Morita Duality of Semigroup Graded Rings

ZHANG Zi Long¹, HOU Bo¹, LI Yan Mei²

College of Mathematics and Information Science, Hebei Normal University, Hebei 050016, China;
 2. 7227 Mail Box, Beijing 100072, China)

(E-mail: zlzhang@mail.hebtu.edu.cn; houbo1969@sina.com; meiliyan51@sina.com)

Abstract This paper studies Morita duality of semigroup-graded rings, and discusses an equivalence between duality functors of graded module category and bigraded bimodules. An important result is obtained: A semigroup bigraded R-A-bimodule Q defines a semigroup graded Morita duality if and only if Q is gr-faithfully balanced and $\text{Ref}(_RQ)$, $\text{Ref}(Q_A)$ is closed under graded submodules and graded quotients.

Keywords semigroup bigraded R-A-bimodule; Q-reflected; semigroup graded Morita duality.

Document code A MR(2000) Subject Classification 16D90; 16W50 Chinese Library Classification 0153.3

The concept of Morita duality plays a central role in module theory and ring theory. In [1]–[4] authors studied Morita duality of associative rings^[5] and group graded rings^[4]. The aim of this paper is to investigate the semigroup graded version of this concept and extends some corresponding results.

1. Semigroup graded rings

Let S be a semigroup with identity e. For every $x, y \in S$, we define

$$[xy^{-1}] = \{t \in S | ty = x\}$$

For each pair $t, y \in S$ we have $t \in [(ty)y^{-1}]$, so that for fixed y the collection $\{[xy^{-1}]|x \in S, [xy^{-1}] \neq \emptyset\}$ is a partition of S. Similarly, for the semigroup Ω and for every $\sigma, \tau \in \Omega$, we define

$$[\sigma^{-1}\tau] = \{\omega \in \Omega | \sigma\omega = \tau\},\$$

and for fixed σ the collection $\{[\sigma^{-1}\tau]|\tau\in\Omega, [\sigma^{-1}\tau]\neq\emptyset\}$ is a partition of Ω .

A subset $I \subseteq \Omega$ is called a right ideal if for any $\sigma \in I$, $\tau \in \Omega$ we have $\sigma \tau \in I$.

Let S be a semigroup with identity e. A unital ring R is called an S-graded ring (or graded by S) if there is a family $\{R_s | s \in S\}$ of additive subgroups of R such that $R = \bigoplus_{s \in S} R_s$, and for

Received date: 2005-10-10; Accepted date: 2007-07-13

Foundation item: the National Natural Science Foundation of China (No. 10571043; 10671053); the Natural Science Foundation of Hebei Province (No. 102132) and the Fundation of the Education Department of Hebei Province (No. 2004108).

each pair $s, t \in S$ we have $R_s R_t \subseteq R_{st}$. A left *R*-module *M* is called *S*-graded if there is a family $\{M_s | s \in S\}$ of additive subgroups of *M* such that $M = \bigoplus_{s \in S} M_s$, and for each pair $s, t \in S$ we have $R_s M_t \subseteq M_{st}$. If *M* is a graded left *R*-module, the elements of $h(M) = \bigcup_{s \in S} M_s$ are called homogeneous elements of *M*.

In this paper, let R (resp. A) be an S-graded (Ω -graded) ring, where S and Ω are semigroups with identity. (R, S)-gr (resp. gr- (A, Ω)) will denote the category of graded left R-modules (resp. right A-modules).

Let A be an Ω -graded ring and R an S-graded ring. For each pair $\sigma, \tau \in \Omega$ and $a \in A$, we set $A_{\sigma^{-1}\tau} = \bigoplus_{\substack{\omega \in \Omega \\ \sigma \omega = \tau}} A_{\omega}, a_{\sigma^{-1}\tau} = \sum_{\substack{\omega \in \Omega \\ \sigma \omega = \tau}} a_{\omega}$. For each pair $x, y \in S$ and $r \in R$, we set $R_{xy^{-1}} = \bigoplus_{\substack{t \in S \\ tx = y}} R_t, r_{xy^{-1}} = \sum_{\substack{t \in S \\ tx = y}} r_t$.

