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Abstract In this paper, we give a general model of random walks in time-random environment in
any countable space. Moreover, when the environment is independently identically distributed, a
recurrence-transience criterion and the law of large numbers are derived in the nearest-neighbor
case on Z'. At last, under regularity conditions, we prove that the RWIRE {X,} on Z' satisfies
a central limit theorem, which is similar to the corresponding results in the case of classical
random walks.
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1. Introduction

The general model of random walks in space-random environment including a recurrence-
transience criterion had been given in Ref. [6]. Moreover, when the environment is i.i.d., the
strong law of large numbers was given in Refs.[1] and [4]. However, the limit theorem had
also been investigated in Refs. [2] and [5] where the environment is stationary and ergodic. In
this paper, we study some asymptotic behavior for random walks in time-random environment
(RWIRE) in the nearest-neighbor case on Z! as the environment is i.i.d..

We begin with a general setup, that will be specialized later to the cases of interest to us.
Now we let N = {0,1,2,...}. For each i € N, let M;(x) denote the collection of probability
measures on x with support V., V C x, where y is countable. Formally, an element of M;(x),
called a transition law at time 4, is a measurable function w; : x — [0, 1] satisfying:

(a) wi(z) >0,Vz eV,

(b) wi(z) =0,Vz ¢ V;

(¢) Y pevwilr) =1

We equip M;(x) with the weak topology on probability measures which makes it become a
Polish space. Furthermore, it induces a Polish structure on Q = [],.y Mi(x). Let F denote
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the Borel o-algebra on €. Given a probability measure P on (2, F). A random environment
is an element w of  distributed according to P. One defines naturally the shift 7" on Q by
(Tw); = wiy1,1 € N.

For each w € , we define the random walks in the environment w as the space-homogeneous

Markov chains X = {X,,,n > 0} taking value in x with transition probabilities
Py(Xnt1 =y| X, =2) = wy(y — x).

Fix an environment w € Q, X = {X,,n > 0} is a time-nonhomogeneous Markov chain. We
use P® to denote the law induced on (xV,B), where B is the o-algebra generated by cylinder
functions and P*(Xo = z) = 1.

In the sequel, we refer to P*(-) as the quenched law of the random walks {X,,,n > 0}. Note
that for each « € x and G € B, the map w — PZ*(G) is F-measurable.

Hence P? := P ® P2 on (2 x XV, F x B) is the probability measure defined by

P””(FxG):/ij(G)P(dw), FeF,GeB.
F

Example Let x = Z! and V = {-1,0,1}. Then according to above definition the RWIRE is
called the nearest-neighbor RWIRE on Z'.

2. Recurrence-transience criteria

In this section, suppose {X,,n > 0} is the nearest-neighbor RWIRE on Z!, starting at 0.
We let w,l 1= w,(1),w, = w,(—1) and w? := w,(0).

Assumption (I) (a) P isiid.; (b) P{(wj +wy) >0} =1.
Theorem 2.1 Assume Assumption (I). Then

(1) Epwa < E‘pwar - llmn_>oo Xn = +o00,

(2) Epwy > Epwd = lim, 00 X, = —00,

(3) Epwy = Epwar = —00 = lim,,_ inf X, < lim,_,o sup X,, = +00
hold P°-a.s., where Ep is the expectation operator w.r.t. P.

Proof (1) Fix an environment w with Pw” < 0o. For each z € Z', | <z < s, define
Epw

Hf :Pj({Xn} hits [ before hitting s).

< o0, for each z, it follows that Hj, , is well defined as PJ({ Xy}
never hits [I, s]°) = 0. The “Markov property of P implies

E
From the assumption EP

HY, , =wi B 5, +WQHY 1, +wo Hi 1y @ € (18);
=1 k> 1; (2.1)

3

l
Hl,s,Tkw

s _
Hl,s,Tkw =0, =

Since P is i.i.d., and P? is space-homogeneous for all w € ), it follows by taking expectation on
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(2.1) w.r.t. P that

(Epwi + Epw )EpHY, , = Epwy EpH'[ + Epwy EpH L, x € (1),
EpHY, ., =1, (2.2)

EPHlOfs,O,w =0.

