Journal of Mathematical Research & Exposition May, 2008, Vol. 28, No. 2, pp. 366–370 DOI:10.3770/j.issn:1000-341X.2008.02.017 Http://jmre.dlut.edu.cn

Dual Toeplitz Algebra on the Polydisk

CHENG Guo Zheng, YU Tao

(Department of Mathematics, Zhejiang Normal University, Zhejiang 321004, China) (E-mail: chgzh04@yahoo.com.cn)

Abstract In this paper, we prove the dual Toeplitz algebra $\mathcal{I}(C(\overline{D^n}))$ contains the ideal \mathcal{K} of compact operators as its semicommutator ideal, and study its algebraic structure. We also get some results about spectrum of dual Toeplitz operators.

Keywords Bergman space; dual Toeplitz operator ; semicommutator ideal.

Document code A MR(2000) Subject Classification 47B35 Chinese Library Classification 0177.1

1. Introduction

Let $D^n (n \ge 2, n \in \mathbb{Z})$ be the unit polydisk with normalized Lebesgue measure dA. The Bergman space $L^2_a(D^n)$ is defined by $L^2_a(D^n) = L^2(D^n) \bigcap H(D^n)$, where $H(D^n)$ denotes the class of all the analytic functions on D^n . For $w \in D^n$, the Möbius transformation is given by $\varphi_w(z) = (\varphi_{w_1}(z_1), \ldots, \varphi_{w_n}(z_n))$, where $\varphi_{w_i}(z_i) = \frac{w_i - z_i}{1 - \overline{w_i} z_i}$, $z_i \in D$, $1 \le i \le n$. For $f, g \in L^2(D^n)$, we define the one rank operator $f \otimes g$ as

$$(f \otimes g)h = \langle h, g \rangle f, \ h \in L^2(D^n).$$

Let P denote the orthogonal projection from $L^2(D^n)$ to $L^2_a(D^n)$, which can be represented by

$$(Ph)(z) = \int_{D^n} h(w) \overline{K_z(w)} dA(w), \quad h \in L^2(D^n), w \in D^n,$$

where $K_z(w) = \prod_{i=1}^n \frac{1}{(1-w_i\bar{z}_i)^2}$ are the reproducing kernels for $L^2_a(D^n)$. The functions $k_z(w) = \prod_{i=1}^n \frac{1-|z_i|^2}{(1-w_i\bar{z}_i)^2}$ are the normalized reproducing kernels.

For $f \in L^{\infty}(D^n)$, Toeplitz operator $T_f: L^2_a(D^n) \to L^2_a(D^n)$ is defined by

$$T_f(g) = P(fg), \quad g \in L^2_a(D^n).$$

Let Q = I - P and $L^2_a(D^n)^{\perp}$ be the orthogonal complement of $L^2_a(D^n)$ in $L^2(D^n)$. Then two other operators are given as follows:

Hankel operator $H_f: L^2_a(D^n) \to L^2_a(D^n)^{\perp}$ is defined by

$$H_f(h) = Q(fh), \quad h \in L^2_a(D^n).$$

Received date: 2006-03-01; Accepted date: 2006-07-02

Foundation item: the National Natural Science Foundation of China (No. 10771064).

Dual Toeplitz operator $S_f: L^2_a(D^n)^{\perp} \to L^2_a(D^n)^{\perp}$ is defined by

$$S_f(u) = Q(fu), \quad u \in L^2_a(D^n)^{\perp}.$$

Based on the definitions of these operators as above, we can decompose the multiplication operator $M_f(f \in L^{\infty}(D^n))$ on $L^2(D^n)$ as

$$M_f = \left(\begin{array}{cc} T_f & H_{\bar{f}}^* \\ H_f & S_f \end{array}\right).$$