Proposition 1.1 Let A be an Ω -graded ring. Suppose $N \in \text{gr-}(A, \Omega)$ and set $\sigma, \tau, \omega \in \Omega$. Then

- (1) $N_{\sigma}A_{\sigma^{-1}\tau} \subseteq N_{\tau};$
- (2) $(na)_{\sigma} = \sum_{\tau \in \Omega} n_{\tau} a_{\tau^{-1}\sigma}$ for all $a \in A, n \in N$;
- (3) If $n \in N_{\sigma}$, $a \in A$, then $(na)_{\tau} = n_{\sigma}a_{\sigma^{-1}\tau}$ for each $\tau \in \Omega$;
- (4) If $n \in N_{\sigma}$, then $n = n \mathbb{1}_{\sigma^{-1}\sigma}$, while $n \mathbb{1}_{\sigma^{-1}\tau} = 0$ for each $\sigma \neq \tau$;
- (5) $N_{\sigma^{-1}\tau}A_{\omega} \subseteq N_{\sigma^{-1}\tau\omega};$

(6) If I is a right ideal of Ω , then $N_I = N_I A$ is a graded A-submodule of M, where $N_I = \sum_{\sigma \in I} n_{\sigma}$.

Proof (1) is obvious and (2) follows directly from $(na)_{\sigma} = \sum_{\omega \in \Omega} \sum_{\substack{\tau \in \Omega \\ \tau \omega = \sigma}} n_{\tau} a_{\omega} = \sum_{\tau \in \Omega} n_{\tau} a_{\tau^{-1}\sigma}$. Statement (3) is a special case of (2).

For each $n \in N_{\sigma}$, note that $n = n_{\sigma}$ and that $n_{\sigma} = (n1)_{\sigma} = n_{\sigma} \mathbf{1}_{\sigma^{-1}\sigma}$, we have $n = n\mathbf{1}_{\sigma^{-1}\sigma}$, while $0 = (n_{\sigma})_{\tau} = (n1)_{\tau} = n_{\sigma}\mathbf{1}_{\sigma^{-1}\tau} = n\mathbf{1}_{\sigma^{-1}\tau}$, so (4) holds.

Let $v \in [\sigma^{-1}\tau]$. Then $\sigma v = \tau$, and thus $\sigma v \omega = \tau \omega \Rightarrow v \omega \in [\sigma^{-1}\tau \omega]$, which implies that $N_{\sigma^{-1}\tau}A_{\omega} \subseteq N_{\sigma^{-1}\tau\omega}$, so (5) holds.

Finally for (6), if I is a right ideal of Ω and $\tau \in I$, then for each $\sigma \in \Omega$, $n_{\tau} \in N_{\tau}$ and $a_{\sigma} \in A_{\sigma}$ we have $\tau \sigma \in I$, $n_{\tau} a_{\sigma} \in N_{\tau\sigma} \subseteq N_I$, so that $N_I A \subseteq N_I$. Conversely because A has the identity, the relation $N_I \subseteq N_I A$ obviously holds and the result follows.

For $M \in (R, S)$ -gr and $s \in S$, set $M(s)_t = M_{ts^{-1}}$ for all $t \in S$, then $M(s) = \bigoplus_{t \in S} M_{ts^{-1}}$ is an S-graded left R-module. For each $s \in S$, we define ${}^{s}\mathcal{P} = R1_{ss^{-1}}$, which is a graded submodule of R(s) by setting $({}^{s}\mathcal{P})_t = R_{ts^{-1}}1_{ss^{-1}}$ for all $t \in S$.

Similarly, for $N \in \text{gr-}(A, \Omega)$ and $\sigma \in \Omega$, $(\sigma)N = \bigoplus_{\tau \in \Omega} N_{\sigma^{-1}\tau}$ is an Ω -graded right A-module. For each $\sigma \in \Omega$, we define $\mathcal{Q}^{\sigma} = 1_{\sigma^{-1}\sigma}A$, which is a graded submodule of $(\sigma)A$ by setting $(\mathcal{Q}^{\sigma})_{\tau} = 1_{\sigma^{-1}\sigma}A_{\sigma^{-1}\tau}$ for all $\tau \in \Omega$.

Proposition 1.2^[7] The collection $\{{}^{s}\mathcal{P}\}_{s\in S}$ defined above forms a system of finitely generated projective generators of (R, S)-gr.

Proposition 1.3 Let A be a unital ring graded by the semigroup Ω and let $\sigma \in \Omega$.

Morita duality of semigroup graded rings

(1) For $N \in \operatorname{gr-}(A, \Omega)$, the map $\varphi^{\sigma}(N) : \operatorname{Hom}_{\operatorname{gr-}(A,\Omega)}(\mathcal{Q}^{\sigma}, N) \longrightarrow N_{\sigma}$ given by

$$\varphi^{\sigma}(N): f \mapsto f(1_{\sigma^{-1}\sigma})$$

is an isomorphism of abelian groups.

