple calculation we can see that the $*$'s are $0, b=1, Y=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in S P_{2(n-1)}(\mathbb{Z})$, and $\alpha, \beta, \gamma, \delta$ satisfy (42). Thus $f_{X}(x)=(x-1)^{2} g_{Y}(x)$.

The second part is easy, merely conjugate by $I * Q$, where $Q \in S P_{2}(\mathbb{Z})$ and $Q^{-1} Y Q=Y_{1}$.
Now we can prove Theorems 1 and 2.
Proof of Theorem 1 It is clear that $I * W_{\lambda} \nsim I * W_{\lambda}^{\prime}$ (cf. Lemma 2).
By Lemma 4, we get

$$
X \sim X_{1}=\left(\begin{array}{cccc}
1 & a_{1} & b_{1} & c_{1} \\
0 & A & d_{1} & B \\
0 & 0 & 1 & 0 \\
0 & C & e_{1} & D
\end{array}\right)
$$

where $Y=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in S P_{2}(\mathbb{Z})$ with $f_{Y}(x)=x^{2}+\lambda x+1$. Then, from Lemma 3, we have $Y \sim W_{\lambda}$ or W_{λ}^{\prime}. Without loss of the generality, we assume $Y \sim W_{\lambda}$. Then

$$
X \sim X_{2}=\left(\begin{array}{cccc}
1 & a_{2} & b_{2} & c_{2} \\
0 & 0 & a_{2} & -1 \\
0 & 0 & 1 & 0 \\
0 & 1 & \lambda a_{2}+c_{2} & -\lambda
\end{array}\right) \sim X_{3}=\left(\begin{array}{cccc}
1 & 0 & b & c \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 1 & c & -\lambda
\end{array}\right)
$$

where the last conjugacy is achieved by $Q=\left(\begin{array}{cc}1 & -a_{2} \\ 0 & 1\end{array}\right) \dot{+}\left(\begin{array}{cc}1 & 0 \\ a_{2} & 1\end{array}\right) \in S P_{4}(\mathbb{Z})$. We obtain $(\lambda+2) b+c^{2}=0$ since $m_{X}(x)=(x-1)\left(x^{2}+\lambda x+1\right)$. This implies $(\lambda+2) \mid c$. Now we see that X_{3} is decomposable and use Lemma 3 to complete the proof. In fact let

$$
P=\left(\begin{array}{cccc}
1 & k & 0 & k \\
0 & -1 & -k & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & k & -1
\end{array}\right) \in S P_{4}(\mathbb{Z})
$$

where $k=\frac{c}{\lambda+2} \in \mathbb{Z}$. It is easy to check that $P^{-1} X_{3} P=I * W_{\lambda}$. The proof is completed.
Proof of Theorem 2 Since $m_{-x}(x)=(x-1)\left(x^{2}-\lambda x+1\right)$, we have $-X \sim I * W_{-\lambda}$ or $I * W_{-\lambda}^{\prime}$. Note that $-W_{\lambda}=W_{\lambda}^{\prime}$. Hence $X \sim(-I) * W_{\lambda}^{\prime}$ or $(-I) * W_{\lambda}$. The proof is completed.

4. Minimal representatives

Let $X \in S P_{2 n}(\mathbb{Z})$ and $\eta=\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)^{\prime} \in \mathbb{Z}^{2 n}$. If $a=\eta^{\prime} J X \eta$, then we say that X represents a. The set of values represented by X will be denoted by $q(X)$. It is clear that $q(X)$ is a conjugacy invariant, for if $Y=Q^{-1} X Q$, where $Q \in S P_{2 n}(\mathbb{Z})$, then

$$
q(Y)=q\left(Q^{-1} X Q\right)=\left\{\eta^{\prime} J Q^{-1} X Q \eta \mid \eta \in \mathbb{Z}^{2 n}\right\}
$$

and so putting $\xi=Q \eta$ gives

$$
\xi^{\prime} J X \xi=\eta^{\prime} Q^{\prime} J X Q \eta=\eta^{\prime} J Q^{-1} X Q \eta=\eta^{\prime} J Y \eta
$$

