Journal of Mathematical Research & Exposition May, 2008, Vol. 28, No. 2, pp. 273–278 DOI:10.3770/j.issn:1000-341X.2008.02.005 Http://jmre.dlut.edu.cn

Finite Groups in Which Every Subgroup Is Abelian or Normal

TANG Feng^{1,2}, QIAN Guo Hua¹

(1. Department of Mathematics, Changshu Institute of Technology, Jiangsu 215500, China;

2. School of Mathematics and Computer Science, Nanjing Normal University, Jiangsu 210097, China)

(E-mail: tangff-04@163.com)

Abstract The main object of this paper is to investigate the finite groups in which every subgroup is either abelian or normal. We obtain a characterization of the groups for the nonnilpotent case, and we also give some properties for the nilpotent case.

Keywords abelian subgroup; normal subgroup; Frobenius group; nilpotent group

Document code A MR(2000) Subject Classification 20D10 Chinese Library Classification 0152.1

1. Introduction and main results

All groups considered in this paper are finite. Finite nonabelian groups in which every subgroup is abelian were classified by Miller and Moreno in 1903^[1]. Also, the structure of finite groups in which every subgroup is normal were given by Dedekind and Bear^[2, Theorem 5.3.7]. The aim of this paper is to classify the finite groups in which every subgroup is either abelian or normal.

We write G = H[F] to denote a semidirect product of a subgroup H and a normal subgroup F of G. Let G = H[F] be a Frobenius group with the kernel F and a cyclic complement H. If F is always an irreducible H_1 -subgroup for any $1 < H_1 \leq H$, then G is called a (*)-Frobenius group.

Recall that a finite p-group G is called extraspecial if $G' = Z(G) = \Phi(G)$ is of order p.

Suppose that $1 = F_0 < F_1 < \cdots < F_n = G$ is a normal series of a solvable group G such that G_{i+1}/G_i is the largest normal nilpotent subgroup of G/G_i , that is, G_{i+1}/G_i is the Fitting subgroup of G/G_i . Then the Fitting length of the solvable group G is defined by n, and we write nl(G) = n.

In this paper, p always denotes a prime integer, and the other notations are standard and are taken from the [2]. For example, F(G), $\Phi(G)$ and G' denote the Fitting subgroup, the Frattini subgroup and the derived subgroup, respectively, of G. The main results of this paper are as follows.

Received date: 2006-01-04; **Accepted date**: 2006-07-02

Foundation item: the National Natural Science Foundation of China (No. 10571128); the Natural Science Foundation of Jiangsu Education Committee (No. 05KJB110002).

Theorem 1.1 Let G be a nonnilpotent group. Then every subgroup of G is abelian or normal if and only if G/Z(G) is a (*)-Frobenius group and G satisfies one of the following properties:

(1) F(G) is abelian;

(2) $F(G) = P \times Q$, where P is an extraspecial p-group of order p^3 , and $Q = O_{p'}(Z(G))$. In particular, $G/Q \cong SL(2,3)$ for the case when p = 2.

Theorem 1.2 Let G be a nilpotent but nonabelian group. If every subgroup of G is abelian or normal, then $G = P \times A$, where $P \in \text{Syl}_p(G)$ is nonabelian, and A is an abelian p'-Hall subgroup of G. Moreover, there exists an abelian normal subgroup N of P such that every subgroup of P/N is normal in P/N.

2. Proofs

Lemma 2.1 Let G be a finite group in which every subgroup is abelian or normal. Then

- (1) The property is closed under taking subgroups and quotient groups;
- (2) G is solvable;
- (3) $nl(G) \le 2$.

Proof (1) This is clear.

(2) Suppose that G is simple. Then any proper subgroup of G is abelian, and this implies by [3, Ch1, Example 7.1] that G is a cyclic group of prime order. Suppose that G is not simple and let N be a minimal normal subgroup of G. We conclude by (1) and by induction on group order that N and G/N are both solvable, and so is G.

(3) Note that the hypothesis is inherited by any quotient group of G. Suppose that G possesses different minimal normal subgroups M, N. We have by induction that $nl(G/M), nl(G/N) \leq 2$, and so

$$nl(G) = \max\{nl(G/M), nl(G/N)\} \le 2,$$

and we are done. Consequently, we may assume that there is only one minimal normal subgroup, say, N in G.