(2) The functor $\operatorname{Hom}_{\operatorname{gr}(A,\Omega)}(\mathcal{Q}^{\sigma},-)$ is isomorphic to the functor $(-)_{\sigma}$.

Proposition 1.4 The collection $\{Q^{\sigma}\}_{\sigma\in\Omega}$ defined above forms a system of finitely generated projective generators of gr- (A, Ω) .

2. Bigraded bimodules

In this section, we denote by S and Ω two semigroups and $R = \bigoplus_{s \in S} R_s$ and $A = \bigoplus_{\sigma \in \Omega} A_{\sigma}$ two rings graded by S and Ω , respectively.

An *R*-*A*-bimodule ${}_{R}Q_{A}$ is said to be a bigraded *R*-*A*-bimodule if there is a family $\{ {}_{s}Q_{\sigma} | s \in S, \sigma \in \Omega \}$ of additive subgroups of Q such that $Q = \bigoplus_{\substack{s \in S \\ \sigma \in \Omega}} {}_{s}Q_{\sigma}$ and for every $s, t \in S, \sigma, \tau \in \Omega$, we have $R_{s} \cdot {}_{t}Q_{\sigma} \cdot A_{\tau} \subseteq {}_{st}Q_{\sigma\tau}$.

For every $s \in S, \sigma \in \Omega$, set ${}_{s}Q = \bigoplus_{\sigma \in \Omega} {}_{s}Q_{\sigma}$ and $Q_{\sigma} = \bigoplus_{s \in S} {}_{s}Q_{\sigma}$, then ${}_{s}Q$ is a graded right *A*-submodule of Q_{A} and Q_{σ} is a graded left *R*-submodule of ${}_{R}Q$. Thus for every $M \in (R, S)$ -gr

$$\operatorname{Hom}_{(R,S)-\operatorname{gr}}(M,Q) = \{ f \in \operatorname{Hom}(M,Q) \mid f(M_s) \subseteq {}_sQ, \forall s \in S \},\$$

has a natural structure of right A-module. For every $\sigma \in \Omega$ set

$$M_{\sigma}^* = \{ f \in \operatorname{Hom}_{(R,S)-\operatorname{gr}}(M,Q) | \operatorname{Im} f \subseteq Q_{\sigma} \}.$$

Thus $M^* = \sum_{\sigma \in \Omega} M^*_{\sigma}$, which is an A-submodule of $\operatorname{Hom}_{(R,S)-\operatorname{gr}}(M,Q)$, can be considered as a graded right A-module by setting $(M^*)_{\sigma} = M^*_{\sigma}$.

Now let $M_1, M_2 \in (R, S)$ -gr and $f \in \operatorname{Hom}_{(R,S)-\operatorname{gr}}(M_1, M_2)$. Then for every $\sigma \in \Omega$ and $\alpha \in (M_2^*)_{\sigma}$, $\operatorname{Im}(f\alpha) \subseteq \operatorname{Im}(\alpha) \subseteq Q_{\sigma}$ so that $f\alpha \in (M_1^*)_{\sigma}$. Thus the transpose of f induces a morphism $f^* : M_2^* \to M_1^*$ of graded right A-modules and we have the following two duality functors:

$$\begin{aligned} H_R(-,Q):(R,S)\text{-}\mathrm{gr} &\longrightarrow \mathrm{gr}\text{-}(A,\Omega), \quad M \mapsto M^*, \quad f \mapsto f^* \\ H_A(-,Q):\mathrm{gr}\text{-}(A,\Omega) &\longrightarrow (R,S)\text{-}\mathrm{gr}, \quad N \mapsto N^*, \quad g \mapsto g^*. \end{aligned}$$

Proposition 2.1 Let $_{R}Q_{A} = \bigoplus_{\substack{s \in S \\ \sigma \in \Omega}} {}_{s}Q_{\sigma}$ be a bigraded *R*-*A*-bimodule and let $M \in (R, S)$ -gr, $N \in$ gr- (A, Ω) . Then there is an isomorphism

$$\eta : \operatorname{Hom}_R(M, \operatorname{Hom}_A(N, Q)) \xrightarrow{\sim} \operatorname{Hom}_A(N, \operatorname{Hom}_R(M, Q)).$$

Moreover, it can induce an isomorphism

$$\overline{\eta}: \operatorname{Hom}_{(R,S)-\operatorname{gr}}(M, \operatorname{Hom}_{A}(N, Q)) \widetilde{\to} \operatorname{Hom}_{\operatorname{gr-}(A,\Omega)}(N, \operatorname{Hom}_{R}(M, Q))$$

natural in each of the three variables.