Solving (2.2), we obtain:
(i) If Epwy x Epwg > 0, then

-1 Epw; \j 1, Epw= s
oM . E;:z+l(Eii‘:3 )] E HO . Ej:l(E}i:% )]
Py s 0w — Zs_l (EP(—U; )] ) Pl 5w — Zs_l (E—Pw(; )J .
Jj=l+1 E'pu.)gr Jj=l+1 EPW[T

There are three cases:

(a) When Epw; < Epwg, we have limy_, oo lims— oo Ele(fS’w =0,but 0 < Hy,, <
1, so P(lim;—, oo limg— 400 Hl?s’w = 0) = 1. We also have lims_ | EPHSLS)W < 1, hence
P(lims_4oo H®, ,, < 1) > 0, which implies lim, ..o X, = 400 under P%a.s..

(b) When Epw, > Epwd, similarly, we may get lim,,_,o X,, = —oc under P%-a.s..

(¢) If Epw, = Epwy, for any fixed I, lims—, oo Ele(fS’w =1, hence P(lim,_, Hﬁsyw =
1) = 1. Moreover, for any fixed s, lim;_,_ EleO’Syw =0, hence P(lim;_, o Hl?s’w =0)=1,s0
Epwy, = Epwar — —00 = lim, oo inf X, < lim,,— o0 sup X, = +00 under P%-a.s..

(ii) If Epwy x Epwi = 0, there are two cases by assumption (I)(b):

(a) When Epwy =0, Epwg > 0, then by (2.2) and P, is space-homogeneous for all w
EP(Hl?s,w) = EP(HlofLstw) == EP(HlOfs,O,w) =0.
(b) When Epw, > 0, Epwi = 0, similarly, we have
Ep(H},,) = Bp(HP 1) = = Ep(Hy o) = 1.
So the case (a) (or (b)) of (ii) can be included in the case of (a) (or (b)) of (i). We complete the
proof by (i) and (ii). O
3. Strong law of large numbers
We introduce hitting times which will serve us later. Let Ty = 0 and
T, =inf{k: X =n},n > 1;inf p = +o0.

Set 7o = 0 and 7, = T}, — Tp,—1,n > 1. Similarly, set T_,, = inf{k : Xy = —n},n > 1 and

Top =T_p —T_pt1,n > 1, with the convention that 74, = +o0 if T4, = occ.

Theorem 3.1 Assume Assumption (I). Then under P°-a.s.

(1) Epwd > Epwy = lim,, % = (Epwg — Epwy )L limy, 0 )fl" = (Epwi — Epwy);

(2) Epwy < Epwy = lim, 0 T;n" = (Epwy —Epwd) 1, limy, 0 )fl" = (Epwy —Epwy );

_ . . T, 1
(3) Epw(")" = Epw; = limy oo T—; =00 = limy, 0 =, limy, 00 % =0.

For the proof of Theorem 3.1, we need the following two lemmas.
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Lemma 3.1 Assume Assumption (I). Then {r,,n > 1} is i.i.d. and {7_,,n > 1} is ii.d. under

the law P°-a.s..

Proof When Ep(.uar > Epuwy , we have PY(lim,, o0 sup X,, = +00) = 1, by the definition of 7,
PY%(1,, < 00) =1 for all n > 1. To prove {7, } is i.i.d., it suffices to show for any positive integer

k and m,

P(ry =kl =m) =P’y = k) = P°(11 = k).

