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1. Introduction

Consider the existence of positive solutions of the boundary value problem system






















(p1(t)x
′)′ + λf1(t, x(t), y(t)) + q1(t) = 0, r < t < R,

(p2(t)y
′)′ + λf2(t, x(t), y(t)) + q2(t) = 0, r < t < R,

a1x(r) − b1p1(r)x
′(r) = 0, c1x(R) + d1p1(R)x′(R) = 0,

a2y(r) − b2p2(r)y
′(r) = 0, c2y(R) + d2p2(R)y′(R) = 0,

(1.1λ)

where λ > 0 is a parameter, f1, f2 : [r, R] × R+ × R+ 7→ R+ are continuous, q1, q2 : [r, R] 7→ R1

are continuous, p1, p2 : R+ 7→ (0,∞) are differentiable continuous, ai, bi, ci, di (i = 1, 2) are

nonnegative constants, R+ = [0,∞).

The system (1.1λ) is a semi-positone system because q1, q2 are allowed to take negative values.

Semi-positone problems arise in many different areas of applied mathematics and physics, such

as the buckling of mechanical systems, the design of suspension bridges, chemical reactions,

management of natural resources, thermal equilibrium of plasmas and so on. From an application

viewpoint, people are usually interested in the existence of positive solutions for semi-positone

problems. The study of semi-positone problems was formally introduced by Castro and Shivaji[1].

During the last ten years, finding positive solutions for semi-positone problems has been actively

pursued and significant progress on semi-positone problems has been made[1−12]. To establish

the existence results for positive solutions of semi-positone problems, people usually employ the
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method of finding fixed points on some special cones with large enough norm, and then obtaining

the positive solutions of the semi-positone problems. This method is simple but very effective.

Anuradha et al[2] first used this method to study the existence of positive solutions of some

semi-positone boundary value problems. They proved in [2] an existence result of at least one

positive solution with a super-linear nonlinearity. Later on, many authors employed this method

to show the existence of positive solutions of various kinds of semi-positone boundary value

problems[3−12]. Xu and O’Regan[11] extended this method to an abstract operator equation and

obtained some abstract existence results for positive solutions of the operator equation. We can

deduce the main results of [2]–[10] directly by the abstract results of [11].

Semi-positone systems occur naturally in important applications, for example: predator-prey

systems with constant effort harvesting[14−17]. The main purpose of this paper is to establish

some existence results for positive solutions of the semi-positone systems (1.1λ). To do this, we

will continue to employ the method of [2]. However, generally speaking, in system C[r, R] ×

C[r, R], knowing that the supremum norm of u = (u1, . . . , um) (say) is large does not necessarily

mean that the supremum norm of each ui is large. Thus establishing that each component ui

of the solution is positive is an additional challenge. Moreover, there are few existence results

for positive solutions of semi-positone systems yet. In this paper, we will first give two existence

results for positive solutions of a semi-positone operator equations system.

2. Some abstract existence results for positive solutions

Let E be a real Banach space, and P a total cone of E which induces the ordering “≤” in

E. Consider the operator equations system
{

x = λK1F1(x, y) + e1,

y = λK2F2(x, y) + e2,
(2.1λ)

where λ > 0 is a parameter, K1, K2 : P 7→ P are linear completely continuous operators,

F1, F2 : P × P 7→ P are continuous and bounded operators, e1, e2 ∈ E.

Remark 2.1 Suppose that r(K1) > 0, r(K2) > 0 (r(K1) and r(K2) denote the spectrum radii

of K1 and K2, respectively). By Krein-Rutman Theorem (see [20, Theorem 3.1]), there exist

h1, h2 ∈ P ∗\{θ} such that

K∗
1h1 = r(K1)h1, K∗

2h2 = r(K2)h2, (2.2)

where P ∗ is the dual cone of the cone P , and K∗
1 and K∗

2 are the conjugate operators of K1 and

K2, respectively.

Let ϕ1, ϕ2 ∈ P\{θ}, Q1 = {x ∈ P |x ≥ ‖x‖ϕ1} and Q2 = {x ∈ P |x ≥ ‖x‖ϕ2}. Then, Q1 and

Q2 are two cones of the Banach space E. Let E∆ = E × E, P∆ = P × P and Q∆ = Q1 × Q2.

