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Abstract In this paper, we give a general model of random walks in time-random environment in

any countable space. Moreover, when the environment is independently identically distributed, a

recurrence-transience criterion and the law of large numbers are derived in the nearest-neighbor

case on Z
1. At last, under regularity conditions, we prove that the RWIRE {Xn} on Z

1 satisfies

a central limit theorem, which is similar to the corresponding results in the case of classical

random walks.
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1. Introduction

The general model of random walks in space-random environment including a recurrence-

transience criterion had been given in Ref. [6]. Moreover, when the environment is i.i.d., the

strong law of large numbers was given in Refs. [1] and [4]. However, the limit theorem had

also been investigated in Refs. [2] and [5] where the environment is stationary and ergodic. In

this paper, we study some asymptotic behavior for random walks in time-random environment

(RWIRE) in the nearest-neighbor case on Z1 as the environment is i.i.d..

We begin with a general setup, that will be specialized later to the cases of interest to us.

Now we let N = {0, 1, 2, . . .}. For each i ∈ N , let Mi(χ) denote the collection of probability

measures on χ with support V , V ⊂ χ, where χ is countable. Formally, an element of Mi(χ),

called a transition law at time i, is a measurable function ωi : χ → [0, 1] satisfying:

(a) ωi(x) ≥ 0, ∀x ∈ V ;

(b) ωi(x) = 0, ∀x /∈ V ;

(c)
∑

x∈V ωi(x) = 1.

We equip Mi(χ) with the weak topology on probability measures which makes it become a

Polish space. Furthermore, it induces a Polish structure on Ω =
∏

i∈N Mi(χ). Let F denote
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the Borel σ-algebra on Ω. Given a probability measure P on (Ω,F). A random environment

is an element ω of Ω distributed according to P . One defines naturally the shift T on Ω by

(Tω)i = ωi+1, i ∈ N .

For each ω ∈ Ω, we define the random walks in the environment ω as the space-homogeneous

Markov chains X = {Xn, n ≥ 0} taking value in χ with transition probabilities

Pω(Xn+1 = y|Xn = x) = ωn(y − x).

Fix an environment ω ∈ Ω, X = {Xn, n ≥ 0} is a time-nonhomogeneous Markov chain. We

use P x
ω to denote the law induced on (χN ,B), where B is the σ-algebra generated by cylinder

functions and P x
ω (X0 = x) = 1.

In the sequel, we refer to P x
ω (·) as the quenched law of the random walks {Xn, n ≥ 0}. Note

that for each x ∈ χ and G ∈ B, the map ω 7→ P x
ω (G) is F -measurable.

Hence P x := P ⊗ P x
ω on (Ω × χN ,F × B) is the probability measure defined by

P x(F × G) =

∫

F

P x
ω (G)P (dω), F ∈ F , G ∈ B.

Example Let χ = Z1 and V = {−1, 0, 1}. Then according to above definition the RWIRE is

called the nearest-neighbor RWIRE on Z1.

2. Recurrence-transience criteria

In this section, suppose {Xn, n ≥ 0} is the nearest-neighbor RWIRE on Z1, starting at 0.

We let ω+
n := ωn(1), ω−

n := ωn(−1) and ω0
n := ωn(0).

Assumption (I) (a) P is i.i.d.; (b) P{(ω+
0 + ω−

0 ) > 0} = 1.

Theorem 2.1 Assume Assumption (I). Then

(1) EP ω−
0 < EP ω+

0 =⇒ limn→∞ Xn = +∞,

(2) EP ω−
0 > EP ω+

0 =⇒ limn→∞ Xn = −∞,

(3) EP ω−
0 = EP ω+

0 =⇒ −∞ = limn→∞ inf Xn < limn→∞ sup Xn = +∞
hold P 0-a.s., where EP is the expectation operator w.r.t. P .

Proof (1) Fix an environment ω with
EP ω

−

0

EP ω+

0

< ∞. For each x ∈ Z1, l ≤ x ≤ s, define

Hx
l,s,ω = P x

ω ({Xn} hits l before hitting s).

