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For two indeterminate q and x, define the shifted factorial by

(x; q)0 = 1 and (x; q)n = (1 − x)(1 − xq) · · · (1 − xqn−1) for n ∈ N.

When |q| < 1, the shifted factorial of infinite order reads as

(x; q)∞ =

∞
∏

k=0

(1 − xqk) and (x; q)n =
(x; q)∞

(xqn; q)∞
where n ∈ Z.

Its product and fraction forms are abbreviated compactly to

[a, b, . . . , c; q]n = (a; q)n(b; q)n · · · (c; q)n,

[

a, b, . . . , c

α, β, . . . , γ

∣

∣

∣
q

]

n

=
(a; q)n(b; q)n · · · (c; q)n

(α; q)n(β; q)n · · · (γ; q)n
.

Following Bailey[5] and Slater[57], the unilateral and bilateral basic hypergeometric series are

defined, respectively, by

1+rφs

[

a0, a1, . . . , ar

b1, . . . , bs

∣

∣

∣
q; z

]

=

∞
∑

n=0

zn

[

a0, a1, . . . , ar

q, b1, . . . , bs

∣

∣

∣
q

]

n

,

rψs

[

a1, a2, . . . , ar

b1, b2, . . . , bs

∣

∣

∣
q; z

]

=

∞
∑

n=0

zn

[

a1, a2, . . . , ar

b1, b2, . . . , bs

∣

∣

∣
q

]

n

.
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Obviously, the unilateral series may be considered as a special case of the corresponding bilateral

one. Throughout the paper, the base q will be confined to |q| < 1 for non-terminating series.

The study of basic hypergeometric series was essentially started by Euler (1748) with the

emphasis on generating functions of partitions. Subsequently, Gauss (1813), Cauchy (1825) and

Heine (1846) found several transformation and summation formulae of lower order q-series. From

the end of the nineteenth century to the middle of the twentieth century, there were many great

mathematicians (such as Rogers, Ramanujan, Watson, Bailey and Slater, mainly from Cambridge

University) who made important contributions to basic hypergeometric series. Among them,

Jackson embarked on a lifelong time program of developing the q-series theory systematically.

During the “dark” period from 1950’s to 1970’s, Andrews and Askey had persistently organized

several conferences and written numerous papers, convincing the mathematical public how useful

the q-series are to classical partitions, number theory and other disciplines. Thanks to these two

mathematicians, basic hypergeometric series has become a flourishing research area today. For a

comprehensive account of the story, we refer the reader to the monumental monograph written

by Gasper and Rahman[39].

During the last two decades, as the q-series theory develops explosively, its application fields

spread from other mathematical disciplines to physics and computer sciences. For non specialist,

it is necessary to have a quick access to this classical but modern subject. An effort along this

direction will be made in the present article. We shall try to prepare for readers a soft-landing

on the q-series field by introducing several classical formulae and transformations, which have

fundamental importance in the q-series theory and applications. The reader will be guided to

go smoothly through the topics around q-series without having to read the huge volumes such

as Ref. [39], even though it is needless to say that it is indispensable for further study on basic

hypergeometric series.

1. q-binomial theorem

Define the Gaussian binomial coefficient by

[

n

k

]

=
(q; q)n

(q; q)k(q; q)n−k
.

We start with the q-binomial theorem:

(x; q)n =
n

∑

k=0

(−1)k

[

n

k

]

q(
k

2)xk. (1)

Proof Writing (x; q)n formally as a polynomial

(x; q)n =

n
∑

k=0

Akx
k, (2)

where Ak is independent of variable x. It is trivial to see that

(1 − qnx)(x; q)n = (1 − x)(qx; q)n
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which is equivalent to

(1 − qnx)

n
∑

k=0

Akx
k = (1 − x)

n
∑

k=0

Akq
kxk.

Equating coefficients of xk across the last equation, we find the relation:

Ak =
qn − qk−1

1 − qk
Ak−1, where k = 1, 2, . . . , n.

Iterating the above equation for k times leads us to the following closed form:

Ak = (−1)k

[

n

k

]

q(
k

2)A0 = (−1)k

[

n

k

]

q(
k

2),

where A0 = 1 has been justified by setting x = 0 in (2). This completes the proof of the

q-binomial theorem. 2

2. q-binomial expansion formula (|z| < 1)

1φ0

[

a

−

∣

∣

∣
q; z

]

=
(az; q)∞
(z; q)∞

. (3)

This formula was found by Cauchy in 1893 and is considered as one of the most important

formulae in the q-series theory.

Proof We express the right member of this formula in terms of Maclaurin series

(az; q)∞
(z; q)∞

=

+∞
∑

n=0

Bnz
n,

where {Bn} are independent of variable z. From the product representation in the above equa-

tion, it is easy to verify that

(1 − z)
(az; q)∞
(z; q)∞

= (1 − az)
(qaz; q)∞
(qz; q)∞

or equivalently

(1 − z)

∞
∑

n=0

Bnz
n = (1 − az)

∞
∑

n=0

Bnq
nzn.

Equating the coefficients of zn on both sides of the last equation, we get the following recurrence

relation:

Bn = Bn−1
1 − qn−1a

1 − qn
.

Iterating this recurrence relation for n times, we obtain

Bn =
(a; q)n

(q; q)n
B0 =

(a; q)n

(q; q)n
,

where B0 = 1 is confirmed for the same reason as that for A0 = 1. 2
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3. The Jacobi triple product identity and the limiting form
+∞
∑

n=−∞
(−1)nq(

n

2)xn = [q, x, q/x; q]∞, (4a)

+∞
∑

n=0

(−1)n{1 + 2n}q(
1+n

2 ) = (q; q)3∞. (4b)

This identity was found by Jacobi in 1829. The proof we are going to present here is the simplest

one[3,§10.4] due to Cauchy (1843) and Gauss (1866). For the different proofs through Durfee

rectangles and iteration method, see Chu[21] and Hardy-Wright[43,§19.8].

Proof Performing the replacements n → m + n and x → xq−n in the q-binomial Theorem 1,

we obtain the following identity:

(q−nx; q)m+n =

m+n
∑

k=0

(−1)k

[

m+ n

k

]

q(
k

2)−knxk. (5)

By means of the almost trivial equation

(q−nx; q)m+n = (q−nx; q)n(x; q)m = (−1)nxnq−(n+1

2 )(q/x; q)n(x; q)m,

the identity (5) can be restated as:

(x; q)m(q/x; q)n =

m+n
∑

k=0

(−1)k+n

[

m+ n

k

]

q(
k−n

2 )xk−n =

m
∑

k=−n

(−1)k

[

m+ n

k + n

]

q(
k

2)xk, (6)

where we have performed the replacement k → k + n for the second expression. On account of

the fact that

lim
n,m→∞

[

m+ n

k + n

]

= lim
n,m→∞

(q; q)m+n

(q; q)k+n(q; q)m−k
=

1

(q; q)∞
,

the limit case of m,n→ ∞ in the identity (6) results in

(x; q)∞(q/x; q)∞ =
1

(q; q)∞

+∞
∑

k=−∞
(−1)kq(

k

2)xk

which is equivalent to Jacobi’s triple product identity (4a).

Splitting the sum displayed in (4a) into two parts, we can proceed

(1 − x)[q, qx, q/x; q]∞ =

+∞
∑

n=1

(−1)nq(
n

2)xn +

0
∑

n=−∞
(−1)nq(

n

2)xn

=

+∞
∑

n=0

(−1)n+1q(
n+1

2 )xn+1 +

+∞
∑

n=0

(−1)nq(
n+1

2 )x−n

=

+∞
∑

n=0

(−1)nq(
n+1

2 )x−n{1 − x2n+1},

where the replacements n→ n+1 and n→ −n have been performed respectively for the first and

the second sum in the middle line. Dividing by 1− x the extreme members of the last equations

and then applying L’Hôspital’s rule to the limit x→ 1, we obtain (4b). 2
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4. Quintuple product identity and limiting forms

The typical expressions of the quintuple product identity may be reproduced as

[q, z, q/z; q]∞[qz2 , q/z2; q2]∞ =
+∞
∑

n=−∞
q3(

n

2){1 − zqn}(qz3)n (7a)

=

+∞
∑

n=−∞
q3(

n

2){1 − z1+6n}(q2/z3)n (7b)

=
+∞
∑

n=−∞
q3(

n

2){1 − (q/z2)1+3n}(qz3)n (7c)

=
+∞
∑

n=−∞
q3(

n

2){1 − (qz2)2+3n}(q2/z3)n (7d)

which has two different limiting cases:

+∞
∑

k=−∞
(1 + 6k)q3(

k

2)+2k = [q, q, q; q]∞[q, q; q2]∞, (8a)

+∞
∑

k=−∞
(1 + 3k)q3(

k

2)+
5
2
k = [q, q1/2, q1/2; q]∞[q2, q2; q2]∞. (8b)

There are many proofs for this important result. For the historical account, see Cooper’s recent

survey paper[36] and Carlitz-Subbarao[13], where the identity has been verified by multiplying

two triple products. Recently Chen, Chu and Gu[14] find a finite form of it. Here we present the

proof due to Bhargava[11] via iteration method.