For any (x, y) ∈ E∆, let

‖(x, y)‖ = ‖x‖ + ‖y‖.

Then E∆ is a real Banach space with the norm ‖(·, ·)‖, and P∆ and Q∆ are two cones of E∆.
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For convenience, we make the following assumptions.

(H1) Ki : P 7→ Qi(i = 1, 2) are completely continuous operators, Fi : P∆ 7→ P (i = 1, 2) are

continuous and bounded operators.

(H2) There exist ēi ∈ P (i = 1, 2) and c0 > 0, such that

ēi < c0ϕi, ei + ēi ∈ Qi, i = 1, 2.

(H3) For i = 1, 2, r(Ki) > 0, hi(ϕi) > 0, and

lim
(x,y)∈P∆,‖(x,y)‖→∞

hi(Fi(x, y))

‖(x, y)‖
= 0.

Theorem 2.1 Suppose that (H1)− (H3) hold. Moreover, there exist ζ > 0 and η > 0 such that

h1(F1(x, y − ē2)) ≥ η, ∀y ≥ ζϕ2, x ∈ P, (2.3)

h2(F2(x − ē1, y)) ≥ η, ∀x ≥ ζϕ1, y ∈ P. (2.4)

Then there exists λ∗ > 0 such that, the operator equations system (2.1λ) has at least one positive

solution for any λ ∈ (λ∗,∞).

Proof Let D1 = {x ∈ P |x ≥ ē1} and D2 = {x ∈ P |x ≥ ē2}. Then D1 and D2 are two closed

convex sets of E. By Dugundji Theorem (see Lemma 2.3 in Chapter 1, [13]), we see that for

α = 1, there exist continuous maps J1 : E 7→ D1 and J2 : E 7→ D2, such that

‖x − J1(x)‖ ≤ 2ρ(x, D1) ≤ 2‖x − ē1‖, ∀x ∈ E (2.5)

and

‖x − J2(x)‖ ≤ 2ρ(x, D2) ≤ 2‖x − ē2‖, ∀x ∈ E, (2.6)

where ρ(x, D1) and ρ(x, D2) denote the distances from x to D1 and D2, respectively. Obviously,

J1 : E 7→ D1 and J2 : E 7→ D2 are continuous and bounded. For any λ ∈ [1,∞), define

A1λ : P∆ 7→ P , A2λ : P∆ 7→ P and Aλ : P∆ 7→ P∆ by

A1λ(x, y) = λK1F1(J1(x) − ē1, J2(y) − ē2) + e1 + ē1, ∀(x, y) ∈ P∆,

A2λ(x, y) = λK2F2(J1(x) − ē1, J2(y) − ē2) + e2 + ē2, ∀(x, y) ∈ P∆,

Aλ(x, y) = (A1λ(x, y), A2λ(x, y)), ∀(x, y) ∈ P∆. (2.7)

From (H1) and (H2), we see that A1λ : P∆ 7→ Q1 and A2λ : P∆ 7→ Q2 are completely continuous

for any λ ∈ [1,∞). Thus, Aλ : P∆ 7→ Q∆ is completely continuous for any λ ∈ [1,∞).

Let R0 = 2(c0 + ζ), and

λ∗ = max{
R0‖h1‖

r(K1)η
,
R0‖h2‖

r(K2)η
} + 1.

Take (Ψ1, Ψ2) ∈ Q∆\{θ, θ}. Let λ0 > λ∗ be fixed at present. Now we show that

(x, y) 6= Aλ0
(x, y) + µ(Ψ1, Ψ2), (x, y) ∈ ∂BR0

∩ Q∆, µ ≥ 0, (2.8)
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where BR0
= {(x, y) ∈ E∆|‖(x, y)‖ < R0} and ∂BR0

denotes the boundary of BR0
in E∆.