From the assumption
EP ω

−

0

EP ω
+

0

< ∞, for each x, it follows that Hx
l,s,ω is well defined as P x

ω ({Xn}
never hits [l, s]c) = 0. The Markov property of P x

ω implies











Hx
l,s,ω = ω+

0 Hx+1
l,s,Tω + ω0

0H
x
l,s,Tω + ω−

0 Hx−1
l,s,Tω, x ∈ (l, s);

H l
l,s,T kω

= 1, k ≥ 1;

Hs
l,s,T kω

= 0, k ≥ 1.

(2.1)

Since P is i.i.d., and P x
ω is space-homogeneous for all ω ∈ Ω, it follows by taking expectation on



Asymptotic behavior for random walks in time-random environment on Z
1 201

(2.1) w.r.t. P that










(EP ω+
0 + EP ω−

0 )EP Hx
l,s,ω = EP ω+

0 EP Hx+1
l,s,ω + EP ω−

0 EP Hx−1
l,s,ω, x ∈ (l, s),

EP H0
0,s−l,ω = 1,

EP H0
l−s,0,ω = 0.

(2.2)

Solving (2.2), we obtain:

(i) If EP ω0 × EP ω−
0 > 0, then

EP Hx
l,s,ω =

∑s−1
j=x+1(

EP ω
−

0

EP ω
+

0

)j

∑s−1
j=l+1(

EP ω
−

0

EP ω
+

0

)j
, EP H0

l,s,ω =

∑s−1
j=1(

EP ω
−

0

EP ω
+

0

)j

∑s−1
j=l+1(

EP ω
−

0

EP ω
+

0

)j
.

There are three cases:

(a) When EP ω−
0 < EP ω+

0 , we have liml→−∞ lims→+∞ EP H0
l,s,ω = 0, but 0 ≤ H1

0,s,ω ≤
1, so P (liml→−∞ lims→+∞ H0

l,s,ω = 0) = 1. We also have lims→+∞ EP H0
−1,s,ω < 1, hence

P (lims→+∞ H0
−1,s,ω < 1) > 0, which implies limn→∞ Xn = +∞ under P 0-a.s..

(b) When EP ω−
0 > EP ω+

0 , similarly, we may get limn→∞ Xn = −∞ under P 0-a.s..

(c) If EP ω−
0 = EP ω+

0 , for any fixed l, lims→+∞ EP H0
l,s,ω = 1, hence P (lims→+∞ H0

l,s,ω =

1) = 1. Moreover, for any fixed s, liml→−∞ EP H0
l,s,ω = 0, hence P (liml→−∞ H0

l,s,ω = 0) = 1, so

EP ω−
0 = EP ω+

0 =⇒ −∞ = limn→∞ inf Xn < limn→∞ supXn = +∞ under P 0-a.s..

(ii) If EP ω−
0 × EP ω+

0 = 0, there are two cases by assumption (I)(b):

(a) When EP ω−
0 = 0, EP ω+

0 > 0, then by (2.2) and Pω is space-homogeneous for all ω

EP (H0
l,s,ω) = EP (H0

l−1,s−1,ω) = · · · = EP (H0
l−s,0,ω) = 0.

(b) When EP ω−
0 > 0, EP ω+

0 = 0, similarly, we have

EP (H0
l,s,ω) = EP (H0

l+1,s+1,ω) = · · · = EP (H0
0,s−l,ω) = 1.

So the case (a) (or (b)) of (ii) can be included in the case of (a) (or (b)) of (i). We complete the

proof by (i) and (ii). 2

3. Strong law of large numbers

We introduce hitting times which will serve us later. Let T0 = 0 and

Tn = inf{k : Xk = n}, n ≥ 1; inf ϕ = +∞.

Set τ0 = 0 and τn = Tn − Tn−1, n ≥ 1. Similarly, set T−n = inf{k : Xk = −n}, n ≥ 1 and

τ−n = T−n − T−n+1, n ≥ 1, with the convention that τ±n = +∞ if T±n = ∞.

Theorem 3.1 Assume Assumption (I). Then under P 0-a.s.