Let $_{R}Q_{A}$ be a bigraded *R*-*A*-bimodule. We define the functors by

$$\omega = \omega^1 : 1_{(R,S)}\text{-gr} \to (-)^{**} = H_A(-,Q) \circ H_R(-,Q)$$

$$\omega = \omega^2 : 1_{\operatorname{gr}(A,\Omega)} \to (-)^{**} = H_R(-,Q) \circ H_A(-,Q).$$

For every $M \in (R, S)$ -gr, $m \in M, f \in M^*$, $[(m)\omega_M^1](f) = (m)f$ and for every $N \in \text{gr-}(A, \Omega), n \in N, g \in N^*$, $(g)[\omega_N^2(n)] = g(n)$.

Proposition 2.2 For every $M \in (R, S)$ -gr, $(\omega_M)^* \circ \omega_{M^*}$ is the identity map 1_{M^*} and for every $N \in \text{gr-}(A, \Omega), (\omega_N)^* \circ \omega_{N^*}$ is the identity map 1_{N^*} .

Proof By the definition $(\omega_M)^* : M^{***} \to M^*, \omega_{M^*} : M^* \to M^{***}$. Let $\gamma \in M^*$. Then for every $m \in M$

$$(m)[(\omega_M)^* \circ (\omega_{M^*}(\gamma))] = (m)[\omega_{m^*}(\gamma) \circ \omega_M] = [(m)\omega_M](\gamma) = (m)\gamma,$$

which implies that $(\omega_M)^* \circ \omega_{M^*} = 1_{M^*}$.

Definition 2.3 Let $_RQ_A$ be a bigraded R-A-bimodule and let $M \in (R, S)$ -gr (resp. $N \in$ gr- (A, Ω)). M (resp. N) is called Q-reflexive if ω_M (resp. ω_N) is an isomorphism.

We will denote by $\operatorname{Ref}(_RQ)$ (resp. $\operatorname{Ref}(Q_A)$ the full subcategory of R-gr (resp. gr-A) consisting of Q-reflexive graded left R-modules (resp. right A-modules). Obviously, if M is Q-reflexive, so is M^* .

Definition 2.4 Let \Re be a family of graded left *R*-modules. An graded left *R*-module $M \in (R, S)$ -gr is called gr-cogenerated by \Re if \Re cogenerates M in (R, S)-gr, i.e., if there is an embedding, in (R, S)-gr, of M into a direct product, in (R, S)-gr, of elements of \Re .

Lemma 2.5 Let \Re be a family of graded left *R*-modules. Then

(1) $M \in (R, S)$ -gr is gr-cogenerated by \Re iff for every $0 \neq x \in h(M)$ there exists a $C \in \Re$ and an $f \in \operatorname{Hom}_{(R,S)-\operatorname{gr}}(M, C)$ such that $(x)f \neq 0$.

(2) \Re is a set of cogenerators in (R, S)-gr iff \Re gr-cogenerates any graded left R-module.

Lemma 2.6 Let $_RQ_A$ be a bigraded R-A-bimodule and let $M \in (R, S)$ -gr. Then the following statements are equivalent:

(1) ω_M is a monomorphism.

(2) M is gr-cogenerated by the family $\{Q_{\sigma} | \sigma \in \Omega\}$.

Let $Q = \bigoplus_{s \in S \atop \sigma \in \Omega} {}_{s}Q_{\sigma}$ be a bigraded *R*-*A*-bimodule. Note that $R_{ts^{-1}} \cdot 1_{ss^{-1}} \cdot {}_{s}Q = R_{ts^{-1}} \cdot {}_{s}Q \subseteq {}_{t}Q$ and that $Q_{\sigma} \cdot 1_{\sigma^{-1}\sigma} \cdot A_{\sigma^{-1}\tau} = Q_{\sigma} \cdot A_{\sigma^{-1}\tau} \subseteq Q_{\tau}$ by [7, Lemma 2.4], for every $s, t \in S$ and every $\sigma, \tau \in \Omega$ there exist canonical group homomorphisms $\lambda_{s,t} : ({}^{s}\mathcal{P})_t \longrightarrow \operatorname{Hom}_{\operatorname{gr-}(A,\Omega)}({}_{s}Q, {}_{t}Q)$ defined by

$$[(r)\lambda_{s,t}](q) = rq$$
, for every $r \in ({}^{s}\mathcal{P})_{t}, q \in {}_{s}Q$

and $\rho_{\sigma,\tau}: (\mathcal{Q}^{\sigma})_{\tau} \longrightarrow \operatorname{Hom}_{(R,S)}\operatorname{-gr}(Q_{\sigma}, Q_{\tau})$ defined by

$$(p)[\rho_{\sigma,\tau}(a)] = pa$$
, for every $a \in (\mathcal{Q}^{\sigma})_{\tau}, p \in Q_{\sigma}$.