Assume that $\Phi(G) > 1$. Then $nl(G/\Phi(G)) \le 2$ by induction, and so $nl(G) = nl(G/\Phi(G)) \le 2$, and we are done. Assume that $\Phi(G) = 1$. Then there exists a subgroup A of G such that G = A[N]. Clearly A is not normal in G, so A is abelian, and then $nl(G) \le 2$ as desired.

Lemma 2.2^[3, Ch 7, Theorem 2.7] If a π' -group H acts on an abelian π -group G, then $G = C_G(H) \times [G, H]$.

Lemma 2.3^[3, Ch 5, Theorem 4.3(3)] If G is a solvable group, then $C_G(F(G)) \leq F(G)$.

Proof of Theorem 1.1 \implies . Suppose that G satisfies the hypothesis of the theorem. By Lemma 2.1, G/F(G) is nilpotent. Write F = F(G).

Step 1. There exists a chief factor F/L of G such that G/L is nonnilpotent.

Clearly, $F/\Phi(G)$ is the Fitting subgroup of $G/\Phi(G)$, and $F/\Phi(G) = V_1 \times \cdots \times V_s$, where V_i is minimal normal subgroup of $G/\Phi(G)$ (i = 1, 2, ..., s). Also, we know that $F/\Phi(G)$ has a complement, say, $Y/\Phi(G)$, in $G/\Phi(G)$. Then there exists some V_i such that $Y/\Phi(G)$ acts nontrivially on V_i . In fact, if $Y/\Phi(G)$ always acts on V_i trivially for any $1 \le i \le s$, then $Y/\Phi(G)$ acts trivially on $F/\Phi(G)$, and so $G/\Phi(G)$ and G are nilpotent, a contradiction. Assume that $Y/\Phi(G)$ acts nontrivially on V_i and set $L = V_1 \times \cdots \times V_{i-1} \times V_{i+1} \times \cdots \times V_s$. We see that G/L is not nilpotent.

Step 2. L = Z(G), G = AF, where A is a maximal and abelian subgroup of G with $A \cap F = L$.

It is easy to see that F/L has a complement, say, A/L, in G/L, and that $A/L \cong G/F$ is nilpotent. Observe that if A/L is normal in G/L, then $G/L = A/L \times F/L$ is nilpotent which contradicts the Step 1. Thus A/L is not normal in G/L, so A is not normal in G, and thus A is abelian by the hypothesis. Note that G/L = A/L[F/L], where $F/L \cong V_i$ is a chief factor of G. This implies that A/L is a maximal subgroup of G/L, and so that A is a maximal and abelian subgroup of G.

Clearly, $C_G(L) \ge A$, and $C_G(L) \lhd G$ as L is normal in G. Since A is maximal but not normal in G, we conclude that $C_G(L) = G$, that is, $L \le Z(G)$. Observe that $F > Z(G) \ge L$ and F/L is a chief factor of G, it follows that L = Z(G).

Step 3. G/L is a (*)-Frobenius group with kernel F/L.

As F(G/Z(G)) = F(G)/Z(G), we have by Step 2 that G/L = A/L[F/L], where A/L is abelian and F/L is the Fitting subgroup of G/L. Since F/L, as a chief factor of G, is an elementary abelian *p*-group for some prime *p*, we see that F/L is a normal Sylow *p*-subgroup of G/L (Indeed, if U/L is a Sylow *p*-subgroup of G/L, then U/L is a normal *p*-subgroup of G/Lbecause G/F is nilpotent, and so $U/L \leq F(G/L)$, and $U \leq F$). Now A/L acts coprimely on F/L.