Assume by contradiction that there exist (x0, y0) ∈ ∂BR0
∩ Q∆ and µ0 ≥ 0 such that

(x0, y0) = Aλ0
(x0, y0) + µ0(Ψ1, Ψ2). (2.9)

Since ‖(x0, y0)‖ = ‖x0‖+‖y0‖ = 2(c0+ζ), we have ‖x0‖ ≥ c0+ζ or ‖y0‖ ≥ c0+ζ. If ‖x0‖ ≥ c0+ζ,

then by (H1), (H2) and (2.9), x0 ∈ Q1, and so

x0 − ē1 ≥ (‖x0‖ − c0)ϕ1 ≥ ζϕ1 > θ. (2.10)

Thus, J1(x0) − ē1 = x0 − ē1. From (2.4), (2.9) and (2.10), we have

‖y0‖‖h2‖ ≥ h2(y0) = h2(A2λ0
(x0, y0) + µ0Ψ2)

≥ h2(λ0K2F2(J1(x0) − ē1, J2(y0) − ē2) + e2 + ē2)

≥ h2(λ0K2F2(J1(x0) − ē1, J2(y0) − ē2))

= λ0(K
∗
2h2)(F2(J1(x0) − ē1, J2(y0) − ē2))

= λ0r(K2)h2(F2(x0 − ē1, J2(y0) − ē2))

≥ λ0r(K2)η.

Thus,

λ0 ≤
‖y0‖‖h2‖

r(K2)η
≤

R0‖h2‖

r(K2)η
. (2.11)

Similarly, if ‖y0‖ ≥ c0 + ζ, then we have

λ0 ≤
‖x0‖‖h1‖

r(K1)η
≤

R0‖h1‖

r(K1)η
. (2.12)

From (2.11) and (2.12), we have

λ0 ≤ max{
R0‖h1‖

r(K1)η
,
R0‖h2‖

r(K2)η
},

which contradicts the definition of λ0, and so (2.8) holds. By the properties of the fixed point

index, we have

i(Aλ0
, BR0

∩ Q∆, Q∆) = 0. (2.13)

Take bλ0
: 0 < bλ0

< [3λ0(
r(K1)
h1(ϕ1)

+ r(K2)
h2(ϕ2)

)]−1. From (H3), we see that there exists R′
λ0

> 0, such

that

h1(F1(x, y)) ≤ bλ0
‖(x, y)‖, ∀(x, y) ∈ P∆, ‖(x, y)‖ ≥ R′

λ0
,

h2(F2(x, y)) ≤ bλ0
‖(x, y)‖, ∀(x, y) ∈ P∆, ‖(x, y)‖ ≥ R′

λ0
.

Let

M̄1 = sup{h1(F1(x, y))|(x, y) ∈ P∆, ‖(x, y)‖ ≤ R′
λ0
},

M̄2 = sup{h2(F2(x, y))|(x, y) ∈ P∆, ‖(x, y)‖ ≤ R′
λ0
}

and M̄ = max{M̄1, M̄2}. Then we have

h1(F1(x, y)) ≤ bλ0
‖(x, y)‖ + M̄, ∀(x, y) ∈ P∆, (2.14)
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h2(F2(x, y)) ≤ bλ0
‖(x, y)‖ + M̄, ∀(x, y) ∈ P∆. (2.15)

Take

Rλ0
> max{R0,

‖e1 + ē1‖ + ‖e2 + ē2‖ + (λ0M̄ + 3λ0bλ0
‖(ē1, ē2)‖)(

r(K1)
h1(ϕ1)

+ r(K2)
h2(ϕ2)

)

1 − 3λ0bλ0
( r(K1)

h1(ϕ1)
+ r(K2)

h2(ϕ2)
)

}.

Next we show that

(x, y) 6= µAλ0
(x, y), (x, y) ∈ ∂BRλ0

∩ Q∆, µ ∈ [0, 1]. (2.16)

Assume by contradiction that there exist (x0, y0) ∈ ∂BRλ0
∩ Q∆ and µ0 ∈ [0, 1] such that

(x0, y0) = µ0Aλ0
(x0, y0).