Proof With the same method we have used in proving the q-binomial formula, we first define

f(z) and express it as a Laurent series

f(z) = [q, z, q/z; q]∞[q2, qz2, q/z2; q2]∞ =

+∞
∑

n=−∞
Ωnz

n,

where Ωn is independent of variable z. According to the product representation in the definition

of f(z), we can readily verify that

f(zq) = q−1z−3f(z) and f(q/z) = −q−1z2f(z)

or equivalently

+∞
∑

n=−∞
Ωnz

n =

+∞
∑

n=−∞
Ωn−3q

n−2zn and

+∞
∑

n=−∞
Ωnz

n = −
+∞
∑

n=−∞
Ω−n−2q

−1−nzn.

Equating the coefficients of zn on both sides of the last two equations respectively, we get the

following recurrence relations:

Ωn = qn−2Ωn−3, (9a)

Ωn = −q−n−1Ω−n−2. (9b)
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Iterating the recurrence relation (9a), we get further three expressions:

Ω3n = q3n−2Ω3(n−1) = · · · = Ω0q
3(n

2)+n,

Ω3n+1 = q3n−1Ω3(n−1)+1 = · · · = Ω1q
3(n

2)+2n,

Ω3n−1 = q3n−3Ω3(n−1)−1 = · · · = Ω−1q
3(n

2).

Letting n = −1 in (9b), we derive Ω−1 = 0. Alternatively, combining the case n = 0 of (9b) with

the case n = 1 of (9a), we get

Ω0 = −q−1Ω−2 = −Ω1.

Consequently, f(z) can be restated as follows:

f(z) =

+∞
∑

n=−∞

{

Ω0q
3(n

2)+nz3n + Ω1q
3(n

2)+2nz3n+1
}

(10a)

= Ω0

+∞
∑

n=−∞
{1 − qnz}q3(

n

2)(qz3)n. (10b)

In order to confirm (7a), we have to evaluate Ω0. Recalling the Jacobi triple product identity

(4a), we can expand f(z) as follows

f(z) =

+∞
∑

i=−∞
(−1)iq(

i

2)zi
+∞
∑

k=−∞
(−1)kqk2

z2k.

By invoking (4a) again, we get the following product expression:

Ω0 = [z0]f(z) =
+∞
∑

k=−∞
(−1)kq(

−2k

2 )+k2

=
+∞
∑

k=−∞
(−1)kq6(

k

2)+4k

= [q6, q2, q4; q6]∞ = (q2; q2)∞.

Substituting it into (10b) and then simplifying the result, we get the identity (7a).

Splitting the summation of (7a) into two parts and then reversing the summation order by

n→ −n for the first part, we confirm (7b) as follows:

[q, z, q/z; q]∞[qz2, q/z2; q2]∞

=
+∞
∑

n=−∞
q3(

n

2)
{

1 − qnz
}

(qz3)n

=
+∞
∑

n=−∞

{

z3nqn+3(n

2) − z1+3nq2n+3(n

2)
}

=
+∞
∑

n=−∞

{

z−3nq2n+3(n

2) − z1+3nq2n+3(n

2)
}

=

+∞
∑

n=−∞
q3(

n

2)
{

1 − z1+6n
}

(q2/z3)n.
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Instead, if we reverse by n → −n− 1 for the second sum displayed in the last middle line, then

(7c) will be proved similarly:

[q, z, q/z; q]∞[qz2, q/z2; q2]∞

=
+∞
∑

n=−∞

{

z3nqn+3(n

2) − z−2−3nq1+4n+3(n

2)
}

=

+∞
∑

n=−∞
q3(

n

2)
{

1 − (q/z2)1+3n
}

(qz3)n.

Splitting the formula (7b) into two parts, performing the replacement n→ n+ 1 for the second

sum and then simplifying the result, we have

+∞
∑

n=−∞
q3(

n

2)
{

1 − z1+6n
}

(q2/z3)n

=

+∞
∑

n=−∞
q3(

n

2)(q2/z3)n −
+∞
∑

n=−∞
z1+6(n+1)q3(

n+1

2 )(q2/z3)n+1

=

+∞
∑

n=−∞
q3(

n

2)(q2/z3)n −
+∞
∑

n=−∞
z4+3nq3(

n

2)+2+5n

=

+∞
∑

n=−∞
q3(

n

2)
{

1 − (qz2)2+3n
}

(q2/z3)n.

This is exactly the formula displayed in (7d).

Finally dividing by 1 − z both sides of the equation (7b), we obtain

[q, qz, q/z; q]∞[qz2, q/z2; q2]∞ =

+∞
∑

n=−∞
q3(

n

2)
{1 − z1+6n

1 − z

}

(q2/z3)n.

Letting z → 1 and applying L’Höspitial’s rule, we get the limiting form (8a). Another limiting

form (8b) can be shown analogously by dividing by 1− q/z2 both sides of (7c):

[q, z, q/z; q]∞[qz2, q3/z2; q2]∞ =

+∞
∑

n=−∞
q3(

n

2)
{1 − (q/z2)1+3n

1 − q/z2

}

(qz3)n.

5. Heine’s q-Euler transformations

In 1878, Heine discovered the following important transformation formulae:

2φ1

[

a, b

c

∣

∣

∣
q; z

]

=
[b, az; q]∞
[c, z; q]∞

× 2φ1

[

c/b, z

az

∣

∣

∣
q; b

]

(11a)

=
[c/b, bz; q]∞

[c, z; q]∞
× 2φ1

[

abz/c, b

bz

∣

∣

∣
q; c/b

]

(11b)

=
[abz/c, q]∞

[z; q]∞
× 2φ1

[

c/a, c/b

c

∣

∣

∣
q; abz/c

]

(11c)
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Proof It suffices to show transformation (11a) because the two other identities (11b) and (11c)

follow from iterating (11a).

Recalling q-binomial formula (3):

(b; q)n

(c; q)n
=

(b; q)∞(qnc; q)∞
(c; q)∞(qnb; q)∞

=
(b; q)∞
(c; q)∞

1φ0

[

c/b

−

∣

∣

∣
q; qnb

]

=
(b; q)∞
(c; q)∞

∞
∑

k=0

(c/b; q)k

(q; q)k
(qnb)k

we may manipulate basic hypergeometric series as follows:

2φ1

[

a, b

c

∣

∣

∣
q; z

]

=

∞
∑

n=0

(a; q)n(b; q)n

(q; q)n(c; q)n
zn

=
(b; q)∞
(c; q)∞

∞
∑

n=0

(a; q)n

(q; q)n
zn (qnc; q)∞

(qnb; q)∞

=
(b; q)∞
(c; q)∞

∞
∑

n=0

(a; q)n

(q; q)n
zn

∞
∑

k=0

(c/b; q)k

(q; q)k
(qnb)k.

Exchanging the order of the last double sum and then applying the q-binomial formula again,

we prove (11a) as follows:

2φ1

[

a, b

c

∣

∣

∣
q; z

]

=
(b; q)∞
(c; q)∞

∞
∑

k=0

(c/b; q)k

(q; q)k
bk

∞
∑

n=0

(a; q)n

(q; q)n
(qkz)n

=
(b; q)∞
(c; q)∞

∞
∑

k=0

(c/b; q)k

(q; q)k

(qkaz; q)∞
(qkz; q)∞

bk

=
[b, az; q]∞
[c, z; q]∞

∞
∑

k=0

(c/b; q)k

(q; q)k

(z; q)k

(az; q)k
bk

=
[b, az; q]∞
[c, z; q]∞

2φ1

[

c/b, z

az

∣

∣

∣
q; b

]

.

From the transformation (11a), the 2φ1-series in the right side of (11a) can be transformed as

2φ1

[

c/b, z

az

∣

∣

∣
q; b

]

=
[c/b, bz; q]∞
[az, b; q]∞

2φ1

[

abz/c, b

bz

∣

∣

∣
q; c/b

]

.

Substituting it into the right member of (11a), we get the identity stated in (11b).

Iterating (11a) once again, we obtain

2φ1

[

abz/c, b

bz

∣

∣

∣
q; c/b

]

=
[abz/c, c; q]∞
[bz, c/b; q]∞

2φ1

[

c/a, c/b

c

∣

∣

∣
q; abz/c

]

.