Thus $q(Y)=q(X)$. Unfortunately, the converse is not necessarily true.
The set $q(X)$ is a set of integers, and consequently there is a non-zero η_{0} in $\mathbb{Z}^{2 n}$ such that $\left|\eta_{0}^{\prime} J X \eta_{0}\right|$ is least. If both $\eta_{0}^{\prime} J X \eta_{0}$ and $-\eta_{0}^{\prime} J X \eta_{0}=\eta_{1}^{\prime} J X \eta_{1}$ occur, we resolve the ambiguity by choosing the non-negative value. We write $\mu(X)=\eta_{0}^{\prime} J X \eta_{0}$. Clearly, if $\mu(X) \neq 0$, the minimizing vector x_{0} must be primitive, and if $\mu(X)=0$, we can also choose a primitive vector η_{0} such that $\eta_{0}^{\prime} J X \eta_{0}=0$.

Example If X is quasi-decomposable, then $\mu(X)=0$.
Lemma 5 Let $f(x)=f_{X}(x)$ be the characteristic polynomial of X. Then

$$
\begin{equation*}
|\mu(X)| \leq\left(\frac{4}{3}\right)^{n-\frac{1}{2}} \frac{|f(1) f(-1)|^{\frac{1}{2 n}}}{2} \tag{43}
\end{equation*}
$$

Proof Note that $\eta^{\prime} J X \eta$ is a quadratic form over \mathbb{Z}. If M is a symmetric matrix belonging to $M_{n}(\mathbb{Z})$, and $a=\min \left\{\left|\eta^{\prime} M \eta\right| \mid \eta \in \mathbb{Z}^{n}, \eta \neq 0\right\}$, then

$$
a \leq\left(\frac{4}{3}\right)^{\frac{n-1}{2}}|\operatorname{det} M|^{\frac{1}{n}}
$$

see Ref. [1]. Clearly, it is also true if M is a rational symmetric matrix.
We know that $\eta^{\prime} J X \eta=\frac{1}{2} \eta^{\prime}\left(J X+(J X)^{\prime}\right) \eta$, where $\frac{1}{2}\left(J X+(J X)^{\prime}\right)$ is a rational symmetric matrix. Because $(J X)^{\prime}=X^{\prime} J^{\prime}=-X^{\prime} J=-J X^{-1}$, and $|J|=|X|=1$, we see that
$\left|J X+(J X)^{\prime}\right|=\left|J X-J X^{-1}\right|=|J|\left|X^{-1}\right|\left|X^{2}-I\right|=f(1) f(-1)$. Hence

$$
|\mu(X)| \leq\left(\frac{4}{3}\right)^{n-\frac{1}{2}} \frac{|f(1) f(-1)|^{\frac{1}{2 n}}}{2}
$$

Remark 2 Note that if $X \in S P_{4}(\mathbb{Z})$ is a torsion element, then $|\mu(X)| \leq 1$ since $|\mu(X)|$ is integer and the maximum of $|f(1) f(-1)|$ is 16 .

Lemma 6 Suppose $X \in S P_{2 n}(\mathbb{Z})$, and $1 \in q(X)$. Then

$$
X \sim\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & A & \alpha & B \\
1 & \gamma^{\prime} & a & \delta^{\prime} \\
0 & C & \beta & D
\end{array}\right)
$$

where $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in S P_{2(n-1)}(\mathbb{Z}), a \in \mathbb{Z}$, and $\alpha, \beta, \gamma, \delta \in \mathbb{Z}^{n-1}$ satisfy Eq.(42).
Proof Since there is a primitive vector $\eta \in \mathbb{Z}^{2 n}$ such that $\eta^{\prime} J X \eta=1$, we see that $(\eta, X \eta)$ is a normal (1, 1)-array. Let P be the completion of the normal $(1,1)$-array $(\eta, X \eta)$ to a symplectic matrix. Then

$$
P=\left(\begin{array}{cccc}
\vdots & * & \vdots & * \\
\eta & * & X \eta & * \\
\vdots & * & \vdots & *
\end{array}\right)
$$

and therefore

$$
P^{-1} X P=X_{1}=\left(\begin{array}{cccc}
0 & * & b & * \\
0 & A & \alpha & B \\
1 & \gamma^{\prime} & a & \delta^{\prime} \\
0 & C & \beta & D
\end{array}\right) \in S P_{2 n}(\mathbb{Z})
$$