Obviously, µ0 > 0. Since K1 : P 7→ Q1 and K2 : P 7→ Q2, we have from (2.14) and (2.15) that

‖(x0, y0)‖ =µ0‖Aλ0
(x0, y0)‖ ≤ ‖Aλ0

(x0, y0)‖

=‖A1λ0
(x0, y0)‖ + ‖A2λ0

(x0, y0)‖

≤‖e1 + ē1‖ + ‖λ0K1F1(J1(x0) − ē1, J2(y0) − ē2)‖+

‖e2 + ē2‖ + ‖λ0K2F2(J1(x0) − ē1, J2(y0) − ē2)‖

≤‖e1 + ē1‖ +
λ0h1(K1F1(J1(x0) − ē1, J2(y0) − ē2))

h1(ϕ1)
+

‖e2 + ē2‖ +
λ0h2(K2F2(J1(x0) − ē1, J2(y0) − ē2))

h2(ϕ2)

=‖e1 + ē1‖ +
λ0r(K1)h1(F1(J1(x0) − ē1, J2(y0) − ē2))

h1(ϕ1)
+

‖e2 + ē2‖ +
λ0r(K2)h2(F2(J1(x0) − ē1, J2(y0) − ē2))

h2(ϕ2)

≤‖e1 + ē1‖ + ‖e2 + ē2‖+

λ0(
r(K1)

h1(ϕ1)
+

r(K2)

h2(ϕ2)
)[bλ0

‖(J1(x0) − ē1, J2(y0) − ē2)‖ + M̄ ]. (2.17)

From (2.5) and (2.6), we have

‖J1(x0) − ē1‖ ≤ ‖J1(x0) − x0‖ + ‖x0 − ē1‖ ≤ 3‖x0 − ē1‖ ≤ 3(‖x0‖ + ‖ē1‖), (2.18)

and

‖J2(y0) − ē2‖ ≤ ‖J2(y0) − y0‖ + ‖y0 − ē2‖ ≤ 3‖y0 − ē2‖ ≤ 3(‖y0‖ + ‖ē2‖). (2.19)

From (2.17)-(2.19), we have

‖(x0, y0)‖ ≤‖e1 + ē1‖ + ‖e2 + ē2‖ + λ0M̄(
r(K1)

h1(ϕ1)
+

r(K2)

h2(ϕ2)
)+

3λ0bλ0
(‖ē1‖ + ‖ē2‖)(

r(K1)

h1(ϕ1)
+

r(K2)

h2(ϕ2)
)+

3λ0bλ0
(

r(K1)

h1(ϕ1)
+

r(K2)

h2(ϕ2)
)‖(x0, y0)‖
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and so

‖(x0, y0)‖ ≤
‖e1 + ē1‖ + ‖e2 + ē2‖ + (λ0M̄ + 3λ0bλ0

‖(ē1, ē2)‖)(
r(K1)
h1(ϕ1)

+ r(K2)
h2(ϕ2)

)

1 − 3λ0bλ0
( r(K1)

h1(ϕ1)
+ r(K2)

h2(ϕ2)
)

,

which is a contradiction, and so (2.16) holds. From the properties of the fixed point index, we

have

i(Aλ0
, BRλ0

∩ Q∆, Q∆) = 1. (2.20)

From (2.13) and (2.20), we have

i(Aλ0
, (BRλ0

\BR0
) ∩ Q∆, Q∆) = 1.

Thus, Aλ0
has at least one fixed point (xλ0

, yλ0
) in (BRλ0

\BR0
) ∩ Q∆. That is

{

xλ0
= λ0K1F1(J1(xλ0

) − ē1, J2(yλ0
) − ē2) + e1 + ē1,

yλ0
= λ0K2F2(J1(xλ0

) − ē1, J2(yλ0
) − ē2) + e2 + ē2.

