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Abstract The main object of this paper is to investigate the finite groups in which every sub-

group is either abelian or normal. We obtain a characterization of the groups for the nonnilpotent

case, and we also give some properties for the nilpotent case.
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1. Introduction and main results

All groups considered in this paper are finite. Finite nonabelian groups in which every

subgroup is abelian were classified by Miller and Moreno in 1903[1]. Also, the structure of finite

groups in which every subgroup is normal were given by Dedekind and Bear[2,Theorem 5.3.7].

The aim of this paper is to classify the finite groups in which every subgroup is either abelian or

normal.

We write G = H [F ] to denote a semidirect product of a subgroup H and a normal subgroup

F of G. Let G = H [F ] be a Frobenius group with the kernel F and a cyclic complement H . If

F is always an irreducible H1-subgroup for any 1 < H1 ≤ H , then G is called a (∗)-Frobenius

group.

Recall that a finite p-group G is called extraspecial if G′ = Z(G) = Φ(G) is of order p.

Suppose that 1 = F0 < F1 < · · · < Fn = G is a normal series of a solvable group G such

that Gi+1/Gi is the largest normal nilpotent subgroup of G/Gi, that is, Gi+1/Gi is the Fitting

subgroup of G/Gi. Then the Fitting length of the solvable group G is defined by n, and we write

nl(G) = n.

In this paper, p always denotes a prime integer, and the other notations are standard and are

taken from the [2]. For example, F (G), Φ(G) and G′ denote the Fitting subgroup, the Frattini

subgroup and the derived subgroup, respectively, of G. The main results of this paper are as

follows.
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Theorem 1.1 Let G be a nonnilpotent group. Then every subgroup of G is abelian or normal

if and only if G/Z(G) is a (∗)-Frobenius group and G satisfies one of the following properties:

(1) F (G) is abelian;

(2) F (G) = P × Q, where P is an extraspecial p-group of order p3, and Q = Op′(Z(G)). In

particular, G/Q ∼= SL(2, 3) for the case when p = 2.

Theorem 1.2 Let G be a nilpotent but nonabelian group. If every subgroup of G is abelian or

normal, then G = P ×A, where P ∈ Sylp(G) is nonabelian, and A is an abelian p′-Hall subgroup

of G. Moreover, there exists an abelian normal subgroup N of P such that every subgroup of

P/N is normal in P/N .

2. Proofs

Lemma 2.1 Let G be a finite group in which every subgroup is abelian or normal. Then

(1) The property is closed under taking subgroups and quotient groups;

(2) G is solvable;

(3) nl(G) ≤ 2.

Proof (1) This is clear.

(2) Suppose that G is simple. Then any proper subgroup of G is abelian, and this implies

by [3, Ch1, Example 7.1] that G is a cyclic group of prime order. Suppose that G is not simple

and let N be a minimal normal subgroup of G. We conclude by (1) and by induction on group

order that N and G/N are both solvable, and so is G.

(3) Note that the hypothesis is inherited by any quotient group of G. Suppose that G pos-

sesses different minimal normal subgroups M, N . We have by induction that nl(G/M), nl(G/N) ≤

2, and so

nl(G) = max{nl(G/M), nl(G/N)} ≤ 2,

and we are done. Consequently, we may assume that there is only one minimal normal subgroup,

say, N in G.

Assume that Φ(G) > 1. Then nl(G/Φ(G)) ≤ 2 by induction, and so nl(G) = nl(G/Φ(G)) ≤

2, and we are done. Assume that Φ(G) = 1. Then there exists a subgroup A of G such that

G = A[N ]. Clearly A is not normal in G, so A is abelian, and then nl(G) ≤ 2 as desired.

Lemma 2.2[3,Ch 7, Theorem 2.7] If a π′-group H acts on an abelian π-group G, then G = CG(H)×

[G, H ].

Lemma 2.3[3,Ch 5, Theorem 4.3(3)] If G is a solvable group, then CG(F (G)) ≤ F (G).

Proof of Theorem 1.1 =⇒. Suppose that G satisfies the hypothesis of the theorem. By

Lemma 2.1, G/F (G) is nilpotent. Write F = F (G).

