The Kinematic Density for Pairs of Intersecting Lines

XIE Peng, XIE Ke-yao, CHENG Meng-liang
(Department of Mathematics, Huazhong University of Science and Technology, Hubei 430074, China)
(E-mail: xiepeng@mail.hust.edu.cn)

Abstract

In this paper, we get a kinematic density formula for pairs of intersecting lines which has not yet been gotten in integral geometry by using the moving orthogonal frames method. And we obtain a kinematic formula of the intersection of the pairs of intersecting lines belonging to convex body K by using it.

Keywords pairs of intesecting lines; kinematic density; kinematic formula.
Document code A
MR(2000) Subject Classification 53C65; 60D05
Chinese Library Classification O186.5

1. Introduction

The kinematic density for pairs of intersecting lines in \mathbb{R}^{2} is the same as the kinematic density for pairs of lines in \mathbb{R}^{2}. Let G and L be two lines which intersect at the point P, θ be the angle between G and L, and α be the angle G with the x-axis. We can get the formula ${ }^{[1,2]}$

$$
\begin{equation*}
\mathrm{d} G \mathrm{~d} L=\sin \theta \mathrm{d} P \mathrm{~d} \theta \mathrm{~d} \alpha \tag{1}
\end{equation*}
$$

The kinematic density for pairs of intersecting lines in \mathbb{R}^{3} is different from the kinematic density for pairs of lines in \mathbb{R}^{3}. The kinematic density for pairs of lines in \mathbb{R}^{3} is ${ }^{[3]}$

$$
\begin{equation*}
\mathrm{d} G \mathrm{~d} L=\sin ^{2} \theta \mathrm{~d} P_{N} \mathrm{~d} Q_{N} \mathrm{~d} G_{N} \mathrm{~d} L_{N} \mathrm{~d} N . \tag{2}
\end{equation*}
$$

Where N is the common perpendicular of lines G and $L, P=N \cap G, Q=N \cap L, \theta$ denotes the angle between G and $L, \mathrm{~d} P_{N}$ and $\mathrm{d} Q_{N}$ are the densities of P and Q on the common perpendicular N, respectively, and $\mathrm{d} G_{N}$ and $\mathrm{d} L_{N}$ are the densities of G and L for the rotations around N, respectively.

The kinematic density for pairs in \mathbb{R}^{n} is ${ }^{[4,5]}$

$$
\begin{equation*}
\mathrm{d} G \mathrm{~d} L=t^{n-3} \sin ^{2} \theta \mathrm{~d} P_{N} \mathrm{~d} Q_{N} \mathrm{~d} G_{N} \mathrm{~d} L_{N} \mathrm{~d} N \tag{3}
\end{equation*}
$$

where t denotes the length of $P Q, \theta$ denotes the angle between G and $L, \mathrm{~d} P_{N}$ and $\mathrm{d} Q_{N}$ are the densities of P and Q on the common perpendicular N, respectively, and $\mathrm{d} G_{N}$ and $\mathrm{d} L_{N}$ are the densities of G and L for the rotations around N, respectively.

Received date: 2006-04-18; Accepted date: 2007-01-16
Foundation item: the National Natural Science Foundation of China (No. 60074033).

Let K be a convex body in \mathbb{R}^{n}, and σ the chord intersected by a random line G with K. Consider integrals ${ }^{[1]}$

$$
I_{m}^{(n)}(K)=\int_{G \cap K} \sigma^{m} \mathrm{~d} G
$$

where m is a nonnegative integer and d G is the density of lines. The integral $I_{m}^{(n)}(K)$ is called the m th chord-power integral of K.

In particular,

$$
\begin{equation*}
I_{1}^{(n)}(K)=\frac{1}{2} O_{n-1} V \tag{4}
\end{equation*}
$$

where O_{n-1} is the surface area of $(n-1)$-dimensional unit sphere and V is the volume of K.
When we study geometric probability ${ }^{[5]}$, we may meet these problems which need using the related formulas, say, caculating the kinematic measure of the intersection of the lines G and L belonging to convex body K in \mathbb{R}^{n}. Meanwhile, we notice that these are conditional probability problems.