Substituting it into the right side of the equation (11b) leads us to (11c). This completes the

proof of Heine’s q-Euler transformations. 2

6. q-Gauss summation formula (|c/ab| < 1)

2φ1

[

a, b

c

∣

∣

∣
q; c/ab

]

=
(c/a; q)∞(c/b; q)∞
(c; q)∞(c/ab; q)∞

. (12)
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Proof For this very useful theorem in basic hypergeometric series, there are several proofs. The

asymptotic approach via Cesáro theorem can be found in Chu[28]. Here we derive it directly by

putting z = c/ab in Heine’s transformation (11b):

2φ1

[

a, b

c

∣

∣

∣
q; c/ab

]

=
(c/a; q)∞(c/b; q)∞
(c; q)∞(c/ab; q)∞

2φ1

[

1, b

c/a

∣

∣

∣
q; c/b

]

=
(c/a; q)∞(c/b; q)∞
(c; q)∞(c/ab; q)∞

.

We remark that one can also provide an independent derivation for it, following exactly the same

proof of (11b). 2

7. Ramanujan’s bilateral 1ψ1-series identity (|c/a| < |z| < 1)

1ψ1

[

a

c

∣

∣

∣
q; z

]

=

[

q, az, q/az, c/a

c, z, c/az, q/a

∣

∣

∣
q

]

∞
.

This result was found by Ramanujan in his notebook, which has been considered as one of the

most important identities in bilateral basic hypergeometric series. For more information related

to this identity see [10, Part III: Entry 17]. Application to the representation of natural numbers

by square-sums can be found in Milne[50].

Proof We prove this identity again by iteration method, which has extensively been investigated

by Fine[37]. For this purpose, we define F (z) and express it in terms of Laurent series:

F (z) =

[

az, q/az

z, c/az

∣

∣

∣
q

]

∞
=

+∞
∑

n=−∞
Ωnz

n, (13)

where Ωn is independent of variable z. From the product representation in (13), we can verify,

without difficulty, the functional equation

(1 − z)qF (z) = (c− qaz)F (qz)

which is equivalent to the following:

(1 − z)q

+∞
∑

n=−∞
Ωnz

n = (c− qaz)

+∞
∑

n=−∞
Ωnq

nzn. (14)

Equating the coefficients of zn across equation (14), we get the recurrence relation:

Ωn =
1 − qn−1a

1 − qn−1c
Ωn−1 =

(a; q)n

(c; q)n
Ω0,

where the last expression is obtained by iterating the first one for n times.

In view of the q-binomial formula (3), we have the following expansion:

[

az, q/az

z, c/az

∣

∣

∣
q

]

∞
= 1φ0

[

a

−

∣

∣

∣
q; z

]

1φ0

[

q/c

−

∣

∣

∣
q;

c

az

]
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=

+∞
∑

i=0

(a; q)i

(q; q)i
zi

+∞
∑

j=0

(q/c; q)j

(q; q)j

( c

az

)j

.

By means of the definition Ωn and the q-Gauss summation formula (12), we have

Ω0 = [z0]

[

az, q/az

z, c/az

∣

∣

∣
q

]

∞
=

∞
∑

k=0

(a; q)k(q/c; q)k

(q; q)k(q; q)k

( c

a

)k

= 2φ1

[

a, q/c

q

∣

∣

∣
q;
c

a

]

=

[

q/a, c

q, c/a

∣

∣

∣
q

]

∞

which leads us to the following relation:
[

az, q/az

z, c/az

∣

∣

∣
q

]

∞
= Ω0

+∞
∑

n=−∞

(a; q)n

(c; q)n
zn =

[

q/a, c

q, c/a

∣

∣

∣
q

]

∞
1ψ1

[

a

c

∣

∣

∣
q; z

]

.

This completes the proof of Ramanujan’s 1ψ1-summation formula. 2

8. The q-analogue of Chu-Vandermonde convolution

2φ1

[

q−n, b

c

∣

∣

∣
q; qnc/b

]

=
(c/b; q)n

(c; q)n
, (15a)

2φ1

[

q−n, b

c

∣

∣

∣
q; q

]

=
(c/b; q)n

(c; q)n
bn, (15b)

n
∑

k=0

[

x

k

][

y

n− k

]

q(x−k)(n−k) =

[

x+ y

n

]

. (15c)

There are numerous combinatorial interpretations of q-binomial convolutions. We refer to Chu[17]

and Gessel[40] respectively for lattice path counting and Durfee rectangle method[1,§2.3].

Proof It is easy to see that identity (15a) is the terminating case a = q−n of the q-Gauss

summation formula (12):

2φ1

[

q−n, b

c

∣

∣

∣
q; qnc/b

]

=

[

qnc, c/b

c, qnc/b

∣

∣

∣
q

]

∞
=

(c/b; q)n

(c; q)n
.

According to the definition of unilateral q-series, expanding the 2φ1-series stated in the iden-

tity (15a) and then reversing the summation index, we have

2φ1

[

q−n, b

c

∣

∣

∣
q; qnc/b

]

=

n
∑

k=0

[

q−n, b

q, c

∣

∣

∣
q

]

n−k

(qnc/b)n−k

= (qnc/b)n

[

q−n, b

q, c

∣

∣

∣
q

]

n
2φ1

[

q−n, q1−n/c

q1−n/b

∣

∣

∣
q; q

]

.

Comparing (15a) with the last identity leads us to

2φ1

[

q−n, q1−n/c

q1−n/b

∣

∣

∣
q; q

]

=

[

q, c/b

q−n, b

∣

∣

∣
q

]

n

(q−nb/c)n.
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Under the replacements c → q1−n/b and b → q1−n/c, the last identity becomes the identity

stated in (15b).

From the definition of the Gaussian binomial coefficient, we have the following two relations:

[

x

k

]

=
(qx−k+1; q)k

(q; q)k
= (−1)kqkx−(k

2) (q−x; q)k

(q; q)k
,

[

y

n− k

]

=
(qy−n+k+1; q)n−k

(q; q)n−k
= (−1)kqnk−(k

2) (q1+y−n; q)n(q−n; q)k

(q; q)n(q1+y−n; q)k
.

Then the left side of (15c) can be reformulated as:

n
∑

k=0

[

x

k

][

y

n− k

]

q(x−k)(n−k) =
(q1+y−n; q)n

(q; q)n
qnx

2φ1

[

q−n, q−x

q1+y−n

∣

∣

∣
q; q

]

=
(q1+x+y−n; q)n

(q; q)n
=

[

x+ y

n

]

,

where the 2φ1-series has been evaluated by (15b) as:

2φ1

[

q−n, q−x

q1+y−n

∣

∣

∣
q; q

]

= q−nx (q1+x+y−n; q)n

(q1+y−n; q)n
.

This completes the proof of the q-analogue of Chu-Vandermonde convolution. 2

9. Inverse series relations due to Carlitz (1973)

Let {ai} and {bj} be two complex sequences such that the polynomials defined by

φ(x; 0) = 1 and φ(x; n) =

n−1
∏

k=0

(ak + xbk) for n = 1, 2, . . .

differ from zero for x = qn with n being non-negative integers. Then we have the following

inverse series relations due to Carlitz[12]:

F (n) =

n
∑

k=0

(−1)k

[

n

k

]

q(
n−k

2 )φ(qk;n)G(k), (16a)

G(n) =

n
∑

k=0

(−1)k

[

n

k

]

ak + qkbk
φ(qn; k + 1)

F (k). (16b)

The Carlitz inversions may be considered as q-analogue of the inverse series relations due to

Gould-Hsu[41], which read as:

f(n) =
n

∑

k=0

(−1)k

(

n

k

)

φ(k;n)g(k) ⇋ g(n) =
n

∑

k=0

(−1)k

(

n

k

)

ak + kbk
φ(n; k + 1)

f(k).

For ak ≡ 1 and bk ≡ 0, we have φ(x;n) ≡ 1 and then corresponding classical delta-inversion:

f(n) =

n
∑

k=0

(−1)k

(

n

k

)

g(k) ⇋ g(n) =

n
∑

k=0

(−1)k

(

n

k

)

f(k).
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Taking account of the importance of the Carlitz inversions, we present two different proofs.

Proof To prove the dual implications (16a)⇋ (16b), it is sufficient to verify one implication

because one system of equations with F (n) in terms of G(k) can be considered as the (unique)

solution of another system with G(n) in terms of F (k), and vice versa.

⇐. We first reproduce the original proof due to Carlitz[12]. Suppose that the relations of

G(n) in terms of F (k) are valid. We have to verify the relations of F (n) in terms of G(k).

Substituting the relations of G(n) in terms of F (k) into the right hand side of those of F (n)

in terms of G(k) and observing that

[

n

k

]

×
[

k

i

]

=

[

n

i

]

×
[

n− i

k − i

]

,

we get the double sum expression
n

∑

k=0

(−1)k

[

n

k

]

q(
n−k

2 )φ(qk;n)G(k)

=
n

∑

k=0

(−1)k

[

n

k

]

q(
n−k

2 )φ(qk;n)
k

∑

i=0

(−1)i

[

k

i

]

ai + qibi
φ(qk; i+ 1)

F (i)

=

n
∑

i=0

(ai + qibi)

[

n

i

]

F (i)

n
∑

k=i

(−1)k+i

[

n− i

k − i

]

φ(qk;n)

φ(qk; i+ 1)
q(

n−k

2 ).