Definition 2.7 A bigraded *R*-*A*-bimodule ${}_{R}Q_{A}$ is said to be gr-faithfully balanced if for every $s, t \in S$ and for every $\sigma, \tau \in \Omega$ the group homomorphisms $\lambda_{s,t}$ and $\rho_{\sigma,\tau}$ are isomorphic.

Proposition 2.8 Let $_{R}Q_{A} = \bigoplus_{\substack{s \in S \\ \sigma \in \Omega}} {}_{s}Q_{\sigma}$ be a bigraded *R*-*A*-bimodule. The following statements are equivalent:

- (1) $_{R}Q_{A}$ is gr-faithfully balanced.
- (2) For every $s \in S$ and every $\sigma \in \Omega$, ${}^{s}\mathcal{P}$ and \mathcal{Q}^{σ} are Q-reflexive.

Proof For every $s \in S$, ${}^{s}\mathcal{P}$ is finite generated by Proposition 1.2, and $({}^{s}\mathcal{P})^{*} = \operatorname{Hom}_{(R,S)-\operatorname{gr}}({}^{s}\mathcal{P},Q) \cong {}_{s}Q$ by [7, Proposition 2.11], so $({}^{s}\mathcal{P})^{**} \cong ({}_{s}Q)^{*} = \operatorname{Hom}_{(R,S)-\operatorname{gr}}({}_{s}Q,Q) = \bigoplus_{t \in S} \operatorname{Hom}_{(R,S)-\operatorname{gr}}({}_{s}Q,tQ)$; On the other hand, we have ${}^{s}\mathcal{P} = \bigoplus_{t \in S} {}^{s}\mathcal{P}_{t}$. Thus ${}_{R}Q_{A}$ is gr-faithfully balanced iff ${}^{s}\mathcal{P}$ is Q-reflexive. Similarly, for every $\sigma \in \Omega$, $(Q^{\sigma})^{*} = \operatorname{Hom}_{\operatorname{gr}(A,\Omega)}(Q^{\sigma},Q) \cong Q_{\sigma}$ by Propositions 1.3 and 1.4 and ${}_{R}Q_{A}$ is gr-faithfully balanced iff Q^{σ} is Q-reflexive. \Box

3. Semigroup graded Morita duality

Proposition 3.1 Let $R = \bigoplus_{s \in S} R_s$ and $A = \bigoplus_{\sigma \in \Omega} A_{\sigma}$ be two rings graded by S and Ω respectively. Let \mathfrak{C} , \mathfrak{D} be full subcategories of (R, S)-gr and gr- (A, Ω) respectively and assume that the contravariant functors $F : \mathfrak{C} \to \mathfrak{D}$ and $F' : \mathfrak{D} \to \mathfrak{C}$ yield a duality between \mathfrak{C} and \mathfrak{D} . If for all $s \in S$, ${}^{s}\mathcal{P} \in \mathfrak{C}$, then there exists a bigraded R-A-bimodule $Q = \bigoplus_{\substack{s \in S \\ \sigma \in \Omega}} {}_{s}Q_{\sigma}$ such that $F' \simeq H_A(-,Q)$.

Proof For every $s \in S$ we set ${}_{s}Q = F({}^{s}\mathcal{P}) \in \mathfrak{D}$, which is a graded right A-module, then $Q = \bigoplus_{s \in S} {}_{s}Q$ is a bigraded R-A-bimodule. Let $N \in \operatorname{gr-}(A, \Omega)$. Then we have $F'(N)_{s} \cong \operatorname{Hom}_{(R,S)-\operatorname{gr}}({}^{s}\mathcal{P}, F'(N))$ by [7, Proposition 2.11] and thus

$$F'(N) = \bigoplus_{s \in S} F'(N)_s \cong \bigoplus_{s \in S} \operatorname{Hom}_{(R,S)-\operatorname{gr}}({}^{s}\mathcal{P}, F'(N))$$
$$\stackrel{F}{\cong} \bigoplus_{s \in S} \operatorname{Hom}_{\operatorname{gr}-(A,\Omega)}(FF'(N), F({}^{s}\mathcal{P})) = \bigoplus_{s \in S} \operatorname{Hom}_{\operatorname{gr}-(A,\Omega)}(N, sQ)$$
$$\cong \operatorname{Hom}_{\operatorname{gr}-(A,\Omega)}(N, Q) \cong H_A(N, Q).$$