(1) EP ω+
0 > EP ω−

0 =⇒ limn→∞
Tn

n
= (EP ω+

0 − EP ω−
0 )−1, limn→∞

Xn

n
= (EP ω+

0 − EP ω−
0 );

(2) EP ω+
0 < EP ω−

0 =⇒ limn→∞
T
−n

n
= (EP ω−

0 −EP ω+
0 )−1, limn→∞

Xn

n
= (EP ω+

0 −EP ω−
0 );

(3) EP ω+
0 = EP ω−

0 =⇒ limn→∞
Tn

n
= ∞ = limn→∞

T
−n

n
, limn→∞

Xn

n
= 0.

For the proof of Theorem 3.1, we need the following two lemmas.
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Lemma 3.1 Assume Assumption (I). Then {τn, n ≥ 1} is i.i.d. and {τ−n, n ≥ 1} is i.i.d. under

the law P 0-a.s..

Proof When EP ω+
0 ≥ EP ω−

0 , we have P 0(limn→∞ sup Xn = +∞) = 1, by the definition of τn,

P 0(τn < ∞) = 1 for all n ≥ 1. To prove {τn} is i.i.d., it suffices to show for any positive integer

k and m,

P 0(τ2 = k|τ1 = m) = P 0(τ2 = k) = P 0(τ1 = k).

For any fixed ω ∈ Ω, by the Markov property and the space-homogeneity of P 0
ω , we have

P 0
ω(τ2 = k) =

∞
∑

m=1

P 0
ω(τ2 = k|τ1 = m)P 0

ω(τ1 = m) =

∞
∑

m=1

P 0
T mω(τ1 = k)P 0

ω(τ1 = m). (3.1)

Since P is i.i.d., it follows by taking expectation on (3.1) w.r.t. P that

P 0(τ2 = k) = P ⊗ P 0
ω(τ1 = k)

∞
∑

m=1

P ⊗ P 0
ω(τ1 = m) = P 0(τ1 = k). (3.2)

On the other hand

P 0
ω(τ2 = k|τ1 = m) = P 0

ω(Xm+k = 2, Xm+s 6= 2, s = 1, 2, . . . , k − 1|
Xm = 1, Xn 6= 1, n = 1, 2, . . . , m − 1) = P 0

T mω(τ1 = k). (3.3)

Hence by taking expectation on (3.3) w.r.t. P , we also have

P 0(τ2 = k|τ1 = m) = P 0(τ1 = k). (3.4)

So {τn, n ≥ 1} is i.i.d. under P 0-a.s. by (3.2) and (3.4) when EP ω+
0 ≤ EP ω−

0 . Similarly, we may

show {τ−n, n ≥ 1} is i.i.d. under P 0-a.s..

Lemma 3.2 Assume Assumption (I). Then

(1) EP 0(τ1) =

{

(EP ω+
0 − EP ω−

0 )−1, EP ω+
0 > EP ω−

0 ,

+∞, EP ω+
0 = EP ω−

0 ;

(2) EP 0(τ−1) =

{

(EP ω−
0 − EP ω+

0 )−1, EP ω−
0 > EP ω+

0 ,

+∞, EP ω+
0 = EP ω−

0 .

Proof We prove only (1) since the proof of (2) is similar. Decompose, with X0 = 0

τ1 = χ{X1=1} + χ{X1=0}(1 + τ ′
1) + χ{X1=−1}(1 + τ ′′

0 + τ ′′
1 ). (3.5)

Here τ ′
1 is the first hitting time of 1 after time 1 (possible infinite), 1+ τ ′′

0 is the first hitting time

of 0 after time 1, and 1 + τ ′′
0 + τ ′′

1 is the first hitting time of 1 after time 1 + τ ′′
0 .

Consider first the case EP 0τ1 < ∞. Then E0
ωτ1 < ∞ under P -a.s.. Taking expectation on

(3.5), one gets

E0
ωτ1 =P 0

ω(X1 = 1) + P 0
ω(X1 = 0)(1 + E0

Tωτ1)+

P 0
ω(X1 = −1)(1 + E0

Tωτ1 +

∞
∑

m=1

P 0
Tω(τ1 = m)E0

T m+1ωτ1)
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=1 + (1 − ω+
0 )E0

Tωτ1 + ω−
0

∞
∑

m=1

P 0
Tω(τ1 = m)E0

T m+1ωτ1. (3.6)

Taking expectation on (3.6) w.r.t. P , we get that

EP 0τ1 = 1 + (1 − EP ω+
0 )EP 0τ1 + EP ω−

0 EP 0τ1. (3.7)

Hence when EP ω+
0 > EP ω−

0 , we have EP 0τ1 = (EP ω+
0 − EP ω−

0 )−1 < ∞.