Let S(i, n) stand for the inner sum with respect to k. It is trivial to see that

S(n, n) =
φ(qn;n)

φ(qn;n+ 1)
=

1

an + qnbn

which implies that the double sum reduces to F (n) when i = n.

In order to prove that the double sum is equal to F (n), we have to verify that S(i, n) = 0 for

0 ≤ i < n.

Noting that φ(qk;n)
φ(qk;i+1)

is a polynomial of degree n− i− 1 in qk, we can write it formally as

φ(qk;n)

φ(qk; i+ 1)
=

n
∑

j=i+1

βjq
k(n−j),

where {βj} are constants independent of k. Therefore S(i, n) can be reformulated as follows:

S(i, n) =

n
∑

k=i

(−1)k+i

[

n− i

k − i

]

q(
n−k

2 )
n

∑

j=i+1

βjq
k(n−j)

=

n
∑

j=i+1

βjq
(n−i

2 )+i(n−j)
n

∑

k=i

(−1)k+i

[

n− i

k − i

]

q(
k−i

2 )+(1+i−j)(k−i),

where we have applied the binomial relation
(

n− k

2

)

=

(

(n− i) − (k − i)

2

)

=

(

n− i

2

)

+

(

k − i

2

)

+ (1 − n+ i)(k − i).
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By means of Euler’s q-difference formula (1), evaluate the inner sum as

n
∑

k=i

(−1)k+i

[

n− i

k − i

]

q(
k−i

2 )+(1+i−j)(k−i) = (q1+i−j ; q)n−i.

It vanishes for i < j < n, which implies S(i, n) = 0 for 0 ≤ i < n.

⇒. An alternative proof is based on telescoping method, which is the q-analogue of the proof

presented by Chu[15]. Assuming that (16a) is true for all n ∈ N0, we should verify the truth of

(16b).

In fact, substituting the first relation into the second, we reduce the question to the confir-

mation of the following orthogonal relation:

n
∑

k=i

(−1)k+i{ak + qkbk}
[

n− i

k − i

]

φ(qi; k)

φ(qn; k + 1)
q(

k−i

2 ) =

{

1, i = n;

0, i 6= n.
(17)

It is obvious that the relation is valid for i = n. We therefore need to verify it only when i < n.

For that purpose, we introduce the sequence

τk :=

[

n− i− 1

k − i− 1

]

φ(qi; k)

φ(qn; k)
q(

k−i

2 ).

Then it is not hard to check that the summand in (17) can be expressed as follows:

τk + τk+1 = {ak + qkbk}
[

n− i

k − i

]

φ(qi; k)

φ(qn; k + 1)
q(

k−i

2 ).

Separating the two extreme terms indexed with k = i and k = n from the sum displayed in (17)

τi+1 =
φ(qi; i+ 1)

φ(qn; i+ 1)
and τn =

φ(qi;n)

φ(qn;n)
q(

n−i

2 )

and then appealing to the telescoping method[42,§2.6], we find that the left member of (17) equals

τi+1 + (−1)n+iτn +
∑

i<k<n

(−1)k+i{τk + τk+1}

= {τi+1 + (−1)n+iτn} − {τi+1 + (−1)n+iτn} = 0.

This completes the proof of (17). 2

The inversion technique has been extensively explored by Chu[20,23] systematically to prove

combinatorial identities, which has been shown to be powerful and great potential to deal with

terminating basic hypergeometric series identities.

10. The q-Pfaff-Saalschütz summation theorem

3φ2

[

q−n, a, b

c, q1−nab/c

∣

∣

∣
q; q

]

=

[

c/a, c/b

c, c/ab

∣

∣

∣
q

]

n

. (18)

This identity was first found by Saalschütz in 1890. Sears[54] derived several important trans-

formation formulae for the balanced series. For symmetric extensions and applications through
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chain reactions to multiple series, we refer to Chu[27,31,33].

Proof Recall Heine’s q-Euler transformation (11c):

2φ1

[

c/a, c/b

c

∣

∣

∣
q; abz/c

]

=
(z; q)∞

(abz/c; q)∞
× 2φ1

[

a, b

c

∣

∣

∣
q; z

]

which can be reformulated through the q-binomial theorem (3), as a product of two basic hyper-

geometric series:

2φ1

[

c/a, c/b

c

∣

∣

∣
q; abz/c

]

= 1φ0

[

c/ab

−

∣

∣

∣
q; abz/c

]

× 2φ1

[

a, b

c

∣

∣

∣
q; z

]

.

Extracting the coefficient of zn across the last equation, we have

[

c/a, c/b

q, c

∣

∣

∣
q

]

n

(ab/c)n =

n
∑

k=0

[

a, b

q, c

∣

∣

∣
q

]

k

[

c/ab

q

∣

∣

∣
q

]

n−k

(ab/c)n−k

which can be restated as:
[

c/a, c/b

q, c

∣

∣

∣
q

]

n

=

[

c/ab

q

∣

∣

∣
q

]

n

n
∑

k=0

[

a, b, q−n

q, c, q1−nab/c

∣

∣

∣
q

]

k

qk

=

[

c/ab

q

∣

∣

∣
q

]

n
3φ2

[

q−n, a, b

c, q1−nab/c

∣

∣

∣
q; q

]

.

This is equivalent to the q-Pfaff-Saalschütz formula (18).

The q-Pfaff-Saalschütz summation theorem (18) can also be proved through series composi-

tion method. Recalling the q-analogue of Chu-Vandermonde convolution (15a), we have

(a; q)k

(c; q)k
= 2φ1

[

q−k, c/a

c

∣

∣

∣
q; qka

]

.

Therefore the left side of (18) can be rewritten as:

n
∑

k=0

[

q−n, b

q, q1−nab/c

∣

∣

∣
q

]

k

qk
k

∑

i=0

qki

[

q−k, c/a

q, c

∣

∣

∣
q

]

i

ai.

Changing the summation order and then setting k = i+ j, we can reduce the last double sum as

n
∑

i=0

(−a)i

[

c/a, b, q−n

q, c, q1−nab/c

∣

∣

∣
q

]

i

q(
i+1

2 )
2φ1

[

q−n+i, qib

q1+i−nab/c

∣

∣

∣
q; q

]

=

n
∑

i=0

(−a)i

[

c/a, b, q−n

q, c, q1−nab/c

∣

∣

∣
q

]

i

q(
i+1

2 ) (q1−na/c; q)n−i

(q1+i−nab/c; q)n−i
(qib)n−i

=

[

c/a

c/ab

∣

∣

∣
q

]

n
2φ1

[

q−n, b

c

∣

∣

∣
q; qnc/b

]

=

[

c/a, c/b

c, c/ab

∣

∣

∣
q

]

n

,

where the q-Chu-Vandermonde formulae (15a) and (15b) have been applied to evaluating the

both 2φ1-series. 2



Basic hypergeometric series—quick access to identities 237

11. The terminating q-Dixon formula

6φ5

[

a, q
√
a,−q√a, b, c, q−n

√
a,−√

a, qa/b, qa/c, q1+na

∣

∣

∣
q;
q1+na

bc

]

=

[

qa, qa/bc

qa/b, qa/c

∣

∣

∣
q

]

n

. (19)

Proof Performing the replacements a→ aqn, b→ qa/bc and c→ qa/c in the q-Pfaff-Saalschütz

formula (18), we get

3φ2

[

q−n, qna, qa/bc

qa/b, qa/c

∣

∣

∣
q; q

]

=

[

b, c

qa/b, qa/c

∣

∣

∣
q

]

n

(qa

bc

)n

.

This can be reformulated equivalently to the following identity:

n
∑

k=0

(−1)k

[

n

k

]

q(
n−k

2 )(qka; q)n

[

a, qa/bc

qa/b, qa/c

∣

∣

∣
q

]

k

= q(
n

2)
[

a, b, c

qa/b, qa/c

∣

∣

∣
q

]

n

(qa

bc

)n

.

The last equation matches perfectly to (16a) under the parameter specifications ai ≡ 1 and

bi = −aqi as well as

F (k) = q(
k

2)
[

a, b, c

qa/b, qa/c

∣

∣

∣
q

]

k

(qa

bc

)k

and G(k) =

[

a, qa/bc

qa/b, qa/c

∣

∣

∣
q

]

k

.

Then the dual relation (16b) from the Carlitz inversions

G(n) =

n
∑

k=0

(−1)k

[

n

k

]

1 − q2ka

(qna; q)k+1
F (k)

reads explicitly as

[

a, qa/bc

qa/b, qa/c

∣

∣

∣
q

]

n

=

n
∑

k=0

(−1)k

[

n

k

]

1 − q2ka

(qna; q)k+1
q(

k

2)
[

q, b, c

qa/b, qa/c

∣

∣

∣
q

]

k

(qa

bc

)k

=

n
∑

k=0

1 − q2ka

1 − qna

[

a, b, c, q−n

q, qa/b, qa/c, qn+1a

∣

∣

∣
q

]

k

(q1+na

bc

)k

.