Theorem 3.2 Let $R = \bigoplus_{s \in S} R_s$ and $A = \bigoplus_{\sigma \in \Omega} A_{\sigma}$ be two rings graded by S and Ω , respectively, \mathfrak{C} and \mathfrak{D} full subcategories of (R, S)-gr and gr- (A, Ω) respectively and assume that for every $s \in S$ and $\sigma \in \Omega$, ${}^{s}\mathcal{P} \in \mathcal{C}$ and $\mathcal{Q}^{\sigma} \in \mathfrak{D}$. Let $F : \mathfrak{C} \to \mathfrak{D}$ and $F' : \mathfrak{D} \to \mathfrak{C}$ be a duality. Then there exists a bigraded R-A-bimodule $Q = \bigoplus_{s \in S} {}^{s}SQ_{\sigma}$ such that:

- (1) For every $s \in S$ and $\sigma \in \Omega$, ${}_{s}Q \simeq F({}^{s}\mathcal{P}), Q_{\sigma} \simeq F'(\mathcal{Q}^{\sigma}).$
- (2) There are natural isomorphisms $F \cong H_R(-,Q), F' \cong H_A(-,Q)$.
- (3) $\mathfrak{C} \subseteq \operatorname{Ref}(_RQ)$ and $\mathfrak{D} \subseteq \operatorname{Ref}(Q_A)$.
- (4) $_{R}Q_{A}$ is gr-faithfully balanced.

Proof Statements (1) and (2) follow by Proposition 3.1. Note that (2) and (3) are equivalent, we only prove that statement (3) is true. For every $s \in S$, we have $({}^{s}\mathcal{P})^{*} = \operatorname{Hom}_{(R,S)-\operatorname{gr}}({}^{s}\mathcal{P},Q) \cong {}_{s}Q$, then $({}^{s}\mathcal{P})^{**} \cong ({}_{s}Q)^{*} = (F({}^{s}\mathcal{P}))^{*} \cong F'(F({}^{s}\mathcal{P})) \cong {}^{s}\mathcal{P}$, which implies that ${}^{s}\mathcal{P} \in \operatorname{Ref}(_{R}Q)$. Similarly, we have $\mathcal{Q}^{\sigma} \in \operatorname{Ref}(Q_{A})$.

Definition 3.3 Let $_{R}Q_{A}$ be a bigraded R-A-bimodule. We say that $_{R}Q_{A}$ defines a semigroup

graded Morita duality if

- M1) For every $s \in S$ and $\sigma \in \Omega$, ${}^{s}\mathcal{P}$ and \mathcal{Q}^{σ} are Q-reflexive.
- M2) $\operatorname{Ref}(_RQ)$ and $\operatorname{Ref}(Q_A)$ are closed under graded submodules and graded quotients.

Lemma 3.4 Let $_{R}Q_{A}$ be a bigraded R-A-bimodule and let $M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$ be an exact sequence in (R, S)-gr. Then $0 \longrightarrow (M'')^* \xrightarrow{g^*} M^* \xrightarrow{f^*} (M')^*$ is an exact sequence in gr- (A, Ω) .

Recall a graded right A-module $N \in \text{gr-}(A, \Omega)$ is gr-injective if the functor $H_R(-, N)$ is exact.

Lemma 3.5 Let $_RQ_A$ be a bigraded *R*-*A*-bimodule. Then the following assertions are equivalent:

(1) The contravariant functor $(-)^* = H_R(-,Q)$ is exact.

(2) For every $s \in S$ and for every left ideal I of ${}^{s}\mathcal{P}$, the dual j^{*} of the inclusion $j : I \hookrightarrow {}^{s}\mathcal{P}$ is surjective.

(3) For every $\sigma \in \Omega$ the graded left *R*-module Q_{σ} is gr-injective.

Proof Straightforward.

Proposition 3.6 Let \Re be a family of gr-injective left *R*-modules. Then the following assertions are equivalent:

- (1) \Re is a set of cogenerators in (R, S)-gr.
- (2) \Re gr-cogenerates every gr-simple left *R*-module.

Proof $(1) \Rightarrow (2)$ is clear.