For each $h \in A/L - \{1\}$, by Lemma 2.2 we have $F/L = C_{F/L}(h) \times [F/L, \langle h \rangle]$. If there exists some $h \in A/L - \{1\}$ such that $[F/L, \langle h \rangle] = 1$, then $F/L = C_{F/L}(h)$ and $h \in C_{G/L}(F/L) \leq F/L = F(G/L)$, which contradicts Lemma 2.3. Thus $[F/L, \langle h \rangle] > 1$ for any $h \in A/L - \{1\}$. Clearly, $\langle h \rangle [F/L, \langle h \rangle]$ is not abelian, and it follows by our hypothesis that $\langle h \rangle [F/L, \langle h \rangle] \lhd G/L$. Then

$$[F/L, \langle h \rangle] = F/L \cap \langle h \rangle [F/L, \langle h \rangle] \triangleleft G/L.$$

Since F/L is a chief factor of G, we have $F/L = [F/L, \langle h \rangle]$, thus $C_{F/L}(h) = 1$, and consequently G/L is a Frobenius group with the kernel F/L and a complement A/L. Moreover, by [3, Ch8, Theorem 7.9], A/L is cyclic.

Again we claim that F/L is an irreducible A_1/L -subgroup for any $1 < A_1/L < A/L$. Suppose that F_1/L is an irreducible A_1/L -subgroup of F/L, where $1 < F_1/L \le F/L$ and $1 < A_1/L < A/L$. Since $G_1/L = A_1/L[F_1/L]$ is not abelian, it follows that $G_1/L \lhd G/L$. This implies that $F_1/L = G_1/L \cap F/L$ is normal in G/L, and so $F_1/L = F/L$ as wanted.

Step 4. Final proof of the "only if" part.

We need only to consider the case when F is not abelian.

We claim first that L = Z(F) = Z(G), and $|F/L| = p^2$ for some prime p. Recall that L = Z(G) and F/L is a chief factor of G. Since Z(F) is normal in G with $L \leq Z(F) < F$, we have

Z(F) = L.

Assume that |F/L| = p. Then F is abelian by [3, Ch4, Theorem 5.8], a contradiction. Thus $|F/L| \ge p^2$, and we can find distinct maximal subgroups H_1, H_2 of F in which L is contained. Since $H_i/L < F/L$, H_i/L is not normal in G/L, and so H_i is not normal in G for any i = 1, 2. Thus H_1, H_2 are abelian. Observe that $|F : H_1 \cap H_2| = p^2$, and $C_F(H_1 \cap H_2) \ge \langle H_1, H_2 \rangle = F$. We conclude that $H_1 \cap H_2 = Z(F) = L$ and $|F : L| = p^2$.

Now we conclude that $F = P \times Q$, where P is the nonabelian Sylow p-subgroup of F with $|P : Z(P)| = p^2$, and $Q = O_{p'}(F) = O_{p'}(Z(G))$. To finish the proof of the part "only if", we need to show that P is an extraspecial group of order p^3 . To this end, we can assume by Lemma 2.1 that

$$Q = 1$$
, i.e., $F = P$.

Since $|P: Z(P)| = p^2$, $Z(G) = Z(P) \ge \Phi(P) \ge P'$. Suppose that P' < Z(P). Let $K \cong G/P$ be a cyclic p'-subgroup. Then $P/P' = C_{P/P'}(K) \times [P/P', K]$ by Lemma 2.2. Since K acts trivially on $C_{P/P'}(K)$ and P', $C_{P/P'}(K) = Z(P)/P'$. Now $P/P' = Z(P)/P' \times V/P'$, where $V/P' = [P/P', K] \cong P/Z(P)$. Write $Z(P)/P' = \langle a_1 \rangle \times \cdots \times \langle a_t \rangle$, and assume that a_1 of order p^{k+1} for some integer $k \ge 0$. Since P/Z(P) cannot be cyclic, we have $V/P' = \langle b_1 \rangle \times \langle b_2 \rangle$. Then

$$P/P' = \langle a_1 \rangle \times \cdots \times \langle a_t \rangle \times \langle b_1 \rangle \times \langle b_2 \rangle = \langle a_1 \rangle \times \cdots \times \langle a_t \rangle \times \langle a_1^{p^{\circ}} b_1 \rangle \times \langle b_2 \rangle.$$

Set $V_1/P' = \langle a_1^{p^k} b_1 \rangle \times \langle b_2 \rangle$. Let us investigate V, V_1 . Assume that V (or V_1) is abelian. Then $C_P(b_2) \geq \langle V, Z(P) \rangle = P$, $b_2 \in Z(P)$, a contradiction. Assume that neither V nor V_1 is abelian. Then V, V_1 are both normal in G. This implies that

$$\langle b_2 \rangle = V_1 / P' \cap V / P' \triangleleft G / P'.$$

which contradicts the fact that $V/P' \cong P/Z(P)$ is a chief factor of G. Thus P' = Z(P), and so $P' = Z(P) = \Phi(P)$. Now applying [5, Lemma 6] we conclude that |P'| = p, and so P is an extraspecial p-group of order p^3 .