The identity $M_{fg} = M_f M_g$ implies

$$T_{fg} = T_f T_g + H_{\bar{f}}^* H_g, (1.1)$$

$$S_{fg} = S_f S_g + H_f H_{\bar{g}}^*, (1.2)$$

$$H_{fg} = H_f T_g + S_f H_g. \tag{1.3}$$

If f is analytic in (1.3), then we have

$$H_{fg} = S_f H_g = H_g T_f. aga{1.4}$$

These identities show the tight relationships between dual Toeplitz operators and Toeplitz operators, and Hankel operators. There have been many results about Toeplitz algebra. In 1969, R.Douglas^[1] obtained the short exact sequence:

$$(0) \longrightarrow \operatorname{com} \mathcal{I}(L^{\infty}(T)) \longrightarrow \mathcal{I}(L^{\infty}(T)) \longrightarrow L^{\infty}(T) \longrightarrow (0),$$

where $\mathcal{I}(L^{\infty}(T))$ is the Toeplitz algebra on Hardy space $H^2(T)$ generated by $\{T_f : f \in L^{\infty}(T)\}$, and $\operatorname{com}\mathcal{I}(L^{\infty}(T))$ is the commutator ideal in $\mathcal{I}(L^{\infty}(T))$. In [2], C.Yan and Sh.Sun completely characterized the automorphism group of the Toeplitz algebra generated by continuous symbols. G.McDonald and C.Sunberg^[3] discussed the Toeplitz algebra with the symbols in $C(\mathcal{M})$, where \mathcal{M} is the maximal ideal space of $H^{\infty}(D)$.

For the dual Toeplitz operators, K.Stroethoff and D.Zheng^[4] has proved the following short exact sequence:

$$(0) \longrightarrow \operatorname{semi}\mathcal{I}(L^{\infty}(D)) \longrightarrow \mathcal{I}(L^{\infty}(D)) \longrightarrow L^{\infty}(D) \longrightarrow (0)$$

where $\operatorname{semi}\mathcal{I}(L^{\infty}(D))$ is the semicommutator ideal in $\mathcal{I}(L^{\infty}(D))$. [4] also poved that $\operatorname{semi}\mathcal{I}(L^{\infty}(D))$ is the class of all compact operators. This paper will extend these results to the polydisk.

2. Main resultes

The symbols \mathcal{I} , semi are the same as in introduction.

Theorem 1 The sequence

$$(0) \longrightarrow \operatorname{semi}\mathcal{I}(L^{\infty}(D^n)) \longrightarrow \mathcal{I}(L^{\infty}(D^n)) \longrightarrow L^{\infty}(D^n) \longrightarrow (0)$$

is short exact.

When n = 1, Theorem 1 has been proved in [4] by using the functions

$$g_{w,s}(z) = \overline{(z-w)}\chi_{w+sD}(z),$$

where $w \in D$, 0 < s < 1 - |w|. In the case of polydisk, we can use the functions $G_{w,s}(z) = \prod_{i=1}^{n} \overline{(z_i - w_i)} \chi_{w_i + sD}(z_i), w \in D^n, 0 < s < \min\{1 - |w_i| : 1 \le i \le n\}$. Since the proof is similar to that in [4], we omit it here.

Theorem 2 $\mathcal{K} \subseteq \text{semi}\mathcal{I}(L^{\infty}(D^n))$, where \mathcal{K} is the class of all the compact operators on $L^2_a(D^n)^{\perp}$.

Before proving this theorem, we give some notations and lemmas. For any multi-index $\alpha = (\alpha_1, \ldots, \alpha_n)$, where α_k $(1 \le k \le n)$ are the nonnegative integers, we write $|\alpha| = \alpha_1 + \cdots + \alpha_n$. For $z = (z_1, \ldots, z_n) \in D^n$, z^{α} denotes $z_1^{\alpha_1} \cdots z_n^{\alpha_n}$.

Lemma 3 For $w \in D^n$, the identity

$$k_w \otimes k_w = \prod_{i=1}^n (I - 2T_{\varphi_{w_i}} T_{\bar{\varphi}_{w_i}} + T_{\varphi_{w_i}}^2 T_{\bar{\varphi}_{w_i}}^2)$$
(2.1)

holds on $L^2_a(D^n)$.