Step 1. There exists a chief factor F/L of G such that G/L is nonnilpotent.
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Clearly, F/Φ(G) is the Fitting subgroup of G/Φ(G), and F/Φ(G) = V1 × · · · × Vs, where

Vi is minimal normal subgroup of G/Φ(G) (i = 1, 2, . . . s). Also, we know that F/Φ(G) has

a complement, say, Y/Φ(G), in G/Φ(G). Then there exists some Vi such that Y/Φ(G) acts

nontrivially on Vi. In fact, if Y/Φ(G) always acts on Vi trivially for any 1 ≤ i ≤ s, then Y/Φ(G)

acts trivially on F/Φ(G), and so G/Φ(G) and G are nilpotent, a contradiction. Assume that

Y/Φ(G) acts nontrivially on Vi and set L = V1 × · · · × Vi−1 × Vi+1 × · · · × Vs. We see that G/L

is not nilpotent.

Step 2. L = Z(G), G = AF , where A is a maximal and abelian subgroup of G with A∩F = L.

It is easy to see that F/L has a complement, say, A/L, in G/L, and that A/L ∼= G/F is

nilpotent. Observe that if A/L is normal in G/L, then G/L = A/L × F/L is nilpotent which

contradicts the Step 1. Thus A/L is not normal in G/L, so A is not normal in G, and thus A is

abelian by the hypothesis. Note that G/L = A/L[F/L], where F/L ∼= Vi is a chief factor of G.

This implies that A/L is a maximal subgroup of G/L, and so that A is a maximal and abelian

subgroup of G.

Clearly, CG(L) ≥ A, and CG(L)�G as L is normal in G. Since A is maximal but not normal

in G, we conclude that CG(L) = G, that is, L ≤ Z(G). Observe that F > Z(G) ≥ L and F/L is

a chief factor of G, it follows that L = Z(G).

Step 3. G/L is a (∗)-Frobenius group with kernel F/L .

As F (G/Z(G)) = F (G)/Z(G), we have by Step 2 that G/L = A/L[F/L], where A/L is

abelian and F/L is the Fitting subgroup of G/L. Since F/L, as a chief factor of G, is an

elementary abelian p-group for some prime p, we see that F/L is a normal Sylow p-subgroup of

G/L (Indeed, if U/L is a Sylow p-subgroup of G/L, then U/L is a normal p-subgroup of G/L

because G/F is nilpotent, and so U/L ≤ F (G/L), and U ≤ F ). Now A/L acts coprimely on

F/L.

For each h ∈ A/L−{1}, by Lemma 2.2 we have F/L = CF/L(h)× [F/L, 〈h〉]. If there exists

some h ∈ A/L − {1} such that [F/L, 〈h〉] = 1, then F/L = CF/L(h) and h ∈ CG/L(F/L) ≤

F/L = F (G/L), which contradicts Lemma 2.3. Thus [F/L, 〈h〉] > 1 for any h ∈ A/L − {1}.

Clearly, 〈h〉[F/L, 〈h〉] is not abelian, and it follows by our hypothesis that 〈h〉[F/L, 〈h〉] � G/L.

Then

[F/L, 〈h〉] = F/L ∩ 〈h〉[F/L, 〈h〉] � G/L.

Since F/L is a chief factor of G, we have F/L = [F/L, 〈h〉], thus CF/L(h) = 1, and consequently

G/L is a Frobenius group with the kernel F/L and a complement A/L. Moreover, by [3, Ch8,

Theorem 7.9], A/L is cyclic.

Again we claim that F/L is an irreducible A1/L-subgroup for any 1 < A1/L < A/L. Suppose

that F1/L is an irreducible A1/L-subgroup of F/L, where 1 < F1/L ≤ F/L and 1 < A1/L <

A/L. Since G1/L = A1/L[F1/L] is not abelian, it follows that G1/L � G/L. This implies that

F1/L = G1/L ∩ F/L is normal in G/L, and so F1/L = F/L as wanted.

Step 4. Final proof of the “only if” part.
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We need only to consider the case when F is not abelian.

We claim first that L = Z(F ) = Z(G), and |F/L| = p2 for some prime p. Recall that

L = Z(G) and F/L is a chief factor of G. Since Z(F ) is normal in G with L ≤ Z(F ) < F , we

have

Z(F ) = L.

Assume that |F/L| = p. Then F is abelian by [3, Ch4, Theorem 5.8], a contradiction. Thus

|F/L| ≥ p2, and we can find distinct maximal subgroups H1, H2 of F in which L is contained.

Since Hi/L < F/L, Hi/L is not normal in G/L, and so Hi is not normal in G for any i = 1, 2.

Thus H1, H2 are abelian. Observe that |F : H1 ∩ H2| = p2, and CF (H1 ∩ H2) ≥ 〈H1, H2〉 = F .

We conclude that H1 ∩ H2 = Z(F ) = L and |F : L| = p2.