Furthermore, suppose p = 2. Then P is of order 8. Note that if $P \cong D_8$, then P/Z(P) cannot be a chief factor of G because P has unique cyclic subgroup of order 4. So $P \cong Q_8$. Also since the group G/P is isomorphic to a subgroup of $\operatorname{Aut}(P/Z(P)) = S_3$, we have |G/P| = 3, and $G \cong \operatorname{SL}(2,3)$.

 \Leftarrow . Let G/Z(G) be a (*)-Frobenius group satisfying the condition of the theorem. Write F = F(G). Then F/Z(G) = F(G/Z(G)) is the Frobenius kernel of G/Z(G). Assume that F/Z(G) is a *p*-group for some prime *p*, and let *P* be a Sylow *p*-subgroup and *A* be a *p'*-Hall subgroup, respectively, of *G*. Clearly, $P \leq F$ is a normal sylow *p*-subgroup of *G*. Let $D = O_{p'}(Z(G))$. Then $F = P \times D$, $G/F \cong A/D$ is cyclic. Since $D \leq Z(A)$, it follows that *A* is abelian by [3, Ch4, Theorem 5.8(1)]. Let G_1 be any subgroup of *G*. Clearly, we may write

 $G_1 = P_1A_1$, where $P_1 \leq P$ is normal in G_1 , and A_1 can be assumed to be a subgroup of the abelian p'-group A. In what follows, we shall prove that G_1 is either abelian or normal in G.

Case 1. F = F(G) is abelian.

Since $P = C_P(A) \times [P, A]$ by Lemma 2.2, we have $G = A[P] = A[C_P(A) \times [P, A]] = C_P(A) \times ([P, A]A)$. Set H = [P, A]A. Then $G = C_P(A) \times H$, $C_P(A) = P \cap Z(G)$, $Z(H) = A \cap Z(G)$, and [P, A] is the normal Sylow *p*-subgroup of *H*.

Assume that $A_1 = 1$. Then $G_1 = P_1$ is abelian. Assume that $P_1 = P$. Then $G_1 = PA_1 \ge P_1 \ge G'$ is normal in G. Assume that $P_1 \le Z(G)$. Then $G_1 = P_1 \times A_1$ is abelian.

In the rest of this case, we assume that $P_1 < P, P_1 \not\leq Z(G)$, and $A_1 > 1$.

Case 1.1. Suppose that $P_1 \leq [P, A]$. Clearly, $A_1Z(H)/Z(H)$ is a nontrivial p'-subgroup and $P_1Z(H)/Z(H)$ is a nontrivial p-subgroup of H/Z(H). Since $H/Z(H) \cong G/Z(G)$ is a (*)- Frobenius group, $P_1Z(H)/Z(H)$ is the Frobenius kernel of H/Z(H). Thus

$$P_1 \cong P_1 Z(H)/Z(H) \cong F/Z(G) \cong P/(P \cap Z(G)) = P/C_P(A) \cong [P, A],$$

and then $P_1 = [P, A]$. Now we have

$$G_1 = A_1 P_1 = A_1 [P, A] \ge [P, A] \ge G',$$

so G_1 is normal in G.

Case 1.2. Suppose that $P_1 \leq [P, A]$. Arguing as in the above paragraph, we conclude that $P_1 > [P, A]$. This also implies that $G_1 > [P, A] \geq G'$ is normal in G.

Case 2. $F = F(G) = P \times D$ is not abelian, where P is an extraspecial group of order p^3 , $D = O_{p'}(Z(G)) = O_{p'}(F)$.

Assume that $P_1 = P$. Then $G_1 = A_1 P \ge P \ge G'$, and so G_1 is normal in G.

Assume that $P_1 \leq Z(P)$. Then $Z(P) = O_p(Z(G))$ implies that $G_1 = A_1[P_1] = A_1 \times P_1$ is abelian.