The remainder of the proof is similar to that of Lemma 4.
Corollary 1 Suppose $X \in S P_{2 n}(\mathbb{Z})$ and $m_{X}(x)=x^{2}+\lambda x+1$ with $1 \in q(X)$. Then $X \sim W_{\lambda} * Y$, where $Y \in S P_{2(n-1)}(\mathbb{Z})$ with $m_{Y}(x)=m_{X}(x)$.

Proof Since $X^{2} \eta=-\lambda X \eta-\eta$, we see that the entries of the matrix in Lemma 6 are: $a=-\lambda$, $\alpha=0, \beta=0$, and so $\gamma=0, \delta=0$.

Lemma 7 Suppose $X \in S P_{2 n}(\mathbb{Z})$, and $\mu(X)=0$. Then

$$
X \sim\left(\begin{array}{cccc}
0 & A & \alpha & B \\
1 & \gamma^{\prime} & a & \delta \\
0 & C & \beta & D \\
0 & 0 & 1 & 0
\end{array}\right)
$$

where $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in S P_{2(n-1)}(\mathbb{Z}), a \in \mathbb{Z}$, and $\alpha, \beta, \gamma, \delta \in \mathbb{Z}^{n-1}$ satisfy Eq.(42).

Proof Note that we have a normal (2,0)-array $(\eta, X \eta)$, where $\eta \in \mathbb{Z}^{2 n}$ is primitive.
Proof of Theorem 3 Note that $|\mu(X)| \leq 1$. We consider following four cases:
Case 1. If $\mu(X)=1$, then by Corollary $1, X \sim W_{\lambda} * Y$, for some $Y \in S P_{2}(\mathbb{Z})$, with $m_{Y}(x)=$ $x^{2}+\lambda x+1$. From Lemma 3, Y $\sim W_{\lambda}$ or W_{λ}^{\prime}. Then $X \sim W_{\lambda} * W_{\lambda}$ or $W_{\lambda} * W_{\lambda}^{\prime}$. But $\mu\left(W_{\lambda} * W_{\lambda}^{\prime}\right)=0$, hence $X \sim W_{\lambda} * W_{\lambda}$.

Case 2. If $\mu(X)=-1$, then $\mu(-X)=1$. It is clear that $m_{-x}(x)=x^{2}-\lambda x+1$, hence $-X \sim W_{-\lambda} * W_{-\lambda}$, and thus $X \sim-\left(W_{-\lambda} * W_{-\lambda}\right)=W_{\lambda}^{\prime} * W_{\lambda}^{\prime}$.

Case 3. If $\mu(X)=0$ and $1 \in q(X)$, we also have that $X \sim W_{\lambda} * W_{\lambda}$ or $W_{\lambda} * W_{\lambda}^{\prime}$ by Corollary 1 and Lemma 3. But $\mu\left(W_{\lambda} * W_{\lambda}\right)=1$, hence $X \sim W_{\lambda} * W_{\lambda}^{\prime}$.

Case 4. Now we assume that $\mu(X)=0$ and $1 \notin q(X)$. By Lemma 7 , we get

$$
X \sim X_{1}=\left(\begin{array}{cc}
W_{\lambda} & Y \\
0 & W_{\lambda}^{\prime-1}
\end{array}\right)
$$

where $Y=\left(\begin{array}{cc}a & b \\ b & \lambda b-a\end{array}\right), a, b \in \mathbb{Z}$.

$$
\text { Let } P=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & b \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), Q=\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \in S P_{4}(\mathbb{Z}) \text { and } X(a)=\left(\begin{array}{cccc}
0 & -1 & a & 0 \\
1 & -\lambda & 0 & -a \\
0 & 0 & -\lambda & -1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

It is easy to verify that

$$
P^{-1} X_{1} P=X(a) \text { and } Q^{-1} X(a) Q=X(a-2)
$$

So we obtain $X \sim X(0)$ or $X(1)$.
It is clear that $1 \in q(X(0))$ if and only if λ is odd, and always $1 \in q(X(1))$. Thus $\lambda=0$ in the case $1 \notin q(X)$. We get $X \sim X(0)=\left(-I_{2}\right) \circ I_{2}$, which is indecomposable.