(2.21)

Let x̄λ0
= xλ0

− ē1, ȳλ0
= xλ0

− ē2. We claim that (x̄λ0
, ȳλ0

) ∈ P∆. In fact, since ‖(xλ0
, yλ0

)‖ ≥

R0 = 2(c0 + ζ), we have ‖xλ0
‖ ≥ c0 + ζ or ‖yλ0

‖ ≥ c0 + ζ. If ‖xλ0
‖ ≥ c0 + ζ, then from the fact

that xλ0
∈ Q1, we have

x̄λ0
= xλ0

− ē1 ≥ (‖xλ0
‖ − c0)ϕ1 ≥ ζϕ1 > θ,

and so J1(xλ0
) − ē1 = xλ0

− ē1. Therefore, by (2.4) and (2.21), we have

‖h2‖‖yλ0
‖ ≥ h2(yλ0

) = h2(λ0K2F2(J1(xλ0
) − ē1, J2(yλ0

) − ē2) + e2 + ē2)

= h2(λ0K2F2(xλ0
− ē1, J2(yλ0

) − ē2) + e2 + ē2)

≥ h2(λ0K2F2(xλ0
− ē1, J2(yλ0

) − ē2))

≥ λ0r(K2)η.

Consequently,

‖yλ0
‖ ≥

λ0r(K2)η

‖h2‖
≥

λ∗r(K2)η

‖h2‖
> c0.

Hence,

ȳλ0
= yλ0

− ē2 ≥ (‖yλ0
‖ − c0)ϕ2 > θ.

Therefore, J2(yλ0
) − ē2 = ȳλ0

.

When ‖yλ0
‖ ≥ c0 + ζ, in a similar way we can show that x̄λ0

> θ, ȳλ0
> θ.

From the discussion above, we have

J1(xλ0
) − ē1 = x̄λ0

, J2(yλ0
) − ē2 = ȳλ0

.

Therefore, by (2.21) we have
{

x̄λ0
= λ0K1F1(x̄λ0

, ȳλ0
) + e1,

ȳλ0
= λ0K2F2(x̄λ0

, ȳλ0
) + e2.

This implies that (x̄λ0
, ȳλ0

) is a positive solutions of (2.1λ0
). Since λ0 ∈ (λ∗,∞) is arbitrarily

given, we see the conclusion holds.



Positive solutions of sub-linear semi-positone boundary value problem system 311

Remark 2.2 The assumption (H3) is sub-linear condition. To apply Theorem 2.1, we need to

compute the spectrum radii of K1 and K2, and to find the functional h1, h2. However, in some

cases these are not easy. To overcome this difficulty, we give the following Theorem 2.2.

Theorem 2.2 Suppose that (H1) and (H2) hold. Moreover, P is a normal cone, F1 and F2 are

increasing on P∆, K1F1(θ, c0ϕ2) > θ, K2F2(c0ϕ1, θ) > θ, and

lim
(x,y)∈P∆,‖(x,y)‖→∞

‖K1F1(x, y)‖

‖(x, y)‖
= 0, (2.22)

lim
(x,y)∈P∆,‖(x,y)‖→∞

‖K2F2(x, y)‖

‖(x, y)‖
= 0. (2.23)

Then the operator equations system (2.1λ) has at least one positive solution for λ > 0 large

enough.

Proof The proof is similar to that of Theorem 2.1. For completeness, we give a brief proof. For

any λ ∈ [1,∞), let the operator Aλ be defined as (2.7). Take R0 ≥ 4c0 and let

λ∗ = max{1,
NR0

‖K1F1(θ, c0ϕ2)‖
,

NR0

‖K2F2(c0ϕ1, θ)‖
},

where N is the normal constant of the cone P . Let λ0 ∈ (λ∗,∞) be fixed at present. First

we prove that (2.8) still holds. Assume by contradiction that (2.9) holds for some (x0, y0) ∈

∂BR0
∩ Q∆ and µ0 > 0. Since ‖(x0, y0)‖ ≥ 4c0, we have ‖x0‖ ≥ 2c0 or ‖y0‖ ≥ 2c0. Assume

without loss of generality that ‖x0‖ ≥ 2c0. Then we have

J1(x0) − ē1 = x0 − ē1 ≥ (‖x0‖ − c0)ϕ1 ≥ c0ϕ1 > θ,

and so

y0 = λ0K2F2(J1(x0) − ē1, J2(y0) − ē2) + µ0Ψ2

≥ λ0K2F2(x0 − ē1, J2(y0) − ē2)

≥ λ0K2F2(c0ϕ1, θ).