2. Main results

Lemma The kinematic density for pairs of intersecting lines G and L in \mathbb{R}^{n} is

$$
\begin{equation*}
\mathrm{d} G \mathrm{~d} L=\sin ^{n-1} \theta \mathrm{~d} \theta \omega_{1} \omega_{2} \cdots \omega_{n} \omega_{12} \cdots \omega_{1 n} \omega_{23} \cdots \omega_{2 n} \tag{5}
\end{equation*}
$$

where θ is the angle between the lines G and L, and $\omega_{i}, \omega_{i j}$ are 1-forms in \mathbb{R}^{n},

$$
i=1,2, \ldots, n ; j=1,2, \ldots, n
$$

Proof Let g_{1} be the unit vector parallel to the line G and l_{1} be the unit vector parallel to the line L. Let $\left\{P, g_{1}, g_{2}, g_{3}, \ldots, g_{n}\right\}$ be the moving orthogonal frames, such that the plane π which is spanned by the lines G and L will be perpendicular to $\operatorname{span}\left(P ; g_{3}, g_{4}, \ldots, g_{n}\right)$. And the lines l_{1} and l_{2} are also in the plane π. Denote $g_{i}=l_{i}, i=3,4, \ldots, n$. Then

$$
\begin{aligned}
l_{1} & =\cos \theta g_{1}+\sin \theta g_{2}, \quad l_{2}=-\sin \theta g_{1}+\cos \theta g_{2} \\
\mathrm{~d} l_{1} & =\cos \theta \mathrm{d} g_{1}+\sin \theta \mathrm{d} g_{2}+\left(\cos \theta g_{2}-\sin \theta g_{1}\right) \mathrm{d} \theta \\
\mathrm{~d} l_{2} & =-\sin \theta \mathrm{d} g_{1}+\cos \theta \mathrm{d} g_{2}-\left(\cos \theta g_{1}+\sin \theta g_{2}\right) \mathrm{d} \theta
\end{aligned}
$$

Because the arbitary line G always intersects the line L, we have

$$
\begin{aligned}
\mathrm{d} L & =\mathrm{d} P l_{2} \wedge \mathrm{~d} l_{1} l_{2} \wedge \mathrm{~d} l_{1} g_{3} \wedge \cdots \wedge \mathrm{~d} l_{1} g_{n} \\
& =\mathrm{d} P\left(-\sin \theta g_{1}+\cos \theta g_{2}\right) \\
& \wedge\left(\cos \theta \mathrm{d} g_{1}+\sin \theta \mathrm{d} g_{2}+\left(\cos \theta g_{2}-\sin \theta g_{1}\right) \mathrm{d} \theta\right)\left(-\sin \theta g_{1}+\cos \theta g_{2}\right) \\
& \wedge\left(\cos \theta \mathrm{d} g_{1}+\sin \theta \mathrm{d} g_{2}+\left(\cos \theta g_{2}-\sin \theta g_{1}\right) \mathrm{d} \theta\right) g_{3} \\
& \wedge \cdots \\
& \wedge\left(\cos \theta \mathrm{~d} g_{1}+\sin \theta \mathrm{d} g_{2}+\left(\cos \theta g_{2}-\sin \theta g_{1}\right) \mathrm{d} \theta\right) g_{n} \\
& =\left(-\sin \theta \mathrm{d} P g_{1}+\cos \theta \mathrm{d} P g_{2}\right) \wedge\left(\mathrm{d} \theta+\mathrm{d} g_{1} g_{2}\right) \wedge\left(\cos \theta \mathrm{d} g_{1} g_{3}+\sin \theta \mathrm{d} g_{2} g_{3}\right) \\
& \wedge \cdots
\end{aligned}
$$

$$
\wedge\left(\cos \theta \mathrm{d} g_{1} g_{n}+\sin \theta \mathrm{d} g_{2} g_{n}\right)
$$