The proof is completed.

5. The Case of $f(x)=x^{4}+x^{2}+1$

In this section we discuss the last case that $X \in S P_{4}(\mathbb{Z})$ has characteristic polynomial (15), that means $f_{X}(x)=x^{4}+x^{2}+1$ and prove Theorem 4 . The first two parts are very easy to verify.

Proof of the first two parts of Theorem 4 If X is decomposable, then X is conjugate to $Y * Z$, where $Y, Z \in S P_{2}(\mathbb{Z})$ with characteristic polynomials $f_{Y}(x)=x^{2}+x+1$ and $f_{Z}(x)=x^{2}-x-1$. From Lemma $3, Y \sim W$ or $W^{\prime}, Z \sim-W$ or $-W^{\prime}$. Hence X is conjugate to one of four matrices, $W *(-W), W *\left(-W^{\prime}\right), W^{\prime} *(-W)$ and $W^{\prime} *\left(-W^{\prime}\right)$. Clearly, they are not conjugate to each other, see Lemma 2.

If X is quasi-decomposable, then by (6) in Lemma $1, X \sim I \circ Y$, where $Y \in S P_{2}(\mathbb{Z})$. Since X has order $6,(I \circ Y)^{2}=Y * Y \neq I$ and $(I \circ Y)^{6}=(Y * Y)^{3}=Y^{3} * Y^{3}=I$. Thus $Y \neq I$,
$Y^{3}=I$, and then $Y \sim W$ or W^{\prime}. So according to part 7 in Lemma 1, we have that $X \sim I \circ W$ or $I \circ W^{\prime}$. Obviously, these two matrices are not conjugate.

To prove the third part of Theorem 4, we suppose that X is neither decomposable nor quasidecomposable. Note that $m_{X^{2}}(x)=x^{2}+x+1$, according to Theorem $3, X^{2}$ is conjugate to one of three non-conjugate matrices

$$
W * W, \quad W^{2} * W^{2}, \quad W * W^{2}
$$

Without loss of generality we assume that $X^{2}=X_{1} * X_{2}$, where X_{1} and X_{2} are either W or W^{2}. We can express X as

$$
\begin{equation*}
X=P_{1} * P_{2}+P_{3} \circ P_{4}, \tag{44}
\end{equation*}
$$

where the P_{i} 's are 2×2 matrices. Then

$$
\begin{aligned}
& X^{3}=X\left(X_{1} * X_{2}\right)=P_{1} X_{1} * P_{2} X_{2}+P_{3} X_{2} \circ P_{4} X_{1} \\
& X^{3}=\left(X_{1} * X_{2}\right) X=X_{1} P_{1} * X_{2} P_{2}+X_{1} P_{3} \circ X_{2} P_{4}
\end{aligned}
$$

Note that X has order 6 , we have $\left(J X^{3}\right)^{\prime}=X^{\prime 3} J^{\prime}=-J X^{-3}=-J X^{3}$. Therefore,

$$
\begin{equation*}
P_{1}=a X_{1}^{2}, \quad P_{2}=-a X_{2}^{2}, \quad P_{3} P_{4}=\left(1-a^{2}\right) X_{1}, \quad P_{4} P_{3}=\left(1-a^{2}\right) X_{2} \tag{45}
\end{equation*}
$$

and $\operatorname{det} P_{3}=\operatorname{det} P_{4}=1-a^{2}$ for some $a \in \mathbb{Z}$. Also, since $X \in S P_{4}(\mathbb{Z})$, we have