Therefore,

λ0 ≤
N‖y0‖

‖K2F2(c0ϕ1, θ)‖
≤

NR0

‖K2F2(c0ϕ1, θ)‖
,

which is a contradiction, and so (2.8) holds. Hence, (2.13) still holds. From (2.22) and (2.23),

we see that for any bλ0
: 0 < bλ0

< 1
6λ0

, there exists R′
λ0

> 0 such that

‖K1F1(x, y)‖ ≤ bλ0
‖(x, y)‖, ‖K2F2(x, y)‖ ≤ bλ0

‖(x, y)‖

for all (x, y) ∈ P∆ with ‖(x, y)‖ ≥ R′
λ0

. Let

M̄1 = sup{‖K1F1(x, y)‖|(x, y) ∈ P∆, ‖(x, y)‖ ≤ R′
λ0
},

M̄2 = sup{‖K2F2(x, y)‖|(x, y) ∈ P∆, ‖(x, y)‖ ≤ R′
λ0
},

and M̄ = max{M̄1, M̄2}. Then for any (x, y) ∈ P∆, we have

‖K1F1(x, y)‖ ≤ bλ0
‖(x, y)‖ + M̄, ‖K2F2(x, y)‖ ≤ bλ0

‖(x, y)‖ + M̄. (2.24)
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Take

Rλ0
> max{R0,

6λ0bλ0
‖(ē1, ē2)‖ + 2λ0M̄ + ‖(e1 + ē1, e2 + ē2)‖

1 − 6λ0bλ0

}.

Next we will show (2.16). Assume by contradiction that for some (x0, y0) ∈ ∂BRλ0
∩ Q∆, µ0 ∈

[0, 1], we have

(x0, y0) = µ0Aλ0
(x0, y0).

Then, by (2.18), (2.19) and (2.24), we have

‖(x0, y0)‖ ≤‖Aλ0
(x0, y0)‖

≤λ0(‖K1F1(J1(x0) − ē1, J2(y0) − ē2)‖ + ‖K2F2(J1(x0) − ē1, J2(y0) − ē2)‖)+

‖e1 + ē1‖ + ‖e2 + ē2‖

≤2λ0bλ0
‖(J1(x0) − ē1, J2(y0) − ē2)‖ + 2λ0M̄ + ‖e1 + ē1‖ + ‖e2 + ē2‖

≤2λ0bλ0
(3‖(x0, y0)‖ + 3‖(ē1, ē2)‖) + 2λ0M̄ + ‖(e1 + ē1, e2 + ē2)‖

=6λ0bλ0
‖(x0, y0)‖ + 6λ0bλ0

‖(ē1, ē2)‖ + 2λ0M̄ + ‖(e1 + ē1, e2 + ē2)‖

and so

Rλ0
= ‖(x0, y0)‖ ≤

6λ0bλ0
‖(ē1, ē2)‖ + 2λ0M̄ + ‖(e1 + ē1, e2 + ē2)‖

1 − 6λ0bλ0

,

which is a contradiction. Thus (2.16) holds. From the properties of the fixed point index, we see

that (2.20) holds. Now we have from (2.13) and (2.20) that

i(Aλ0
, (BRλ0

\BR0
) ∩ Q∆, Q∆) = 1.

Then, Aλ0
has at least one fixed point (xλ0

, yλ0
) in (BRλ0

\BR0
) ∩ Q∆.

Let x̄λ0
= xλ0

− ē1, ȳλ0
= yλ0

− ē2. Now we will show that (x̄λ0
, ȳλ0

) ∈ P∆. In fact, since

‖(xλ0
, yλ0

)‖ ≥ 4c0, we have ‖xλ0
‖ ≥ 2c0 or ‖yλ0

‖ ≥ 2c0. Assume without loss of generality that

‖xλ0
‖ ≥ 2c0. Then, we have

J1(xλ0
) − ē1 = x̄λ0

= xλ0
− ē1 ≥ (‖xλ0

‖ − c0)ϕ1 ≥ c0ϕ1 > θ

and so

yλ0
= λ0K2F2(xλ0

− ē1, J2(yλ0
) − ē2) + e2 + ē2 ≥ λ0K2F2(c0ϕ1, θ).