Since ${ }^{[2]} \mathrm{d} G=\mathrm{d} P g_{2} \wedge \cdots \wedge \mathrm{~d} P g_{n} \wedge \mathrm{~d} g_{1} g_{2} \wedge \cdots \wedge \mathrm{~d} g_{1} g_{n}$, we have

$$
\begin{aligned}
\mathrm{d} G \mathrm{~d} L & =\mathrm{d} P g_{2} \wedge \cdots \wedge \mathrm{~d} P g_{n} \wedge \mathrm{~d} g_{1} g_{2} \wedge \cdots \wedge \mathrm{~d} g_{1} g_{n} \\
& \wedge\left(-\sin \theta \mathrm{d} P g_{1}+\cos \theta \mathrm{d} P g_{2}\right) \wedge\left(\mathrm{d} \theta+\mathrm{d} g_{1} g_{2}\right) \wedge\left(\cos \theta \mathrm{d} g_{1} g_{3}+\sin \theta \mathrm{d} g_{2} g_{3}\right) \\
& \wedge \cdots \\
& \wedge\left(\cos \theta \mathrm{d} g_{1} g_{n}+\sin \theta \mathrm{d} g_{2} g_{n}\right) \\
& =\sin ^{n-1} \theta \mathrm{~d} \theta \mathrm{~d} P g_{1} \wedge \mathrm{~d} P g_{2} \cdots \wedge \mathrm{~d} P g_{n} \wedge \mathrm{~d} g_{1} g_{2} \wedge \cdots \wedge \mathrm{~d} g_{1} g_{n} \wedge \mathrm{~d} g_{2} g_{3} \\
& \wedge \cdots \wedge \mathrm{~d} g_{2} g_{n} \\
& =\sin ^{n-1} \theta \mathrm{~d} \theta \omega_{1} \omega_{2} \cdots \omega_{n} \omega_{12} \cdots \omega_{1 n} \omega_{23} \cdots \omega_{2 n}
\end{aligned}
$$

Theorem 1 The kinematic density for pairs of intersecting lines G and L in \mathbb{R}^{n} is

$$
\begin{equation*}
\mathrm{d} G \mathrm{~d} L=\sin ^{n-1} \theta \mathrm{~d} \theta \mathrm{~d} P \mathrm{~d} u_{n-1} \mathrm{~d} u_{n-2} \tag{6}
\end{equation*}
$$

where P is the intersection of the lines G and $L, \mathrm{~d} u_{n-1}$ denotes $(n-1)$-dimensional volume element of unit sphere U_{n-1}, and $\mathrm{d} u_{n-2}$ denotes $(n-2)$-dimensional volume element of unit sphere U_{n-2} in \mathbb{R}^{n}.

Remark 1 The formula (6) of kinematic density for pairs of intersecting lines is different from the formula (3) about kinematic density for pairs of intersecting lines.

Remark 2 For $n=3$, we have ${ }^{[4]}$

$$
\mathrm{d} G \mathrm{~d} L=\sin ^{2} \theta \mathrm{~d} \theta \mathrm{~d} P \mathrm{~d} u_{1} \mathrm{~d} u_{2}
$$

which is different from the formula (2).
Remark 3 But, for $n=2$, we have

$$
\mathrm{d} G \mathrm{~d} L=\sin \theta \mathrm{d} \theta \mathrm{~d} P \mathrm{~d} u_{1}
$$

which is the same as the formula (1).
Proof Since ${ }^{[2]}$

$$
\mathrm{d} P=\omega_{1} \omega_{2} \cdots \omega_{n}, \quad \mathrm{~d} u_{n-1}=\omega_{12} \cdots \omega_{1 n}, \quad \mathrm{~d} u_{n-2}=\omega_{23} \cdots \omega_{2 n}
$$

by formula (5), we get

$$
\begin{aligned}
\mathrm{d} G \mathrm{~d} L & =\sin ^{n-1} \theta \mathrm{~d} \theta \omega_{1} \omega_{2} \cdots \omega_{n} \omega_{12} \cdots \omega_{1 n} \omega_{23} \cdots \omega_{2 n} \\
& =\sin ^{n-1} \theta \mathrm{~d} \theta \mathrm{~d} P \mathrm{~d} u_{n-1} \mathrm{~d} u_{n-2} .
\end{aligned}
$$

Theorem 2 The kinematic density for pairs of intersecting lines G and L in \mathbb{R}^{n} is

$$
\begin{equation*}
\mathrm{d} G \mathrm{~d} L=\sin ^{n-1} \theta \mathrm{~d} \theta \mathrm{~d} \Sigma_{G} \mathrm{~d} P_{G} \mathrm{~d} G \tag{7}
\end{equation*}
$$

where Σ is the plane spanned by the lines G and $L, \mathrm{~d} \Sigma_{G}$ is the kinematic density of Σ for the rotations around G, and $\mathrm{d} P_{G}$ is the kinematic density of P on G.