Multiplying the both sides by the quotient (1 − qna)/(1 − a), we get the terminating q-Dixon

formula (19).

From this proof, we see that the inversion techniques are really powerful tools to deal with

terminating hypergeometric series identities. One can consult Chu[16,19,22,25,26] for more examples

on this subject.

12. Watson’s q-Whipple transformation

8φ7

[

a, q
√
a, −q√a, b, c, d, e, q−n

√
a, −√

a, qa/b, qa/c, qa/d, qa/e, qn+1a

∣

∣

∣
q;
q2+na2

bcde

]

(20a)

=

[

qa, qa/bc

qa/b, qa/c

∣

∣

∣
q

]

n
4φ3

[

q−n, b, c, qa/de

qa/d, qa/e, q−nbc/a

∣

∣

∣
q; q

]

. (20b)
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This transformation was discovered by Watson[58].

Proof Rewriting the q-Pfaff-Saalschütz formula (18)

3φ2

[

q−k, qka, qa/de

qa/d, qa/e

∣

∣

∣
q; q

]

=

[

d, e

qa/d, qa/e

∣

∣

∣
q

]

k

(qa

de

)k

,

we can express the 8φ7-series in (20a) explicitly as follows:

8φ7

[

a, q
√
a, −q√a, b, c, d, e, q−n

√
a, −√

a, qa/b, qa/c, qa/d, qa/e, qn+1a

∣

∣

∣
q;
q2+na2

bcde

]

=

n
∑

k=0

1 − q2ka

1 − a

[

a, b, c, q−n

q, qa/b, qa/c, q1+na

∣

∣

∣
q

]

k

(q1+na

bc

)k

3φ2

[

q−k, qka, qa/de

qa/d, qa/e

∣

∣

∣
q; q

]

=

n
∑

k=0

1 − q2ka

1 − a

[

a, b, c, q−n

q, qa/b, qa/c, q1+na

∣

∣

∣
q

]

k

(q1+na

bc

)k k
∑

i=0

[

q−k, qka, qa/de

qa/d, qa/e

∣

∣

∣
q

]

k

qi.

Interchanging the summation order, performing the replacement k → i+ ı on summation index

and then simplifying the result, we can further reformulate the last double sum as follows:

Eq(20a) =

n
∑

i=0

[

qa/de

q, qa/d, qa/e

∣

∣

∣
q

]

i

n
∑

k=i

1 − q2ka

1 − a

(q−k; q)i

(q; q)k
(a; q)k+i×

[

b, c, q−n

qa/b, qa/c, q1+na

∣

∣

∣
q

]

k

(q1+na

bc

)k

=

n
∑

i=0

(−1)i(qa; q)2i

[

q−n, b, c, qa/de

q, q1+na, qa/b, qa/c, qa/d, qa/e

∣

∣

∣
q

]

i

(q1+na

bc

)i

q−(i

2)×

n−i
∑

ı=0

1 − q2(i+ı)a

1 − q2ia

[

q2ia, qib, qic, q−n+i

q, q1+ia/b, q1+ia/c, q1+n+ia

∣

∣

∣
q

]

ı

(q1+n−ia

bc

)ı

.

By means of the terminating q-Dixon formula (19), the last sum with respect to ı may be

evaluated as:

6φ5

[

q2ia, q1+i√a, −q1+i√a, qib, qic, q−(n−i)

qi
√
a, −qi

√
a, q1+ia/b, q1+ia/c, q1+n+ia

∣

∣

∣
q;
q1+n−ia

bc

]

=

[

q1+2ia, qa/bc

q1+ia/b, q1+ia/c

∣

∣

∣
q

]

n−i

which leads to the following simplified expression:

Eq(20a) =

n
∑

i=0

(qa; q)2i

[

q−n, b, c, qa/de

q, q1+na, qa/b, qa/c, qa/d, qa/e

∣

∣

∣
q

]

i

×

[

q1+2ia, aq/bc

q1+ia/b, q1+ia/c

∣

∣

∣
q

]

n−i

(

− q1+na

bc

)i

q−(i

2)



Basic hypergeometric series—quick access to identities 239

=

[

qa, qa/bc

qa/b, qa/c

∣

∣

∣
q

]

n

n
∑

i=0

[

q−n, b, c, qa/de

q, qa/d, qa/e, q−nbc/a

∣

∣

∣
q

]

i

qi

=

[

qa, qa/bc

qa/b, qa/c

∣

∣

∣
q

]

n
4φ3

[

q−n, b, c, qa/de

qa/d, qa/e, q−nbc/a

∣

∣

∣
q; q

]

= Eq(20b).

This completes the proof of Watson’s transformation. 2

13. The Rogers-Ramanujan identities

+∞
∑

m=0

qm2

(q; q)m
=

1

(q; q5)∞ (q4; q5)∞
, (21a)

+∞
∑

m=0

qm2+m

(q; q)m
=

1

(q2; q5)∞ (q3; q5)∞
. (21b)

Up to now, there are a dozen proofs[2,§1] for this beautiful pair of identities. The most recent

ones are, respectively, due to Baxter[9] based on the statistical mechanics and Lepowsky-Milne[49]

through the character formula on infinite dimensional Lie algebra[47,§13].

Proof The limiting case b, c, d, e, n→ ∞ of transformation (20a–20b) reads as:

+∞
∑

m=0

qm2

am

(q; q)m
=

1

(qa; q)∞

+∞
∑

k=0

(−1)k 1 − q2ka

1 − a

(a; q)k

(q; q)k
q5(

k

2)+2ka2k. (22)

For the last equation, separating the initial term corresponding to k = 0 from the sum on the

right hand side, setting a = 1 and then applying the Jacobi triple product identity (4a), we get

+∞
∑

m=0

qm2

(q; q)m
=

1

(q; q)∞

{

1 +

+∞
∑

k=1

(−1)k(1 + qk)q5(
k

2)+2k
}

=
1

(q; q)∞

+∞
∑

k=−∞
(−1)kq5(

k

2)+2k

=
[q5, q2, q3; q5]∞

(q; q)∞

1

[q, q4; q5]∞
.

Similarly, the case a = q of (22) results in another identity due to Rogers-Ramanujan:

+∞
∑

m=0

qm+m2

(q; q)m
=

1

(q; q)∞

+∞
∑

k=0

(−1)k{1 − q1+2k}q5(
k

2)+4k

=
1

(q; q)∞

+∞
∑

k=−∞
(−1)kq5(

k

2)+4k

=
[q, q4, q5; q5]∞

(q; q)∞
=

1

[q2, q3; q5]∞
.

This completes the proofs of both identities displayed in (21a) and (21b). 2

14. Jackson’s q-Dougall-Dixon formula
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8φ7

[

a, q
√
a, −q√a, b, c, d, e, q−n

√
a, −√

a, qa/b, qa/c, qa/d, qa/e, qn+1a

∣

∣

∣
q; q

]

(23a)

=

[

qa, qa/bc, qa/bd, qa/cd

qa/b, qa/c, qa/d, qa/bcd

∣

∣

∣
q

]

n

, where qn+1a2 = bcde. (23b)

This general result was first found by Jackson[44]. As an immediate consequence, we can derive

it from Watson’s transformation.

Proof When e = q1+na2/bcd or equivalently qa/de = q−nbc/a, the 4φ3-series in Watson’s

transformation (20a–20b) reduces to a balanced 3φ2-series, which can be evaluated by means of

the q-Pfaff-Saalschütz formula (18). Therefore, we have in this case the following closed form:

8φ7

[

q, q
√
a, −q√a, b, c, d, e, q−n

√
a, −√

a, qa/b, qa/c, qa/d, qa/e, qn+1a

∣

∣

∣
q; q

]

=

[

qa, qa/bc

qa/b, qa/c

∣

∣

∣
q

]

n
3φ2

[

q−n, b, c

qa/d, qa/e

∣

∣

∣
q; q

]

=

[

qa, qa/bc

qa/b, qa/c

∣

∣

∣
q

]

n

×
[

qa/bd, qa/cd

qa/d, qa/bcd

∣

∣

∣
q

]

n

.