$$
\left\{\begin{array} { l }
{ P _ { 1 } ^ { \prime } J P _ { 1 } + P _ { 4 } ^ { \prime } J P _ { 4 } = J , } \tag{46}\\
{ P _ { 2 } ^ { \prime } J P _ { 2 } + P _ { 3 } ^ { \prime } J P _ { 3 } = J , } \\
{ P _ { 1 } ^ { \prime } J P _ { 3 } + P _ { 4 } ^ { \prime } J P _ { 2 } = 0 , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
P_{1} J P_{1}^{\prime}+P_{3} J P_{3}^{\prime}=J \\
P_{2} J P_{2}^{\prime}+P_{4} J P_{4}^{\prime}=J \\
P_{1} J P_{4}^{\prime}+P_{3} J P_{2}^{\prime}=0
\end{array}\right.\right.
$$

We state the following lemmas without proof. They are very easy to verify.
Lemma 8 Let $P \in M_{2}(\mathbb{Z})$. We have

1) If $P W=W P$, then $P=b I+c W$, for some constants b and c;
2) If $P W+W P=0$, then $P=0$;
3) If $P W=W^{2} P$, then $P=\left(\begin{array}{cc}b & c \\ b+c & -b\end{array}\right)$.

Clearly, if $P=b I+c W$, then $\operatorname{det}(P)=b^{2}-b c+c^{2}$.
If $X^{2}=W^{l} * W^{l}$, from Eq.(45), we see that $P_{3}=b I+c W$, where $b^{2}-b c+c^{2}=1-a^{2}$, and hence $a=-1,0,1$. In this case, when $a= \pm 1, b=c=0$, thus X is decomposable, and when $a=0, P_{1}=P_{2}=0$, we have that $X=P_{3} \circ P_{4}$ is quasi-decomposable.

So we only need consider the case that $X^{2}=W * W^{2}$.
Lemma 9 Suppose that $X^{2}=W * W^{2}$. Then $X \sim X(a, b, c)$, where

$$
X(a, b, c)=\left(\begin{array}{cccc}
a & b & -a & c \tag{47}\\
-c & 0 & b+c & -a \\
a & b+c & 0 & -b \\
b & a & c & -a
\end{array}\right)
$$

for integers a, b, c satisfying $a^{2}-1=b^{2}+b c+c^{2}$.

Proof From Eq.(45), we see that $X=\left(-a W^{2}\right) *(a W)+P_{3} P_{4}$, where $P_{3} P_{4}=\left(1-a^{2}\right) W$ and $P_{3} W=W^{2} P_{3}$. Applying Lemma 8, we get

$$
P_{3}=\left(\begin{array}{cc}
b & c \\
b+c & -b
\end{array}\right) \text { and } P_{4}=\left(\begin{array}{cc}
-c & b+c \\
b & c
\end{array}\right)
$$

It is clear that $\operatorname{det} P_{3}=-\left(b^{2}+b c+c^{2}\right)=1-a^{2}$.
Remark 3 For any integral solution of $a^{2}-1=b^{2}+b c+c^{2}, X(a, b, c) \in S P_{4}(\mathbb{Z})$, and its characteristic polynomial is (15). Clearly, $a \neq 0$.

Remark 4 A simple calculation proves that $X^{5}(a, b, c) \sim X(-a, b, c)$.
Lemma $10 X(a, b, c)$ is decomposable if and only if a is odd.
Proof It is easy to check that $\frac{1}{2}\left(X^{3}-I\right) \in M_{4}(\mathbb{Z})$ if and only if a is odd. We have proved that if $X(a, b, c)$ is decomposable if and only if $\frac{1}{2}\left(X^{3}-I\right) \in M_{4}(\mathbb{Z})$.