Now we conclude that F = P × Q, where P is the nonabelian Sylow p-subgroup of F with

|P : Z(P )| = p2, and Q = Op′ (F ) = Op′(Z(G)). To finish the proof of the part “only if”, we

need to show that P is an extraspecial group of order p3. To this end, we can assume by Lemma

2.1 that

Q = 1, i.e., F = P.

Since |P : Z(P )| = p2, Z(G) = Z(P ) ≥ Φ(P ) ≥ P ′. Suppose that P ′ < Z(P ). Let K ∼= G/P

be a cyclic p′-subgroup. Then P/P ′ = CP/P ′ (K) × [P/P ′, K] by Lemma 2.2. Since K acts

trivially on CP/P ′ (K) and P ′, CP/P ′ (K) = Z(P )/P ′. Now P/P ′ = Z(P )/P ′ × V/P ′, where

V/P ′ = [P/P ′, K] ∼= P/Z(P ). Write Z(P )/P ′ = 〈a1〉 × · · · × 〈at〉, and assume that a1 of order

pk+1 for some integer k ≥ 0. Since P/Z(P ) cannot be cyclic, we have V/P ′ = 〈b1〉 × 〈b2〉. Then

P/P ′ = 〈a1〉 × · · · × 〈at〉 × 〈b1〉 × 〈b2〉 = 〈a1〉 × · · · × 〈at〉 × 〈apk

1 b1〉 × 〈b2〉.

Set V1/P ′ = 〈apk

1 b1〉 × 〈b2〉. Let us investigate V, V1. Assume that V (or V1) is abelian. Then

CP (b2) ≥ 〈V, Z(P )〉 = P , b2 ∈ Z(P ), a contradiction. Assume that neither V nor V1 is abelian.

Then V, V1 are both normal in G. This implies that

〈b2〉 = V1/P ′ ∩ V/P ′ ⊳ G/P ′.

which contradicts the fact that V/P ′ ∼= P/Z(P ) is a chief factor of G. Thus P ′ = Z(P ), and

so P ′ = Z(P ) = Φ(P ). Now applying [5, Lemma 6] we conclude that |P ′| = p, and so P is an

extraspecial p-group of order p3.

Furthermore, suppose p = 2. Then P is of order 8. Note that if P ∼= D8, then P/Z(P )

cannot be a chief factor of G because P has unique cyclic subgroup of order 4. So P ∼= Q8. Also

since the group G/P is isomorphic to a subgroup of Aut(P/Z(P )) = S3, we have |G/P | = 3, and

G ∼= SL(2, 3).

⇐=. Let G/Z(G) be a (∗)-Frobenius group satisfying the condition of the theorem. Write

F = F (G). Then F/Z(G) = F (G/Z(G)) is the Frobenius kernel of G/Z(G). Assume that

F/Z(G) is a p-group for some prime p, and let P be a Sylow p-subgroup and A be a p′-Hall

subgroup, respectively, of G. Clearly, P ≤ F is a normal sylow p-subgroup of G. Let D =

Op′(Z(G)). Then F = P × D, G/F ∼= A/D is cyclic. Since D ≤ Z(A), it follows that A is

abelian by [3, Ch4, Theorem 5.8(1)]. Let G1 be any subgroup of G. Clearly, we may write
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G1 = P1A1, where P1 ≤ P is normal in G1, and A1 can be assumed to be a subgroup of the

abelian p′-group A. In what follows, we shall prove that G1 is either abelian or normal in G.

Case 1. F = F (G) is abelian.

Since P = CP (A)× [P, A] by Lemma 2.2, we have G = A[P ] = A[CP (A)× [P, A]] = CP (A)×

([P, A]A). Set H = [P, A]A. Then G = CP (A)×H , CP (A) = P ∩Z(G), Z(H) = A∩Z(G), and

[P, A] is the normal Sylow p-subgroup of H .

Assume that A1 = 1. Then G1 = P1 is abelian. Assume that P1 = P . Then G1 = PA1 ≥

P1 ≥ G′ is normal in G. Assume that P1 ≤ Z(G). Then G1 = P1 × A1 is abelian.

In the rest of this case, we assume that P1 < P, P1 6≤ Z(G), and A1 > 1.