Note next that if EP ω+
0 ≥ EP ω−

0 , we have by Theorem 2.1 that EP (τ1χτ1<∞) = EP τ1. Hence

EP 0τ1 = ∞ implies Epω
+
0 = Epω

−
0 ; on the other hand, if Epω

+
0 = Epω

−
0 , by (3.7) we also have

EP 0τ1 = ∞. We finish the proof of Lemma 3.2.

Proof of Theorem 3.1 An application of Lemmas 3.1 and 3.2 yields that in case (1)

Tn

n
=

∑n

i=1 τi

n
−→ EP 0τ1 < ∞. (3.8)

Similarly, we use −n instead of n, we also get that in case (2)

T−n

n
=

∑n

i=1 τ−i

n
−→ EP 0τ−1 < ∞. (3.9)

However when Epω
+
0 = Epω

−
0 , P 0(−∞ = limn→∞ inf Xn < limn→∞ supXn = +∞) = 1, for n

large enough, Tn = +∞ = T−n, so in case (3),

P 0( lim
n→∞

Tn

n
= +∞ = lim

n→∞
T−n

n
) = 1.

Now we prove the second limit of the case (1). Let Kn be the unique (random) integers such

that TKn
≤ n < TKn+1. Note that Xn ≤ Kn + 1, while Xn ≥ Kn − (n − TKn

). Hence

Kn

n
− (1 − TKn

n
) ≤ Xn

n
<

Kn + 1

n
. (3.10)

Since P 0(limn→∞ Xn = +∞) = 1, from the definition of Kn, P 0(limn→∞
TKn

n
= 1) = 1. But

the definition Kn also implies

P 0( lim
n→∞

Kn

n
= lim

n→∞
n

Tn

) = 1.

Thus it follows from (3.8) and (3.10) that

P 0( lim
n→∞

Xn

n
= lim

n→∞
n

Tn

= EP ω+
0 − EP ω−

0 ) = 1.

Similarly, we may prove the second limit of (2) and (3). 2

4. The central limit Theorem

In this section, we study the limiting distribution of the RWIRW {Xn}, we use following

notations:

µ = (EP 0τ1)
−1, σ2 =

EP 0(τ1)
2 − (EP 0τ1)

2

(EP 0τ1)3
, DP 0τ1 = EP 0(τ1)

2 − (EP 0τ1)
2;

µ−1 = (EP 0τ−1)
−1, σ2

−1 =
EP 0(τ−1)

2 − (EP 0τ−1)
2

(EP 0τ−1)3
, DP 0τ−1 = EP 0(τ−1)

2 − (EP 0τ−1)
2.
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Theorem 4.1 Assume Assumption (I), under P 0-a.s.,

(1) If EP ω+
0 > EP ω−

0 and DP 0τ1 < ∞, then

Xn − nµ

σ
√

n
−→ N(0, 1);

Tn − nµ−1

√
nDP 0τ1

−→ N(0, 1), n → ∞.

(2) If EP ω+
0 = EP ω−

0 , then

Xn
√

2nEP ω+
0

−→ N(0, 1), n → ∞.

(3) If EP ω+
0 < EP ω−

0 and DP 0τ−1 < ∞, then

Xn − nµ−1

σ−1
√

n
−→ N(0, 1);

Tn − nµ−1
−1

√

nDP 0τ−1

−→ N(0, 1), n → ∞.