Lemma $11 \mu(X(a, b, c))$ has the same sign as the non-zero number a.
Proof Let $M=J X(a, b, c)+(J X(a, b, c))^{\prime}$. We want to prove that M is positive definite if $a>0$, and M is negative definite if $a<0$. We see

$$
M=\left(\begin{array}{cccc}
2 a & 2 b+c & -a & -b+c \\
2 b+c & 2 a & -b+c & -a \\
-a & -b+c & 2 a & -b-2 c \\
-b+c & -a & -b-2 c & 2 a
\end{array}\right)
$$

Its principal minors are:

$$
\begin{aligned}
& M_{1}=2 a \\
& M_{2}=\operatorname{det}\left(\begin{array}{cc}
2 a & 2 b+c \\
2 b+c & 2 a
\end{array}\right)=4 a^{2}-4 b^{2}-4 b c-c^{2}=4+3 c^{2}>0 \\
& M_{3}=\operatorname{det}\left(\begin{array}{ccc}
2 a & 2 b+c & -a \\
2 b+c & 2 a & -b+c \\
-a & -b+c & 2 a
\end{array}\right)=6\left(a^{3}-a b^{2}-a b c-a c^{2}\right)=6 a \\
& M_{4}=\operatorname{det} A=9
\end{aligned}
$$

Hence M is positive or negative definite dependent according as $a>0$ or $a<0$.
Corollary $2 X(a, b, c)$ is quasi-indecomposable.
Corollary $3 X\left(a_{1}, b_{1}, c_{1}\right) \nsim X\left(a_{2}, b_{2}, c_{2}\right)$ if $a_{1} a_{2}<0$.
If a is even, then $X(a, b, c)$ is also indecomposable. It is known that the Diophantine equation $a^{2}-1=b^{2}+b c+c^{2}$ has infinitely many solutions with a even. There are infinitely many $X \in S P_{4}(\mathbb{Z})$, which are neither quasi-decomposable nor decomposable, of the form $X(a, b, c)$.

In the following, we want to show that there are just two classes amongst $X(a, b, c)$, where a is even. For this purpose, we let

$$
R(x, y, z)=\left(\begin{array}{cccc}
2 x & 0 & -y & x \\
0 & -2 x & -x & -z \\
z & x & -x & z \\
-x & y & y & x
\end{array}\right)
$$

where

$$
\left\{\begin{array} { l }
{ x = a - b - c , } \\
{ y = 2 a - 2 b - c , } \\
{ z = 2 a - b - 2 c , }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
a=-3 x+y+z \\
b=-2 x+z \\
c=-2 x+y
\end{array}\right.\right.
$$

Then $R(x, y, z)=Q X(a, b, c) Q^{-1}$, where

$$
Q=\left(\begin{array}{cccc}
1 & 1 & -1 & 0 \\
0 & -1 & -1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

It is easy to see that $a^{2}-1=b^{2}+b c+c^{2}$ if and only if $y z=3 x^{2}+1$, and a is even if and only if $x+y+z$ is even, and also $a>0$ if and only if $y>0$. Furthermore, we have

Lemma 12 Let x, y, z be integers satisfying that $y z=3 x^{2}+1$ and $x+y+z$ is even. Then

1) If $y>0$, then $R(x, y, z) \sim R(0,1,1)$;
2) If $y<0$, then $R(x, y, z) \sim R(0,-1,-1)$.

Proof Suppose $y z=3 x^{2}+1$, and $x+y+z$ is even. If y is even, then $y=4 k$, where k is odd. The reason for this is that x is odd, and then z is odd and $3 x^{2}+1=4 l$ where l is odd. If p is an odd prime and $y \equiv 0(\bmod p)$, then $p \equiv 1(\bmod 3)$. This is because $p \neq 3$, and $3 x^{2}+1 \equiv 0$ $(\bmod p)$. Thus we see that y has the form

$$
y= \pm 4^{r} p_{1}^{r_{1}} \cdots p_{t}^{r_{t}}
$$

where $r=0,1, r_{i} \geq 0$, and the p_{i} are primes of the form $3 k+1$.
Now suppose $y>0$. First we want to prove there is a solution (u, v) of the Diophantine equation $y=3 u^{2}+v^{2}$ satisfying $u+x v \equiv 0(\bmod y)$.