For any fixed w € 2, by the Markov property and the space-homogeneity of P9, we have

PO(ry = Z P%(ry = k|r, = m)P° Z P (i =k)Po (1 =m).  (3.1)

m=1

Since P is i.i.d., it follows by taking expectation on (3.1) w.r.t. P that
Py =k)= P& P)(r ZP@PO =m) = P(r = k). (3.2)

On the other hand

PY(r2 = klri =m) = P)(Xpih = 2, Xpnys 2,5 =1,2,... k= 1]
Xn=1,X,#1,n=12,...,m—1)= P (1 = k). (3.3)
Hence by taking expectation on (3.3) w.r.t. P, we also have
P19 = klry =m) = P°(1, = k). (3.4)
So {7,n > 1} is i.i.d. under P°-a.s. by (3.2) and (3.4) when Epwy < Epwy . Similarly, we may

show {7_,,n > 1} is i.i.d. under P%a.s..

Lemma 3.2 Assume Assumption (I). Then
(1) Epo(Tl) _ (Epwar — Epwa)_l, E‘pwar > Epwa,
400, Epwg' = Epwy ;
(Epwa — Epwar)il, Epwa > Epwar,

+00, Epwg' = Epw .

(2) Epo(ra) ={
Proof We prove only (1) since the proof of (2) is similar. Decompose, with Xy =0

T1 = X{X1=1} + X{Xlzo}(l + T{) + X{Xlz—l}(l + 7'6/ + T{/). (3.5)

Here 77 is the first hitting time of 1 after time 1 (possible infinite), 1+ 7 is the first hitting time
of 0 after time 1, and 1+ 7' + 7{' is the first hitting time of 1 after time 1 + 7}
Consider first the case Epor; < co. Then E°7 < oo under P-a.s.. Taking expectation on

(3.5), one gets
Egm =PJ(X1 = 1)+ Pj(X1 = 0)(1 + By, )+

PY(Xy=-1)1+Ep,m+ Y PP(n =m)Enii,m)

m=1
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=1+ (1 —w)Ef,n +wy > PL(m=m)EQni,m. (3.6)

m=1

Taking expectation on (3.6) w.r.t. P, we get that
Epori =1+ (1 — Epwy )Epori + Epwy EpoTy. (3.7)

Hence when Epwg > Epw , we have Epor; = (Epwg — Epwy )~ ! < 0.

Note next that if E’pwéIr > Epwg , we have by Theorem 2.1 that Ep (71X <0o) = Ep7i. Hence
Epor1 = oo implies Eywi = Epwy; on the other hand, if Eywy = Epw; , by (3.7) we also have
Epor; = 0o. We finish the proof of Lemma 3.2.

Proof of Theorem 3.1 An application of Lemmas 3.1 and 3.2 yields that in case (1)

Tn 1'1_ 7
— = 2217717 — EPOTl < 0o0. (38)
n n

Similarly, we use —n instead of n, we also get that in case (2)

T _ % — EpoT_1 < 0. (3.9)
n n
However when Epwar = Eywy, PY(—00 = lim,, .o inf X,, < lim,, o sup X,, = +00) = 1, for n
large enough, T;, = +00 = T_,,, so in case (3),

P%( lim In = 400 = lim &): 1.

n—oo N n—oo n
Now we prove the second limit of the case (1). Let K, be the unique (random) integers such
that Tk, <n < Tk, +1. Note that X,, < K, + 1, while X,, > K,, — (n — Tk, ). Hence
K, Tk X, K,+1

(- s < (3.10)

Since P°(lim,, oo X,, = +00) = 1, from the definition of K,,, P%(lim, Tﬁ" =1) = 1. But
the definition K, also implies

K, .
P%(lim —2 = lim E) =1.
n—oo n n—oo n

Thus it follows from (3.8) and (3.10) that

X, _

PO lim = = lim — = Epwi — Epwy) = 1.
n—oo N n—o00 [,

Similarly, we may prove the second limit of (2) and (3). O

4. The central limit Theorem

In this section, we study the limiting distribution of the RWIRW {X,}, we use following
notations:

- E 0(7'1)2—(EP07’1)2
=(E Lg2=2F
5= (Bpor) ™0 (B

_ EPO(T_1)2 - (EPOT_1)2
p—1 = (EpoT_1) 17031 = (Epor-1)3

,Dpot1 = Epo(11)* — (Epo71)?;

,DPOT_l = EPO(T_1)2 - (EPOT_1)2.
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Theorem 4.1 Assume Assumption (I), under P%-a.s.,
(1) Iprwg' > Epw; and Dpot; < 0o, then

Xn—nu T, —nu~t
R~ N(0,1); —F— N(0,1 .
om0 s N e

(2) If Epwd = Epwy, then
Xn

\/2nEpw

(3) If Epwd < Epwy and DpoT_1 < 00, then

— N(0,1), n — oo.