Assume that $Z(P) < P_1 < P$ and $A_1 = 1$. Since P is of order p^3 , $G_1 = P_1$ is abelian of order p^2 .

Assume finally that $Z(P) < P_1 < P$. Then P_1 is abelian and of order p^2 . Suppose that $A_1 \not\leq Z(G)$. It is clear that $A_1Z(G)/Z(G)$ is a proper p'-subgroup of G/Z(G), and that $P_1Z(G)/Z(G)$ is a proper p-subgroup of G/Z(G). Since G/Z(G) is a (*)-Frobenius group, it forces $P_1Z(G)/Z(G)$ to be F/Z(G), and then $P_1Z(P) = P$, a contradiction. Therefore, $A_1 \leq Z(G)$, and then $G_1 = A_1[P_1] = A_1 \times P_1$ is abelian. Our proof is now completed.

Proof of Theorem 1.2 Let P be a nonabelian Sylow p-subgroup of G. Suppose that there is another nonabelian Sylow q-subgroup Q of G, where $p \neq q$. We may assume p is odd. Assume that all subgroups of P are normal in P. Then P is abelian by the structure of Hamilton group, a contradiction. Assume that there is a subgroup P_1 of P which is not normal in P. Then P_1Q is not normal in G, and so P_1Q is abelian, thus Q is abelian, a contradiction. Therefore, P is the unique nonabelian Sylow subgroup of G, and we may write $G = P \times A$, where A is an abelian p'-Hall subgroup of G.

Let B be an abelian subgroup of P with maximal order.

Case 1. Suppose that B is normal in P.

Set N = B. For any proper subgroup K/N of P/N, K is not abelian by the choice of B, and hence K/N is normal in P/N.

Case 2. B is not normal in P.

There exists a subgroup M of P such that B < M and |M:B| = p. Then M is not abelian, and so M is normal in P. Since B is not normal in P, there exists an element $x \in P$ such that $B^x \neq B$. Clearly, B and B^x are contained in $M^x = M$. Since B and B^x are distinct maximal subgroups of M, it follows that $BB^x = M$. Thus $M/B^x = BB^x/B^x \cong B/(B \cap B^x)$. Therefore, $|M:B \cap B^x| = |M:B| \cdot |M:B^x| = p^2$. Since $C_M(B \cap B^x) \ge \langle B, B^x \rangle = M$, we have $B \cap B^x \le Z(M)$. Now it is easy to see that $B \cap B^x = Z(M) \triangleleft P$. By the property of chief series of p-groups, there exists a normal subgroup N of P such that $B \cap B^x < N < M$. Arguing as in Case 1, we conclude that every subgroup of P/N is normal in P/N. Our proof is completed now.

Corollary 2.1 Let G be a finite p-group of odd order, and suppose that every subgroup of G is abelian or normal. Then the derived length of G is at most 2.

Proof By Theorem 1.2, there exists an abelian normal subgroup N of G such that every subgroup of G/N is normal. Thus G/N is abelian due to $p \ge 3$ and the structure of Hamilton groups. Therefore, $G' \le N$ is abelian.

Corollary 2.2 Let G be a finite 2-group, and suppose that every subgroup of G is abelian or normal. Then there exists an abelian normal subgroup N of G such that G/N is abelian or a direct product of Q_8 and an elementary abelian 2-group.

Proof By the proof of Theorem 1.2, there exists an abelian normal subgroup N of G such that every subgroup of G/N is normal. Therefore, there exists an abelian normal subgroup N of G such that G/N is abelian or direct product of Q_8 and an elementary abelian 2-group.

References

- MILLER G A, MORENO H C. Non-abelian groups in which every subgroup is abelian [J]. Trans. Amer. Math. Soc., 1903, 4(4): 398–404.
- [2] ROBINSION D J S. A Course in the Theory of Groups [M]. Springer-Verlag, New York, 1993.
- [3] XU Mingyao. et al. An Introduction to Finite Groups [M]. Beijing: Science Press, 2001. (in Chinese)
- [4] HUPPERT B. Endlich Gruppen I [M]. Berlian Heidelberg New York: Springer-Verlag, 1979.
- [5] QIAN Guohua. On automorphism groups of some finite groups [J]. Sci. China Ser. A, 2003, 46(4): 450-458.