This proves Jackson’s very well-poised 8φ7-series identity. 2

15. The nonterminating 6φ5-series identity

6φ5

[

a, q
√
a, −q√a, b, c, d

√
a, −√

a, qa/b, qa/c, qa/d

∣

∣

∣
q;
qa

bcd

]

(24a)

=

[

qa, qa/bc, qa/bd, qa/cd

qa/b, qa/c, qa/d, qa/bcd

∣

∣

∣
q

]

∞
, where | qa

bcd
| < 1. (24b)

Proof Making substitution e = q1+na2/bcd in Jackson’s q-Dougall-Dixon formula

8φ7

[

a, q
√
a, −q√a, b, c, d, q1+na2/bcd, q−n

√
a, −√

a, qa/b, qa/c, qa/d, q−nbcd/a, qn+1a

∣

∣

∣
q; q

]

(25a)

=

[

qa, qa/bc, qa/bd, qa/cd

qa/b, qa/c, qa/d, qa/bcd

∣

∣

∣
q

]

n

(25b)

and then noting that two limiting relations

lim
n→∞

(q1+na2/bcd; q)k

(qn+1a; q)k
= 1 and lim

n→∞

(q−n; q)k

(q−nbcd/a; q)k
=

( a

bcd

)k

,

we have no difficulty to verify that the limiting case n → ∞ of (25a–25b) yields the non-

terminating 6φ5-summation formula (24a–24b). We remark that when d = q−n, the formula

(24a–24b) reduces to the terminating q-Dixon formula (19). 2
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16. Two well-poised bilateral series identities (|q±1a/bcd| < 1)

4ψ4

[

qw, b, c, d

w, q/b, q/c, q/d

∣

∣

∣
q;

q

bcd

]

=

[

q, q/bc, q/bd, q/cd

q/b, q/c, q/d, q/bcd

∣

∣

∣
q

]

∞
, (26a)

5ψ5

[

qu, qv, b, c, d

u, v, 1/b, 1/c, 1/d

∣

∣

∣
q;
q−1

bcd

]

=

[

q, 1/bc, 1/bd, 1/cd

q/b, q/c, q/d, q−1/bcd

∣

∣

∣
q

]

∞
× (26b)

1 − 1/quv

(1 − 1/u) (1 − 1/v)
.

These two well-poised bilateral series identities can be considered as linear combinations of the

3ψ3-series identities due to Bailey[7], which are reproduced below.

Proof For the nonterminating very well-poised 6φ5-series formula (24a–24b), the case a → 1

reads as

1 +

+∞
∑

k=1

(1 + qk)

[

b, c, d

q/b, q/c, q/d

∣

∣

∣
q

]

k

( q

bcd

)k

=

[

q, q/bc, q/bd, q/cd

q/b, q/c, q/d, q/bcd

∣

∣

∣
q

]

∞
. (27)

Splitting the last sum into two parts and then reversing the summation order by k → −k for the

second summation, we have

1 +

+∞
∑

k=1

(1 + qk)

[

b, c, d

q/b, q/c, q/d

∣

∣

∣
q

]

k

( q

bcd

)k

= 1 +
+∞
∑

k=1

[

b, c, d

q/b, q/c, q/d

∣

∣

∣
q

]

k

( q

bcd

)k

+
+∞
∑

k=1

[

b, c, d

q/b, q/c, q/d

∣

∣

∣
q

]

k

( q2

bcd

)k

=

+∞
∑

k=−∞

[

b, c, d

q/b, q/c, q/d

∣

∣

∣
q

]

k

( q

bcd

)k

.

This leads to the following identity:

3ψ3

[

b, c, d

q/b, q/c, q/d

∣

∣

∣
q;

q

bcd

]

=

[

q, q/bc, q/bd, q/cd

q/b, q/c, q/d, q/bcd

∣

∣

∣
q

]

∞
. (28)

By reversing the summation index k → −k, it is trivial to see that

3ψ3

[

b, c, d

q/b, q/c, q/d

∣

∣

∣
q;

q

bcd

]

= 3ψ3

[

b, c, d

q/b, q/c, q/d

∣

∣

∣
q;
q2

bcd

]

.

We therefore get a reversal variant of (28):

3ψ3

[

b, c, d

q/b, q/c, q/d

∣

∣

∣
q;
q2

bcd

]

=

[

q, q/bc, q/bd, q/cd

q/b, q/c, q/d, q/bcd

∣

∣

∣
q

]

∞
. (29)

Subtracting (29) times w from (28), we derive the identity stated in (26a):

4ψ4

[

qw, b, c, d

w, q/b, q/c, q/d

∣

∣

∣
q;

q

bcd

]

=

[

q, q/bc, q/bd, q/cd

q/b, q/c, q/d, q/bcd

∣

∣

∣
q

]

∞
.
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Instead, letting a = q in the nonterminating very well-poised 6φ5-series identity (24a–24b) and

then multiplying both sides by 1 − q, we have alternatively the following equation:

+∞
∑

k=0

{1 − q1+2k}
[

b, c, d

q2/b, q2/c, q2/d

∣

∣

∣
q

]

k

( q2

bcd

)k

=

[

q, q2/bc, q2/bd, q2/cd

q2/b, q2/c, q2/d, q2/bcd

∣

∣

∣
q

]

∞
.

By means of the same method employed for (27), the left member of the above identity can be

reformulated as:
+∞
∑

k=0

{1 − q1+2k}
[

b, c, d

q2/b, q2/c, q2/d

∣

∣

∣
q

]

k

( q2

bcd

)k

=

+∞
∑

k=0

[

b, c, d

q2/b, q2/c, q2/d

∣

∣

∣
q

]

k

( q2

bcd

)k

+

+∞
∑

k=1

[

b, c, d

q2/b, q2/c, q2/d

∣

∣

∣
q

]

−k

( q2

bcd

)−k

=

+∞
∑

k=−∞

[

b, c, d

q2/b, q2/c, q2/d

∣

∣

∣
q

]

k

( q2

bcd

)k

.

This gives rise to the following identity:

3ψ3

[

b, c, d

q2/b, q2/c, q2/d

∣

∣

∣
q;
q2

bcd

]

=

[

q, q2/bc, q2/bd, q2/cd

q2/b, q2/c, q2/d, q2/bcd

∣

∣

∣
q

]

∞
. (30)

Writing explicitly the last 3ψ3-series in terms of bilateral sum, shifting the summation index

k → k − 1 and then performing the replacements b → qb, c → qc and d → qd, we obtain the

following equivalent formula:

3ψ3

[

b, c, d

1/b, 1/c, 1/d

∣

∣

∣
q;
q−1

bcd

]

= −1

q

[

q, 1/bc, 1/bd, 1/cd

q/b, q/c, q/d, q−1/bcd

∣

∣

∣
q

]

∞
. (31)

Its reversal can be stated, after some little modification, as

3ψ3

[

b, c, d

1/b, 1/c, 1/d

∣

∣

∣
q;

q

bcd

]

=

[

q, 1/bc, 1/bd, 1/cd

q/b, q/c, q/d, q−1/bcd

∣

∣

∣
q

]

∞
. (32)

When the variable of 3ψ3-series is situated between those of (31) and (32), there holds the

following reduced formula

3ψ3

[

b, c, d

1/b, 1/c, 1/d

∣

∣

∣
q;

1

bcd

]

= 0. (33)

We are going to prove an even more general identity:

1+2ℓψ1+2ℓ

[

a1, . . . , a1+2ℓ

1/a1, . . . , 1/a1+2ℓ

∣

∣

∣
q;

1

a1a2 · · · a1+2ℓ

]

= 0. (34)

Denote by Θ the last bilateral series. Reversing the series by k → −k and then shifting the

summation index by k → k − 1, we can show Θ = 0 as follows:

Θ =

∞
∑

k=−∞

[

a1, . . . , a1+2ℓ

1/a1, . . . , 1/a1+2ℓ

∣

∣

∣
q

]

k

( 1

a1a2 · · · a1+2ℓ

)k
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=

∞
∑

k=−∞

[

qa1, . . . , qa1+2ℓ

q/a1, . . . , q/a1+2ℓ

∣

∣

∣
q

]

k

( 1

a1a2 · · · a1+2ℓ

)k

=

1+2ℓ
∏

i=1

1 − 1/ai

1 − ai

∞
∑

k=−∞

[

a1, . . . , a1+2ℓ

1/a1, . . . , 1/a1+2ℓ

∣

∣

∣
q

]

k

( 1

a1a2 · · · a1+2ℓ

)k−1

= (−1)1+2ℓΘ = −Θ = 0.

Considering the linear combination

Eq(31)

(1 − u)(1 − v)
+

uvEq(32)

(1 − u)(1 − v)
− (u+ v)Eq(33)

(1 − u)(1 − v)

and simplifying the result, we get

5ψ5

[

qu, qv, b, c, d

u, v, 1/b, 1/c, 1/d

∣

∣

∣
q;
q−1

bcd

]

=

[

q, 1/bc, 1/bd, 1/cd

q/b, q/c, q/d, q−1/bcd

∣

∣

∣
q

]

∞

1 − 1/quv

(1 − 1/u)(1 − 1/v)
.

This confirms the bilateral series identity stated in (26b). 2

Further bilateral identities of this type and applications can be found in Chu[29], where

a systematic treatment of basic almost-poised hypergeometric series has been fulfilled. The

partial fraction decomposition method has been employed by Chu[24,30] to derive bilateral series

identities with integer parameter differences. See Gasper[38], Karlsson[48] and Minton[51] for

additional information.