If $y=1$ then $(0,1)$ is a such solution.
If $y=4$, then $x \equiv \pm 1(\bmod 4)$. A solution is $(1, \mp 1)$.
If y is an odd prime and $y \equiv 1(\bmod 3)$, then it is well known that there are $a, b \in \mathbb{Z}$ such that $3 a^{2}+b^{2}=y$, which implies $(a-x b)(a+x b)=a^{2}-x^{2} b^{2}=a^{2}\left(3 x^{2}+1\right)-y x^{2} \equiv 0(\bmod y)$. Hence either $a-x b \equiv 0(\bmod y)$ or $a+x b \equiv 0(\bmod y)$. So either $(a,-b)$ or (a, b) is a such solution.

In general, we use induction on the factors of y. Suppose $y=y_{1} y_{2}$, and $\left(u_{i}, v_{i}\right)$ are solutions
for $y_{i}($ for $i=1,2)$, that is, $y_{i}=3 u_{i}^{2}+v_{i}^{2}$ and $u_{i}+x v_{i} \equiv 0\left(\bmod y_{i}\right)$. Let

$$
\left\{\begin{array}{l}
u=u_{1} v_{2}+u_{2} v_{1} \\
v=v_{1} v_{2}-3 u_{1} u_{2}
\end{array}\right.
$$

Then $3 u^{2}+v^{2}=y$ and

$$
\begin{aligned}
(u+x v) x & =\left(u_{1} v_{2}+u_{2} v_{1}\right) x+\left(v_{1} v_{2}-3 u_{1} u_{2}\right) x^{2} \\
& \equiv x v_{2}\left(u_{1}+x v_{1}\right)+u_{2} v_{1} x+u_{1} u_{2} \quad(\bmod y) \\
& =\left(u_{1}+x v_{1}\right)\left(u_{2}+x v_{2}\right) \equiv 0 \quad(\bmod y)
\end{aligned}
$$

So $u+x v \equiv 0(\bmod y)$ since $(x, y)=1$. Therefore (u, v) is a solution for y.
Now we can complete the proof. Suppose $y=3 u^{2}+v^{2}$ and $u+v x \equiv 0(\bmod y)$. Then $v-3 x u \equiv v+3 x^{2} v=\left(3 x^{2}+1\right) v \equiv 0(\bmod y)$. Let

$$
P=\left(\begin{array}{cccc}
v & u & -u & v \\
\frac{u+x v}{y} & \frac{v-3 x u}{y} & \frac{v-3 x u}{y} & -\frac{u+x v}{y} \\
\frac{u+x v}{y} & \frac{3 x u-v}{y} & 0 & \frac{2(u+x v)}{y} \\
-v & u & 2 u & 0
\end{array}\right)
$$

Then $P \in S P_{4}(\mathbb{Z})$ and $P R(0,1,1) P^{-1}=R(x, y, z)$. That is, $R(0,1,1) \sim R(x, y, z)$.
The second part is similar.
Remark 5 The u, v in the proof are coprime. We see that there is a primitive solution of the Diophantine equation $3 u^{2}+v^{2}=m$ if m is a product of a power of 4 and odd primes of form $6 k+1$.

We have completed the proof of the third part of Theorem 4.

References

[1] NEWMAN M. Integral Matrices [M]. Academic Press, New York, 1972.
[2] REINER I. Symplectic modular complements [J]. Trans. Amer. Math. Soc., 1954, 77: 498-505.
[3] REINER I. Automorphisms of the symplectic modular group [J]. Trans. Amer. Math. Soc., 1955, 80: 35-50.
[4] SJERVE D. Canonical forms for torsion matrices [J]. J. Pure Appl. Algebra, 1981, 22(1): 103-111.
[5] SJERVE D, YANG Qing-jie. Conjugacy classes of p-torsion in $S p_{p-1}(\mathbf{Z})$ [J]. J. Algebra, 1997, 195(2): 580-603.
[6] YANG Qing-jie. Conjugacy classes in integral symplectic groups [J]. Linear Algebra Appl., 2006, 418(2-3): 614-624.