(2) \Rightarrow (1) Let $M \in (R, S)$ -gr and let $0 \neq x \in h(M)$. Then H = Rx contains a grmaximal graded submodule N (see [5], Lemma 1.7.4) and there exists a $C \in \Re$ and $f \in$ $\operatorname{Hom}_{(R,S)-\operatorname{gr}}(H/N, C)$ such that $(x + N)f \neq 0$. Let $p : H \to H/N$ be the canonical projection. Then pf extends to a graded R-morphism $h : M \to C$, as C is gr-injective, and we have $(x)h = (x)pf = (x + N)f \neq 0$. Apply now Lemma 2.5.

Proposition 3.7 Let R be an S-graded ring and assume that ${}^{s}\mathcal{P}$ is defined as above. Then every gr-simple left R-module M is isomorphic to some quotients of ${}^{s}\mathcal{P}$.

Proof Let M be a gr-simple left R-module. Then for every $0 \neq m \in h(M)_x$, Rm = Mand we have a epimorphism $\alpha : {}^{s}\mathcal{P} \longrightarrow M$ defined by $\alpha(r) = rm$, which is graded since ${}^{s}\mathcal{P}_t \cdot M_s \cdot R_{ts^{-1}} \cdot 1_{ss^{-1}} \cdot M_s \subseteq M_t$. Thus there exists an isomorphism ${}^{s}p/\ker \alpha \cong M$. \Box

Theorem 3.8 Let *R* and *A* be rings graded by semigroups *S* and Ω respectively and let $_{R}Q_{A} = \bigoplus_{\sigma \in \Omega \atop \sigma \in \Omega} {}_{s}Q_{\sigma}$ be a bigraded *R*-*A*-bimodule. Then the following statements are equivalent: (1) $_{R}Q_{A}$ defines a semigroup graded Morita duality.

(2) For every $s \in S$ and $\sigma \in \Omega$ every graded submodules and graded quotient of ${}^{s}\mathcal{P}, \mathcal{Q}^{\sigma}, {}_{s}Q, Q_{\sigma}$ is Q-reflexive.

(3) $_{R}Q_{A}$ is gr-faithfully balanced, $\{Q_{\sigma} | \sigma \in \Omega\}$ is a set of gr-injective cogenerators of (R, S)-gr, $\{{}_{s}Q | s \in S\}$ is a set of gr-injective cogenerators of gr- (A, Ω) .

Proof (1) \Rightarrow (2) Assume that ${}_{R}Q_{A}$ defines a semigroup graded Morita duality, we have that ${}^{s}\mathcal{P}$ and \mathcal{Q}^{σ} are Q-reflexive and for every $s \in S$ and $\sigma \in \Omega_{-s}Q \cong H_{R}({}^{s}\mathcal{P},Q) = ({}^{s}\mathcal{P})^{*}$ and $Q_{\sigma} \cong H_{A}(\mathcal{Q}^{\sigma},Q) = (\mathcal{Q}^{\sigma})^{*}$ are Q-reflexive too.

 $(2) \Rightarrow (3)$ From Proposition 2.8 we deduce that $_RQ_A$ is gr-faithfully balanced. Now consider the canonical short exact sequence

$$0 \longrightarrow I \xrightarrow{j} {}^{s}p \xrightarrow{p} {}^{s}p/I \longrightarrow 0$$

for every graded ideal I of ${}^{x}\mathcal{P}$.

Let $H = Imj^* \subseteq I^*$ the image of the dual of j. Then H_A is isomorphic to a graded quotient of $({}^s\mathcal{P})^*$ i.e. $({}^s\mathcal{P})^*/\operatorname{Ker} j^* \cong \operatorname{Im} j^* = H$ and hence Q-reflexive from (2).

Let $i: H \hookrightarrow I^*$ the inclusion and $k: ({}^sp)^* \longrightarrow H$ the corestriction of j^* . Then we have the following commutative diagram with exact rows.

$$0 \longrightarrow I \xrightarrow{j} {}^{s}p \xrightarrow{p} {}^{p}p \xrightarrow{s}p/I \longrightarrow 0$$

$$\uparrow i^{*} \circ \omega_{I} \qquad \uparrow \omega_{(s_{p})} \qquad \uparrow \omega_{(s_{p}/I)}$$

$$0 \longrightarrow H^{*} \xrightarrow{k^{*}} ({}^{s}p)^{**} \xrightarrow{k^{*}} ({}^{s}p)^{**}/I \longrightarrow 0$$

From (2) the maps $\omega_{(^{s}\mathcal{P}/I)}$ and $\omega_{(^{s}\mathcal{P})}$ are isomorphic, therefore $i^{*} \circ \omega_{I}$ is isomorphic and $I \cong H^{*}$. Because H is Q-reflexive, H^{*} is Q-reflexive by Proposition 2.2. Thus I and I^{*} are Q-reflexive and i^{*} is isomorphic. This implies that i^{**} is always an isomorphism.