17. q-analogue of Dixon’s theorem

n
∑

k=−n

(−1)k

[

2n

n+ k

]3

qk(3k−1)/2 =
(q; q)3n

(q; q)3n
, (35a)

1+n
∑

k=−n

(−1)k

[

1 + 2n

n+ k

]3

qk(3k−1)/2 =
(q; q)3n+1

(q; q)3n
. (35b)

These formulae were found by Jackson[41], which are the q-analogue of the following well-known

Dixon theorem:
n+δ
∑

k=−n

(−1)k

(

2n+ δ

n+ k

)3

=

{

(

3n
n,n,n

)

, δ = 0;

0, δ = 1.

Proof Setting b = c = d = q−n in the identity (28), we can reformulate the left member of (28)

as

3ψ3

[

q−n, q−n, q−n

q1+n, q1+n, q1+n

∣

∣

∣
q; q1+3n

]

=

n
∑

k=−n

(q−n; q)3k
(qn+1; q)3k

q(1+3n)k

=

n
∑

k=−n

(−1)k
{ (q; q)n(q; q)n

(q; q)n−k(q; q)n+k

}3

qk2+(k

2)
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while the corresponding right member of (28) becomes

[

q, q1+2n, q1+2n, q1+2n

q1+n, q1+n, q1+n, q1+3n

∣

∣

∣
q

]

∞
=

(q; q)3n(q; q)3n
(q; q)32n

.

This leads us to the first identity (35a).

If we put b = c = d = q−n in (30) instead, then the left member of (30) may be rewritten as

3ψ3

[

q−n, q−n, q−n

q2+n, q2+n, q2+n

∣

∣

∣
q; q2+3n

]

=

n
∑

k=−(n+1)

(q−n; q)3k
(qn+2; q)3k

q(2+3n)k

=

n
∑

k=−n−1

(−1)k
{ (q; q)n(q; q)n+1

(q; q)n−k(q; q)n+k+1

}3

q2k+3(k

2)

while the corresponding right member reads as
[

q, q2+2n, q2+2n, q2+2n

q2+n, q2+n, q2+n, q2+3n

∣

∣

∣
q

]

∞
=

(q; q)3n+1(q; q)
3
n+1

(q; q)32n+1

.

Equating the last two expressions results in the identity

n
∑

k=−n−1

(−1)k

[

1 + 2n

n− k

]3

q2k+3(k

2) =
(q; q)3n+1

(q; q)3n
.

With replacement k → −k, this identity gives the second one (35b). 2

18. Bailey’s transformation on terminating very well-poised 10φ9-series

This most general transformation due to Bailey[4] (cf. [39, III-28] and [57, §3.4.2]) reads as

10φ9

[

A, q
√
A, −q

√
A, B, C, D, α, β, γ, q−m

√
A, −

√
A, qA/B, qA/C, qA/D, qA/α, qA/β, qA/γ, q1+mA

∣

∣

∣
q; q

]

(36a)

=

[

qA, qA/BC, qA/BD, qA/CD

qA/B, qA/C, qA/D, qA/BCD

∣

∣

∣
q

]

m

× (36b)

10φ9

[

λ, q
√
λ, −q

√
λ, B, C, D, αλ/A, βλ/A, γλ/A, q−m

√
λ, −

√
λ, qλ/B, qλ/C, qλ/D, qA/α, qA/β, qA/γ, q1+mλ

∣

∣

∣
q; q

]

(36c)

with the parameters subject to restrictions λ = qA2/αβγ and q1+mλA/BCD = 1.

Letting β = A/λ in this transformation, we recover Jackson’s 8φ7-series identity (23a–23b).

Interestingly, Bailey’s 10φ9-series transformation can also be proved by iterating Jackson’s q-

Dougall-Dixon summation formula.

Proof Rewriting Jackson’s q-Dougall-Dixon formula (23a–23b):

8φ7

[

λ, q
√
λ, −q

√
λ, αλ/A, βλ/A, γλ/A, qkA, q−k

√
λ, −

√
λ, qA/α, qA/β, qA/γ, q1−kλ/A, qk+1λ

∣

∣

∣
q; q

]

=

[

α, β, γ qλ

qA/α, qA/β, qA/γ, A/λ

∣

∣

∣
q

]

k

, where λ = qA2/αβγ,
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we can reformulate (36a) as a double sum:

10φ9

[

A, q
√
A, −q

√
A, B, C, D, α, β, γ, q−m

√
A, −

√
A, qA/B, qA/C, qA/D, qA/α, qA/β, qA/γ, q1+mA

∣

∣

∣
q; q

]

=

m
∑

k=0

qk

[

A, q
√
A, −q

√
A, B, C, D, A/λ, q−m

q,
√
A, −

√
A, qA/B, qA/C, qA/D, qλ, q1+mA

∣

∣

∣
q

]

k

×

[

α, β, γ, qλ

qA/α, qA/β, qA/γ, A/λ

∣

∣

∣
q

]

k

=

m
∑

k=0

qk

[

A, q
√
A, −q

√
A, B, C, D, A/λ, q−m

q,
√
A, −

√
A, qA/B, qA/C, qA/D, q1+mA, qλ

∣

∣

∣
q

]

k

×

k
∑

i=0

qi

[

λ, q
√
λ, −q

√
λ, αλ/A, βλ/A, γλ/A, qkA, q−k

q,
√
λ, −

√
λ, qA/α, qA/β, qA/γ, q1−kλ/A, qk+1λ

∣

∣

∣
q

]

k

.

With the summation order being exchanged, the last expression becomes

10φ9

[

A, q
√
A, −q

√
A, B, C, D, α, β, γ, q−m

√
A, −

√
A, qA/B, qA/C, qA/D, qA/α, qA/β, qA/γ, q1+mA

∣

∣

∣
q; q

]

=
m

∑

i=0

[

λ, q
√
λ, −q

√
λ, αλ/A, βλ/A, γλ/A

q,
√
λ, −

√
λ, qA/α, qA/β, qA/γ

∣

∣

∣
q

]

i

×

(qA; q)2i

(qλ; q)2i

[

B, C, D, q−m

qA/B, qA/C, qA/D, q1+mA

∣

∣

∣
q

]

i

(qA

λ

)i

×

8φ7

[

q2iA, q1+i
√

A, −q1+i
√

A, qiB, qiC, qiD, A/λ, q−m+i

qi
√

A, −qi
√

A, q1+iA/B, q1+iA/C, q1+iA/D, q1+2iλ, q1+m+iA

∣

∣

∣
q; q

]

.

Evaluating the last 8φ7-series through Jackson’s q-Dougall-Dixon formula (23a–23b)

[

q1+2iA, qA/BC, qA/BD, qA/CD

q1+iA/B, q1+iA/C, q1+iA/D, q1−iA/BCD

∣

∣

∣
q

]

m−i

=

[

qA, qA/BC, qA/BD, qA/CD

qA/B, qA/C, qA/D, qA/BCD

∣

∣

∣
q

]

m

×

(qλ; q)2i

(qA; q)2i

[

qA/B, qA/C, qA/D, q1+mA

qλ/B, qλ/C, qλ/D, q1+m

∣

∣

∣
q

]

i

( λ

A

)i

and then making some routine simplifications, we get

10φ9

[

A, q
√
A, −q

√
A, B, C, D, α, β, γ, q−m

√
A, −

√
A, qA/B, qA/C, qA/D, qA/α, qA/β, qA/γ, q1+mA

∣

∣

∣
q; q

]

=

[

qA, qA/BC, qA/BD, qA/CD

qA/B, qA/C, qA/D, qA/BCD

∣

∣

∣
q

]

m

×
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m
∑

i=0

qi

[

λ, q
√
λ, −q

√
λ, αλ/A, βλ/A, γλ/A, B, C, D, q−m

q,
√
λ, −

√
λ, qA/α, qA/β, qA/γ, qλ/B, qλ/C, qλ/D, q1+mλ

∣

∣

∣
q

]

i

=

[

qA, qA/BC, qA/BD, qA/CD

qA/B, qA/C, qA/D, qA/BCD

∣

∣

∣
q

]

m

×

10φ9

[

λ, q
√
λ, −q

√
λ, B, C, D, αλ/A, βλ/A, γλ/A, q−m

√
λ, −

√
λ, qλ/B, qλ/C, qλ/D, qA/α, qA/β, qA/γ, q1+mλ

∣

∣

∣
q; q

]

which is exactly Bailey’s transformation on very well-poised 10φ9-series. 2

19. Bailey’s bilateral 6ψ6-series identity (|qa2/bcde| < 1)

6ψ6

[

q
√
a, −q√a, b, c, d, e

√
a, −√

a, qa/b, qa/c, qa/d, qa/e

∣

∣

∣
q;
qa2

bcde

]

(37a)

=

[

q, qa, q/a, qa/bc, qa/bd, qa/be, qa/cd, qa/ce, qa/de

qa/b, qa/c, qa/d, qa/e, q/b, q/c, q/d, q/e, qa2/bcde

∣

∣

∣
q

]

∞
. (37b)

This is one of the deepest basic hypergeometric formulae found by Bailey[6]. There are several

proofs of this important identity up to now. For the most elementary proof, we refer to the recent

paper by Chu[34], where the modified Abel lemma on summation by parts has been employed.