Xn —np_q T, —n,uj
—_— N(0,1); ————= — N(0,1 .
0’_1\/ﬁ - ( ) )7 linDpoT_l ( s )a n— o0

Proof (1) For any positive integers n, L and M, by the definition of T;,, we have

(Ty >n} € {Xp <L} C (Tpans >ndU{( inf X, < L)N (Trypar <n)})

s>TrL4+m

C{Tronv >n}U{ inf X, — (L+M)<—M}). (4.1)

s>Trym

Since P is i.i.d., it follows by the Markov property and the space-homogeneity of PY that

P inf X,—(L+M)<-M)=P°(inf X, < —M). (4.2)
s>TrLym 5>0

By Theorem 2.1 we have

lim P%(inf X, < —M) = 0. (4.3)
M—oo s>0

Hence for any positive integers [ and for any § > 0, there exists M large enough such that
PYTp >n) < P°(X, <L) < P’Tria >n)+6. (4.4)
Now for any given real x, take

L = L(n,z) = nu+ xoy/n + o(v/n), (4.5)
we have L(n,z) — 400 as n — oo and

Xn—nu

0 nx%O

<x). (4.6)

On the other hand

Tr(n,z) — L(n, )t S - L(n,z)u™!

L(n,z)Dpori  +/L(n,z)Dpory

PO(TL(n,z) > n) = PO(

By the definition of L(n,x), we have

=L
lim ——— = —
n—oo \/L(n,z)Dpory
By the Central Limit Theorem of i.i.d. random variable sequence and the given condition we
obtain

lim P°(Trne) > n) = lim P (Treyrm = n) =1 — ®(—z) = &(z),

n—oo n—oo
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where ®(z) = \/— J* . exp(= )dt So by (4.4) and (4.6), the case (1) is proved. Similarly, we
can prove the case (3).
(2) When Epwi = Epuwy , suppose X, = >, Y;,Y; € {—1,0,1}, where

B (Y= 1) = wf, (Y = —1) = w;, Bu(Y; = 0) = .

Since P is i.i.d., by the given condition we have
Epo Xy = Bp[Y (i — )] = S (Epwf — Bpuy) =0,
i=1 i=1
Epo X2 = Ep EOZZ EpEOZY2+2 > YY)
i=1 j=1 i=1 1<i<j<n
—Bp(O @ 4w 42 S (wf —w)wf —wp) =23 Bewf = 2nEpug.
i=1 1<i<j<n i=1
Xn ]
— is ¢, (t). Then

Suppose that the characteristic function of
2nEpwg

Y

on(t) = Epo exp(i = Ep(E [ [ explit——=—=
\/ 2nEpw0 j=1 \/2nEpwg

)

H exp w + exp(———— w +w
j=1 A/ 2nEpw0 £/ 2nEpr
= || [exp(———— E’pw;r + exp(—————— Epw + Epw ]
j=1 £/ 2nEpw0 £/ 2nEpw0
= [Epw{ (exp(——=) + exp(——=)) + Epwi]"
\/ 2nEpw0 £/ 2nEpw0
1 12 1
= [Epw{ (1 ~5" ++o(=)+1-
2nEpw0 2nEpw0 n
t2 1
-5 +0(=)) + Epwg]"
1/2nEpw0 2 2nEpw0 n
1
= [EpwT (2 + + Epwl®
[Epwy ( 2nEpw0+ (=) + Epwg
t2 1 —t2
=l ol — exp(G-), n— oo (4.7)
It follows by the Continuous Theorem and (4.7) that " (0,1) as n — o©
n pwo
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