Let $L = I^*$. Then ω_L is an isomorphism. Thus $i = \omega_H i^{**} \omega_l^{-1}$ is an isomorphism and j^* is epimorphic. By Proposition 3.5 for every $\sigma \in \Omega$ the graded left *R*-module Q_{σ} is gr-injective.

Finally, by Proposition 3.7 every gr-simple left *R*-module is a graded quotient of ${}^{s}\mathcal{P}$ for some $s \in S$. Let *C* be a gr-simple left *R*-module. We have $C \cong {}^{s}\mathcal{P}/I$ for some graded submodule *I* of ${}^{x}\mathcal{P}$, then *C* is *Q*-reflexive and ω_{C} is isomorphic. Thus $\{Q_{\sigma} \mid \sigma \in \Omega\}$ gr-cogenerates *C* by Lemma 2.6 and $\{Q_{\sigma} \mid \sigma \in \Omega\}$ is a set of gr-injective cogenerators of (R, S)-gr by Proposition 3.6.

(3) \Rightarrow (1) By Proposition 2.8 for every $s \in S$ and $\sigma \in \Omega^{-s} \mathcal{P}$ and \mathcal{Q}^{σ} are Q-reflexive.

Let L be a graded submodule of a Q-reflexive graded left R-module M. Now consider the commutative diagram

As every $Q_{\sigma}(\sigma \in \Omega)$ and every ${}_{s}Q(s \in S)$ are gr-injective the bottom row is exact by Proposition 3.5. As $\{Q_{\sigma} | \sigma \in \Omega\}$ is a family of cogenerators of (R, S)-gr and $\{{}_{s}Q | s \in S\}$ is a family of cogenerators of gr- (A, Ω) the maps ω_{L} and $\omega_{(M/L)}$ are monomorphisms by Lemma 2.6. Then by Snake's lemma, they are epimorphisms.

Theorem 3.9 Let R and A be rings graded by semigroups S and Ω respectively and let ${}_{R}Q_{A} = \bigoplus_{\sigma \in \Omega \atop \sigma \in \Omega} {}_{s}Q_{\sigma}$ be a bigraded R-A-bimodule. Then ${}_{R}Q_{A}$ defines a semigroup graded Morita duality if and only if ${}_{R}Q_{A}$ is gr-faithfully balanced and $\operatorname{Ref}({}_{R}Q)$ and $\operatorname{Ref}(Q_{A})$ are closed under

graded submodules and graded quotients.

Proof The necessity follows from the definition of semigroup graded Morita duality and Theorem 3.9. For the sufficiency, since ${}_{R}Q_{A}$ is gr-faithfully balanced, for every $s \in S$ and $\sigma \in \Omega$ we have ${}^{s}\mathcal{P}$ and \mathcal{Q}^{σ} are Q-reflexive by Proposition 2.8, thus $Q_{\sigma} \cong (\mathcal{Q}^{\sigma})^{*}$ and ${}_{s}Q \cong ({}^{s}\mathcal{P})^{*}$ are also Q-reflexive. This completes the proof by Theorem 3.8.

References

- ANDERSON F W, FULLER K R. Rings and Categories of Modules [M]. Springer-Verlag, New York-Heidelberg, 1974.
- [2] ÅNH P N, MENINI C. Morita duality for rings with local units [J]. J. Algebra, 1994, 164(3): 632-641.
- [3] MENINI C. Finitely graded ring morita duality and self-injectivity [J]. Comm. Algebra, 1987, 15(9): 1779– 1797.
- [4] MULLER B J. Linear compactness and Morita duality [J]. J. Algebra, 1970, 16: 60–66.
- [5] NĂSTĂSESCU C, VAN O F. Graded Ring Theory [M]. Mathematical Library, North-Holland, Amsterdam, 1982.
- [6] MENINI C, ANGEL D R. Morita duality and graded rings [J]. Comm. Algebra, 1991, 19(6): 1765–1794.
- [7] ABRAMS G, MENINI C, ANGEL D R. Realization theorems for categories of graded modules over semigroupgraded rings [J]. Comm. Algebra, 1994, 22(13): 5343–5388.
- [8] NÅSTÅSESCU C. Some constructions over graded rings [J]. J. Algebra, 1989, 120(1): 119–138.