Proof (1) For any positive integers n, L and M , by the definition of Tn, we have

{TL ≥ n} ⊂ {Xn ≤ L} ⊂ ({TL+M ≥ n} ∪ {( inf
s≥TL+M

Xs ≤ L) ∩ (TL+M < n)})

⊂ ({TL+M ≥ n} ∪ { inf
s≥TL+M

Xs − (L + M) ≤ −M}). (4.1)

Since P is i.i.d., it follows by the Markov property and the space-homogeneity of P 0
ω that

P 0( inf
s≥TL+M

Xs − (L + M) ≤ −M) = P 0(inf
s≥0

Xs ≤ −M). (4.2)

By Theorem 2.1 we have

lim
M→∞

P 0(inf
s≥0

Xs ≤ −M) = 0. (4.3)

Hence for any positive integers l and for any δ > 0, there exists M large enough such that

P 0(TL ≥ n) ≤ P 0(Xn ≤ L) ≤ P 0(TL+M ≥ n) + δ. (4.4)

Now for any given real x, take

L = L(n, x) = nµ + xσ
√

n + o(
√

n), (4.5)

we have L(n, x) −→ +∞ as n → ∞ and

P 0(Xn ≤ L(n, x)) ≈ P 0(
Xn − nµ

σ
√

n
≤ x). (4.6)

On the other hand

P 0(TL(n,x) ≥ n) = P 0(
TL(n,x) − L(n, x)µ−1

√

L(n, x)DP 0τ1

≥ n − L(n, x)µ−1

√

L(n, x)DP 0τ1

).

By the definition of L(n, x), we have

lim
n→∞

n − L(n, x)µ−1

√

L(n, x)DP 0τ1

= −x.

By the Central Limit Theorem of i.i.d. random variable sequence and the given condition we

obtain

lim
n→∞

P 0(TL(n,x) ≥ n) = lim
n→∞

P 0(TL(n,x)+M ≥ n) = 1 − Φ(−x) = Φ(x),
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where Φ(x) = 1√
2π

∫ x

−∞ exp(−t2

2 )dt. So by (4.4) and (4.6), the case (1) is proved. Similarly, we

can prove the case (3).

(2) When EP ω+
0 = EP ω−

0 , suppose Xn =
∑n

i=1 Yi, Yi ∈ {−1, 0, 1}, where

Eω(Yi = 1) = ω+
i , Eω(Yi = −1) = ω−

i , Eω(Yi = 0) = ω0
i .

Since P is i.i.d., by the given condition we have

EP 0Xn = EP [

n
∑

i=1

(ω+
i − ω−

i )] =

n
∑

i=1

(EP ω+
i − EP ω−

i ) = 0,

EP 0X2
n = EP (E0

ω(

n
∑

i=1

n
∑

j=1

YiYj)) = EP (E0
ω(

n
∑

i=1

Y 2
i + 2

∑

1≤i<j≤n

YiYj))

= EP (

n
∑

i=1

(ω+
i + ω−

i ) + 2
∑

1≤i<j≤n

(ω+
i − ω−

i )(ω+
j − ω−

j )) = 2

n
∑

i=1

EP ω+
i = 2nEP ω+

0 .

Suppose that the characteristic function of Xn√
2nEP ω

+

0

is ϕn(t). Then

ϕn(t) = EP 0 exp(it
Xn

√

2nEP ω+
0

) = EP (E0
ω

n
∏

j=1

exp(it
Yj

√

2nEP ω+
0

))

= EP [
n

∏

j=1

(exp(
it

√

2nEP ω+
0

)ω+
j + exp(

−it
√

2nEP ω+
0

)ω−
j + ω0

j )]

=
n

∏

j=1

[exp(
it

√

2nEP ω+
0

)EP ω+
j + exp(

−it
√

2nEP ω+
0

)EP ω−
j + EP ω0

j ]

= [EP ω+
0 (exp(

it
√

2nEP ω+
0

) + exp(
−it

√

2nEP ω+
0

)) + EP ω0
0 ]

n

= [EP ω+
0 (1 +

it
√

2nEP ω+
0

− 1

2
· t2

2nEP ω+
0

+ o(
1

n
) + 1−

it
√

2nEP ω+
0

− 1

2
· t2

2nEP ω+
0

+ o(
1

n
)) + EP ω0

0 ]
n

= [EP ω+
0 (2 − t2

2nEP ω+
0

+ o(
1

n
)) + EP ω0

0 ]
n

= [1 − t2

2n
+ o(

1

n
)]n −→ exp(

−t2

2
), n −→ ∞. (4.7)

It follows by the Continuous Theorem and (4.7) that Xn√
2nEP ω+

0

→ N(0, 1) as n → ∞.
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