Consequently,

‖yλ0
‖ ≥ N−1λ0‖K2F2(c0ϕ1, θ)‖ ≥ N−1λ∗‖K2F2(c0ϕ1, θ)‖ ≥ 2c0.

Therefore,

J2(yλ0
) − ē2 = ȳλ0

= yλ0
− ē2 ≥ (‖yλ0

‖ − c0)ϕ2 ≥ c0ϕ2 > θ.

Then, (x̄λ0
, ȳλ0

) is a positive solution of (2.1λ0
). Since λ0 ∈ (λ∗,∞) is arbitrarily given, we see

that the conclusion holds. 2

3. Positive solutions of semi-positone differential boundary value prob-

lems system
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In this section, we will apply Theorem 2.1 to differential boundary value problems systems

(1.1λ). For convenience, we make the following assumptions.

(A1) For i = 1, 2, pi ∈ C[r, R], pi(t) > 0(t ∈ [r, R]), fi(t, x, y) ≥ 0, (t, x, y) ∈ [r, R]×R+×R+.

(A2) For i = 1, 2, ai, bi, ci, di ≥ 0, and aici + aidi + bici > 0.

(A3)

lim
(x,y)≥(0,0),x+y→∞

f1(t, x, y)

x + y
= lim

(x,y)≥(0,0),x+y→∞

f2(t, x, y)

x + y
= 0

uniformly with t ∈ [α, β] ⊂ (r, R).

(A4) There exists M0 > 0, such that for i = 1, 2, |qi(t)| ≤ M0(t ∈ [r, R]).

(A5) There exist two constants γ1 > 0 and γ2 > 0, such that

f1(t, x, y) ≥ γ1, ∀x ≥ 0, y ≥ γ2, t ∈ [α, β],

and

f2(t, x, y) ≥ γ1, ∀y ≥ 0, x ≥ γ2, t ∈ [α, β].

For any x ∈ C[r, R], let ‖x‖ = max
t∈[r,R]

|x(t)|. Then E = C[r, R] is a real Banach space with

the norm ‖ · ‖. Let P = {x ∈ E|x(t) ≥ 0, t ∈ [r, R]}, Q1 = {x ∈ P |x(t) ≥ ‖x‖ϕ1(t), t ∈ [r, R]}

and Q2 = {x ∈ P |x(t) ≥ ‖x‖ϕ2(t), t ∈ [r, R]}, where

ϕi(t) = min{
bi + ai

∫ t

r
p−1

i

bi + ai

∫ R

r
p−1

i

,
di + ci

∫ R

t
p−1

i

di + ci

∫ R

r
p−1

i

}, t ∈ [0, 1], i = 1, 2.

Obviously, P is a normal solid cone, and so P is a total cone. Q1 and Q2 are also cones of E.

For i = 1, 2, let us define the operators Ki : E 7→ E and Fi : P∆ 7→ P by

(Kix)(t) =

∫ R

r

Gi(t, s)x(s)ds, t ∈ [r, R], x ∈ E, i = 1, 2,

Fi(x, y)(t) = fi(t, x(t), y(t)), t ∈ [r, R], x, y ∈ E, i = 1, 2,

where

Gi(t, s) =

{

α−1
i (bi + ai

∫ s

r
p−1

i )(di + ci

∫ R

t
p−1

i ), s ≤ t,

α−1
i (bi + ai

∫ t

r
p−1

i )(di + ci

∫ R

s
p−1

i ), s ≥ t,

and αi = aidi + aici

∫ R

r
p−1

i + bici. For i = 1, 2, let us define the functions ei(t) and ēi(t) by

ei(t) =

∫ R

r

Gi(t, s)qi(s)ds, t ∈ [0, 1], i = 1, 2,

ēi(t) = M0

∫ R

r

Gi(t, s)ds, t ∈ [0, 1], i = 1, 2.

Now to show the existence of positive solution of (1.1λ), we need only to show that of (2.1λ).