Case 1.1. Suppose that P1 ≤ [P, A]. Clearly, A1Z(H)/Z(H) is a nontrivial p′-subgroup and

P1Z(H)/Z(H) is a nontrivial p-subgroup of H/Z(H). Since H/Z(H) ∼= G/Z(G) is a (∗)- Frobe-

nius group, P1Z(H)/Z(H) is the Frobenius kernel of H/Z(H). Thus

P1
∼= P1Z(H)/Z(H) ∼= F/Z(G) ∼= P/(P ∩ Z(G)) = P/CP (A) ∼= [P, A],

and then P1 = [P, A]. Now we have

G1 = A1P1 = A1[P, A] ≥ [P, A] ≥ G′,

so G1 is normal in G.

Case 1.2. Suppose that P1 6≤ [P, A]. Arguing as in the above paragraph, we conclude that

P1 > [P, A]. This also implies that G1 > [P, A] ≥ G′ is normal in G.

Case 2. F = F (G) = P × D is not abelian, where P is an extraspecial group of order p3,

D = Op′(Z(G)) = Op′(F ).

Assume that P1 = P . Then G1 = A1P ≥ P ≥ G′, and so G1 is normal in G.

Assume that P1 ≤ Z(P ). Then Z(P ) = Op(Z(G)) implies that G1 = A1[P1] = A1 × P1 is

abelian.

Assume that Z(P ) < P1 < P and A1 = 1. Since P is of order p3, G1 = P1 is abelian of order

p2.

Assume finally that Z(P ) < P1 < P . Then P1 is abelian and of order p2. Suppose that A1 6≤

Z(G). It is clear that A1Z(G)/Z(G) is a proper p′-subgroup of G/Z(G), and that P1Z(G)/Z(G) is

a proper p-subgroup of G/Z(G). Since G/Z(G) is a (∗)-Frobenius group, it forces P1Z(G)/Z(G)

to be F/Z(G), and then P1Z(P ) = P , a contradiction. Therefore, A1 ≤ Z(G), and then

G1 = A1[P1] = A1 × P1 is abelian. Our proof is now completed. 2

Proof of Theorem 1.2 Let P be a nonabelian Sylow p-subgroup of G. Suppose that there is

another nonabelian Sylow q-subgroup Q of G, where p 6= q. We may assume p is odd. Assume

that all subgroups of P are normal in P . Then P is abelian by the structure of Hamilton group,

a contradiction. Assume that there is a subgroup P1 of P which is not normal in P . Then P1Q

is not normal in G, and so P1Q is abelian, thus Q is abelian, a contradiction. Therefore, P is the

unique nonabelian Sylow subgroup of G, and we may write G = P × A, where A is an abelian
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p′-Hall subgroup of G.

Let B be an abelian subgroup of P with maximal order.

Case 1. Suppose that B is normal in P .

Set N = B. For any proper subgroup K/N of P/N , K is not abelian by the choice of B, and

hence K/N is normal in P/N .

Case 2. B is not normal in P .

There exists a subgroup M of P such that B < M and |M : B| = p. Then M is not abelian,

and so M is normal in P . Since B is not normal in P , there exists an element x ∈ P such

that Bx 6= B. Clearly, B and Bx are contained in Mx = M . Since B and Bx are distinct

maximal subgroups of M , it follows that BBx = M . Thus M/Bx = BBx/Bx ∼= B/(B ∩ Bx).

Therefore, |M : B ∩Bx| = |M : B| · |M : Bx| = p2. Since CM (B ∩Bx) ≥ 〈B, Bx〉 = M , we have

B ∩Bx ≤ Z(M). Now it is easy to see that B ∩Bx = Z(M)� P . By the property of chief series

of p-groups, there exists a normal subgroup N of P such that B ∩ Bx < N < M . Arguing as

in Case 1, we conclude that every subgroup of P/N is normal in P/N . Our proof is completed

now. 2

Corollary 2.1 Let G be a finite p-group of odd order, and suppose that every subgroup of G

is abelian or normal. Then the derived length of G is at most 2.

Proof By Theorem 1.2, there exists an abelian normal subgroup N of G such that every

subgroup of G/N is normal. Thus G/N is abelian due to p ≥ 3 and the structure of Hamilton

groups. Therefore, G′ ≤ N is abelian.

Corollary 2.2 Let G be a finite 2-group, and suppose that every subgroup of G is abelian or

normal. Then there exists an abelian normal subgroup N of G such that G/N is abelian or a

direct product of Q8 and an elementary abelian 2-group.

Proof By the proof of Theorem 1.2, there exists an abelian normal subgroup N of G such that

every subgroup of G/N is normal. Therefore, there exists an abelian normal subgroup N of G

such that G/N is abelian or direct product of Q8 and an elementary abelian 2-group.
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