Proof Since ${ }^{[2]}$

$$
\mathrm{d} P_{G}=\omega_{1}, \quad \mathrm{~d} G=\omega_{2} \cdots \omega_{n} \omega_{12} \cdots \omega_{1 n}, \quad \mathrm{~d} \Sigma_{G}=\omega_{23} \cdots \omega_{2 n}
$$

it follows from formula (5) that

$$
\begin{aligned}
\mathrm{d} G \mathrm{~d} L & =\sin ^{n-1} \theta \mathrm{~d} \theta \omega_{1} \cdots \omega_{n} \omega_{12} \cdots \omega_{1 n} \omega_{23} \cdots \omega_{2 n} \\
& =\sin ^{n-1} \theta \mathrm{~d} \theta \mathrm{~d} \Sigma_{G} \mathrm{~d} P_{G} \mathrm{~d} G .
\end{aligned}
$$

Theorem 3 The kinematic formula of the intersection of the lines G and L belonging to convex body K in \mathbb{R}^{n} is

$$
\begin{equation*}
\int_{G \cap L \in K} \mathrm{~d} G \mathrm{~d} L=J_{n} O_{n-1} O_{n-2} V \tag{8}
\end{equation*}
$$

where $J_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{n-1} \theta \mathrm{~d} \theta, O_{n-1}$ is the surface area of the $(n-1)$-dimensional unit sphere, O_{n-2} is the surface area of the $(n-2)$-dimensional unit sphere, and V is the volume of K.

Proof By formula (6), we obtain

$$
\begin{aligned}
\int_{G \cap L \in K} \mathrm{~d} G \mathrm{~d} L & =\int_{P \in K} \sin ^{n-1} \theta \mathrm{~d} \theta \mathrm{~d} P \mathrm{~d} u_{n-1} \mathrm{~d} u_{n-2} \\
& =O_{n-1} O_{n-2} \int_{0}^{\frac{\pi}{2}} \sin ^{n-1} \theta \mathrm{~d} \theta \int_{P \in K} \mathrm{~d} P \\
& =J_{n} O_{n-1} O_{n-2} V .
\end{aligned}
$$

Also by formule (4) and (7), we obtain

$$
\begin{aligned}
\int_{G \cap L \in K} \mathrm{~d} G \mathrm{~d} L & =\int_{G \cap L \in K} \sin ^{n-1} \theta \mathrm{~d} \theta \mathrm{~d} P_{G} \mathrm{~d} G \mathrm{~d} \Sigma_{G} \\
& =\int_{0}^{\frac{\pi}{2}} \sin ^{n-1} \theta \mathrm{~d} \theta \int_{G \cap L \in K} \mathrm{~d} P_{G} \int_{G \cap K \neq \emptyset} \mathrm{d} G \int \mathrm{~d} \Sigma_{G} \\
& =\int_{0}^{\frac{\pi}{2}} \sin ^{n-1} \theta \mathrm{~d} \theta \int_{G \cap K \neq \emptyset} \operatorname{vol}(G \cap K) \mathrm{d} G \\
& =2 J_{n} O_{n-2} \int_{G \cap K \neq \emptyset} \sigma \mathrm{d} G \\
& =2 J_{n} O_{n-2} I_{1}^{(n)}(K)=J_{n} O_{n-1} O_{n-2} V
\end{aligned}
$$

References

[1] REN De-lin. Topics in Integral Geometry [M]. Singapore: World Scientific, 1994.
[2] SANTALÓ L A. Integral Geometry and Geometric Probability [M]. London: Addison-Wesley, 1976.
[3] WU Da-ren. On the relations between the integrals for the power of a convex body [J]. Acta. NanKai University, 1985, 18(1): 1-6.
[4] XIE Peng, JIANG Jun. Double chord-power integrals of a convex body and their applications [C]. Integral geometry and convexity, 177-188, World Sci. Publ., Hackensack, NJ, 2006.
[5] ROLF S. Inequalities for random flats meeting a convex body [J]. J. Appl. Probab., 1985, 22(3): 710-716.