From Lemmas 2.1 and 2.2 of [2], we have the following Lemmas 3.1 and 3.2.

Lemma 3.1 For i = 1, 2, Ki : P 7→ Qi are completely continuous.

Lemma 3.2 Let ω(t) = 1(t ∈ [r, R]). Then there exists c > 0 such that (Kiω)(t) ≤ cϕi(t), t ∈

[r, R], i = 1, 2.
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Theorem 3.1 Suppose that (A1) − (A5) hold. Then (1.1λ) has at least one positive solution

for large enough λ > 0.

Proof To show Theorem 3.1, we will apply Theorem 2.1. Let c0 = cM0. From Lemmas 3.1 and

3.2, we easily see that (H1) and (H2) hold. Obviously, r(K1) > 0, r(K2) > 0. By Krein-Rutman

Theorem, there exist φi ∈ P\{θ} and hi ∈ P ∗\{θ}, such that

Kiφi = r(Ki)φi, K∗
i hi = r(Ki)hi, i = 1, 2.

Obviously, φi ∈ Qi. The functionals hi(i = 1, 2) can be taken by[8]

hi(u) =

∫ R

r

φi(t)u(t)dt, u ∈ E, i = 1, 2.

Then, we have

hi(ϕi) =

∫ R

r

φi(t)ϕi(t)dt ≥ ‖φi‖

∫ R

r

[ϕi(t)]
2dt > 0, i = 1, 2.

For any ε > 0, we see from (A3) that there exists R̄0 > 0 such that

f1(t, x, y) ≤ ε(x + y), f2(t, x, y) ≤ ε(x + y)

for each x ≥ 0, y ≥ 0 with x + y ≥ R̄0. Let

b = max{ sup
(t,x,y)∈D

f1(t, x, y), sup
(t,x,y)∈D

f2(t, x, y)},

where D = {(t, x, y) ∈ [r, R]× R+ × R+|x + y ≤ R̄0}. Then for any (t, x, y) ∈ [r, R] × R+ × R+,

we have

f1(t, x, y) ≤ ε(x + y) + b, f1(t, x, y) ≤ ε(x + y) + b.

Let

R0 >
b
∫ R

r
[φ1(t) + φ2(t)]ds

ε
.

Then for any (x, y) ∈ P∆, ‖(x, y)‖ ≥ R0 and i = 1, 2, we have

hi(Fi(x, y))

‖(x, y)‖
=

∫ R

r
φi(t)fi(t, x(t), y(t))dt

‖(x, y)‖

≤
b
∫ R

r
(φ1(t) + φ2(t))dt

‖(x, y)‖
+

ε
∫ R

r
(φ1(t) + φ2(t))(x(t) + y(t))dt

‖(x, y)‖

≤ (1 +

∫ R

r

(φ1(t) + φ2(t))dt)ε.

This implies that (H3) holds.

Take ζ1 ≥ γ2[mint∈[α,β] ϕ2(t)]
−1 + c0. Then for any y ∈ P, y ≥ ζ1ϕ2, we have

y(t) − ē2(t) ≥ (ζ1 − c0)ϕ2(t) ≥ γ2, t ∈ [α, β].

Then, we see by (A5) that

h1(F1(x, y − ē2)) =

∫ R

r

φ1(t)f1(t, x(t), y(t) − ē2(t))dt
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≥

∫ β

α

φ1(t)f1(t, x(t), y(t) − ē2(t))dt

≥ γ1

∫ β

α

φ1(t)dt
∆
= η1

for any x ∈ P and y ∈ P with y ≥ ζ1ϕ2. Let ζ2 ≥ γ2[mint∈[α,β] ϕ1(t)]
−1 + c0. Then, we have

h2(F2(x − ē1, y)) ≥ γ1

∫ β

α

φ2(t)dt
∆
= η2

for any y ∈ P , and x ∈ P with x ≥ ζ2ϕ1. Let ζ = max{ζ1, ζ2} and η = min{η1, η2}. Then (2.3)

and (2.4) hold. Thus all conditions of Theorem 2.1 are satisfied, and so Theorem 3.1 holds by

Theorem 2.1. 2
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