Here we reproduce a proof provided by Jouhet and Schlosser[46]. Schlosser[53] also gave another

proof for this important result.

Proof For λ = qa2/cev, we may restate Bailey’s transformation on terminating very well-poised

10φ9-series (36a–36c) as

10φ9

[

a, q
√
a, −q√a, b, d, u, c, e, v, q−m

√
a, −√

a, qa/b, qa/d, qa/u, qa/c, qa/e, qa/v, q1+ma

∣

∣

∣
q; q

]

(38a)

=

[

qa, qa/bd, qa/bu, qa/du

qa/b, qa/d, qa/u, qa/bdu

∣

∣

∣
q

]

m

× (38b)

10φ9

[

λ, q
√
λ, −q

√
λ, b, d, u, λc/a, λe/a, λv/a, q−m

√
λ, −

√
λ, qλ/b, qλ/d, qλ/u, qa/c, qa/e, qa/v, q1+mλ

∣

∣

∣
q; q

]

. (38c)

Perform the replacements m → 2n, a → q−2na, b → q−nb, c → q−nc, d → q−nd and e → q−ne

in the last transformation. With the summation index k being shifted to k + n, the 10φ9-series

in (38a) becomes

n
∑

k=−n

qk

[

q
√
a, −q√a, b, c, d, e, q−na, qnu, qnv, q−n

√
a, −√

a, qa/b, qa/c, qa/d, qa/e, q1+na, q1−na/u, q1−na/v, q1+n

∣

∣

∣
q

]

k

×

[

q, 1/a

u/a, v/a

∣

∣

∣
q

]

2n

[

q/b, q/c, q/d, q/e, u, v, u/a, v/a

b/a, c/a, d/a, e/a, q, q, qa, q/a

∣

∣

∣
q

]

n

(b2c2d2e2uv

q3a5

)n

.
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The corresponding expression displayed in (38b–38c) reads accordingly as

n
∑

k=−n

qk

[

√
λ, −q

√
λ, b, d, λc/a, λe/a, q−nλ, qnu, qnλv/a, q−n

√
λ, −

√
λ, qλ/b, qλ/d, qa/c, qa/e, q1+n, q1−nλ/u, q1−na/v, q1+nλ

∣

∣

∣
q

]

k

×

[

q, 1/a

u/a, v/a

∣

∣

∣
q

]

2n

[

q/b,q/d,qλ/b,qλ/d,u,v/a,qa/bd,qa/ce,qa/cλ,qa/eλ

q, q, qλ, q/λ, qa/b, qa/d, b/a, c/a, d/a, e/a

∣

∣

∣
q

]

n

(b2c2d2e2uv

q3a5

)n

.

Equating the last two expressions, canceling the common factors and then letting n → ∞, we

get the transformation on nonterminating very well-poised 6ψ6-series:

6ψ6

[

q
√
a, −q√a, b, c, d, e

√
a, −√

a, qa/b, qa/c, qa/d, qa/e

∣

∣

∣
q;
qa2

bcde

]

(39a)

= 6ψ6

[

q
√
λ, −q

√
λ, b, d, λc/a, λe/a√

λ, −
√
λ, qλ/b, qλ/d, qa/c, qa/e

∣

∣

∣
q;
qa2

bcde

]

× (39b)

[

qa, q/a, qa/bd, qa/ce, qλ/b, qλ/d, qa/cλ, qa/eλ

qλ, q/λ, qa/b, qa/d, q/c, q/e, qλ/bd, qa2/ceλ

∣

∣

∣
q

]

∞
. (39c)

Note that the right member of this transformation has an extra parameter λ or v. Let λ = d or

equivalently v = qa2/cde, the 6ψ6-series displayed in (39b) turns out to be a 6φ5-series. Under

the convergence condition |qa2/bcde| < 1, this 6φ5-series can be evaluated, by means of the

nonterminating q-Dixon formula (24a–24b), as follows:

6φ5

[

d, q
√
d, −q

√
d, b, cd/a, de/a√

d, −
√
d, qd/b, qa/c, qa/e

∣

∣

∣
q;
qa2

bcde

]

=

[

qa/bc, qa/be, qd, qa2/cde

qa/c, qa/e, qd/b, qa2/bcde

∣

∣

∣
q

]

∞
.

Substituting this into (39b), we infer that transformation (39a–39b–39c) with λ = d reduces to

the following product

6ψ5

[

q
√
a, −q√a, b, c, d, e

√
a, −√

a, qa/b, qa/c, qa/d, qa/e

∣

∣

∣
q;
qa2

bcde

]

=

[

qa/bc, qa/be, qd, qa2/cde

qa/c, qa/e, qd/b, qa2/bcde

∣

∣

∣
q

]

∞
×

[

qa,q/a,qa/bd,qa/ce,qd/b,q,qa/cd,qa/ed

qd,q/d,qa/b,qa/d,q/c,q/e,q/b,qa2/ced

∣

∣

∣
q

]

∞

=

[

q, qa, q/a, qa/bc, qa/bd, qa/be, qa/cd, qa/ce, qa/de

qa/b, qa/c, qa/d, qa/e, q/b, q/c, q/d, q/e, qa2/bcde

∣

∣

∣
q

]

∞

which is the celebrated bilateral 6ψ6-series identity discovered by Bailey (1936). 2

20. The telescoping method: Theta function identity

For five complex parameters A, b, c, d, e satisfying A2 = bcde, there holds theta function

identity:

〈A/b,A/c,A/d,A/e; q〉∞ − 〈b, c, d, e; q〉∞ = b〈A,A/bc,A/bd,A/be; q〉∞, (40)
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where the modified Jacobi theta function is defined by

〈x; q〉∞ = (x; q)∞(q/x; q)∞ =

∞
∏

n=0

(1 − xqn)(1 − q1+n/x)

and the corresponding product form by

〈a, b, . . . , c; q〉∞ = 〈a; q〉∞〈b; q〉∞ · · · 〈c; q〉∞.

This identity appeared explicitly for the first time in Ref. [18]. It contains several surprising

theta function identities as special cases and has been shown very useful in dealing with the

congruences on partition function discovered by Ramanujan[52] including Winquist’s proof[60]

corresponding to modulo 11. The details can be found in the recent work due to Chu[32] and

Chu-Diclaudio[35,H]. For more theta function identities, we refer to the well-known historical

monograph written by Whittaker and Watson[59,§21].

For bcde = A2, define the factorial fraction by

Tk :=
(b; q)k(c; q)k(d; q)k(e; q)k

(A/b; q)k(A/c; q)k(A/d; q)k(A/e; q)k
.

Then it is easy to check the differences

∇Tk =Tk − Tk+1 = b
(1 −A)(1 −A/bc)(1 −A/bd)(1 −A/be)

(1 −A/b)(1 −A/c)(1 −A/d)(1 −A/e)
×

1 −Aq2k

1 −A

(b; q)k(c; q)k(d; q)k(e; q)k

(qA/b; q)k(qA/c; q)k(qA/d; q)k(qA/e; q)k
qk.

In view of the definition of the bilateral series, the 6ψ6-series identity can accordingly be tele-

scoped, under condition bcde = A2, as follows:

6ψ6

[

qA1/2, −qA1/2, b, c, d, e

A1/2, −A1/2, qA/b, qA/c, qA/d, qA/e

∣

∣

∣
q; q

]

=
(1 −A/b)(1 −A/c)(1 −A/d)(1 −A/e)

b(1 −A)(1 −A/bc)(1 −A/bd)(1 −A/be)

+∞
∑

k=−∞
∇Tk

=
(1 −A/b)(1 −A/c)(1 −A/d)(1 −A/e)

b(1 −A)(1 −A/bc)(1 −A/bd)(1 −A/be)
{T−∞ − T+∞}

=
[qA, q/A, qA/bc, qA/bd, qA/be, qA/cd, qA/ce, qA/de; q]∞

[qA/b, qA/c, qA/d, qA/e, q/b, q/c, q/d, q/e; q]∞
.

Keeping in mind that bcde = A2 and substituting two infinite factorial fractions

T+∞ =
(b; q)∞(c; q)∞(d; q)∞(e; q)∞

(A/b; q)∞(A/c; q)∞(A/d; q)∞(A/e; q)∞
,

T−∞ =
(qb/A; q)∞(qc/A; q)∞(qd/A; q)∞(qe/A; q)∞

(q/b; q)∞(q/c; q)∞(q/d; q)∞(q/e; q)∞
;

into the last identity, we find the theta function identity displayed in (40).

For example, the well-known Jacobi identity[59,p470]

(−q; q2)8∞ − (q; q2)8∞ = 16q(−q2; q2)8∞
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results from the very particular case of identity (40) specified with b = c = d = e→ q, A→ −q2
and q → q2. Further examples can be found in Bailey[8] and Slater[55,56].
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