Proof By the proposition 4.1 in [5], for $w \in D$, we have that

$$k_w \otimes k_w = I - 2T_{\varphi_w}T_{\bar{\varphi}_w} + T_{\varphi_w}^2 T_{\bar{\varphi}_w}^2$$

on $L^2_a(D)$. Suppose $f = z^{\alpha} \in L^2_a(D^n)$, where α is a multi-index. Then

$$(k_w \otimes k_w) z^{\alpha} = \prod_{i=1}^n \langle z_i^{\alpha_i}, k_{w_i} \rangle k_{w_i} = \prod_{i=1}^n (I - 2T_{\varphi_{w_i}} T_{\bar{\varphi}_{w_i}} + T_{\varphi_{w_i}}^2 T_{\bar{\varphi}_{w_i}}^2) z_i^{\alpha_i}.$$

But

$$\begin{split} T_{\bar{\varphi}_{w_i}}(z^{\alpha}) &= \int_{D^n} \overline{\varphi_{w_i}(\lambda_i)} \lambda^{\alpha} \overline{K_z(\lambda)} \mathrm{d}A(\lambda) \\ &= \int_{D} \overline{\varphi_{w_i}(\lambda_i)} \lambda_i^{\alpha_i} \overline{K_{z_i}(\lambda_i)} \mathrm{d}A(\lambda_i) \prod_{k \neq i}^n \int_{D} \lambda_k^{\alpha_k} \overline{K_{z_k}(\lambda_k)} \mathrm{d}A(\lambda_k) \\ &= (T_{\bar{\varphi}_{w_i}}(z_i^{\alpha_i})) \prod_{k \neq i}^n z_k^{\alpha_k}. \end{split}$$

Similarly, we have

$$T^{2}_{\bar{\varphi}_{w_{i}}}(z^{\alpha}) = (T^{2}_{\bar{\varphi}_{w_{i}}}(z^{\alpha_{i}}_{i})) \prod_{k \neq i}^{n} z^{\alpha_{k}}_{k}.$$

 So

$$(I - 2T_{\varphi_{w_i}}T_{\bar{\varphi}_{w_i}} + T_{\varphi_{w_i}}^2 T_{\bar{\varphi}_{w_i}}^2)z^{\alpha} = ((I - 2T_{\varphi_{w_i}}T_{\bar{\varphi}_{w_i}} + T_{\varphi_{w_i}}^2 T_{\bar{\varphi}_{w_i}}^2)z_i^{\alpha_i})\prod_{k\neq i}^n z_k^{\alpha_k}.$$

At last we have

$$\prod_{i=1}^{n} (I - 2T_{\varphi_{w_i}} T_{\bar{\varphi}_{w_i}} + T_{\varphi_{w_i}}^2 T_{\bar{\varphi}_{w_i}}^2) z_i^{\alpha_i} = (\prod_{i=1}^{n} (I - 2T_{\varphi_{w_i}} T_{\bar{\varphi}_{w_i}} + T_{\varphi_{w_i}}^2 T_{\bar{\varphi}_{w_i}}^2)) z^{\alpha}.$$

Since $k_{\omega} \otimes k_{\omega}$ is linear, (2.1) holds for any $f \in L^2_a(D^n)$.

In the following proof, we let \mathcal{S} denote semi $\mathcal{I}(L^{\infty}(D^n))$ briefly.

Lemma 4 For $1 \leq i, j \leq n, \bar{z}_i \otimes \bar{z}_j \in \text{semi}\mathcal{I}(L^{\infty}(D^n))$.

Proof We only prove the case n = 2, and the general case can be proved similarly. The following identities are obvious:

$$\bar{z}_1 \otimes \bar{z}_2 = (H_{\bar{z}_1} 1) \otimes (H_{\bar{z}_2} 1) = H_{\bar{z}_1} (1 \otimes 1) H_{\bar{z}_2}^*$$

From Lemma 3 we have

$$\begin{split} 1 \otimes 1 =& k_0 \otimes k_0 \\ = & \prod_{i=1}^2 (I - 2T_{z_i} T_{\bar{z}_i} + T_{z_i}^2 T_{\bar{z}_i}^2) \\ =& I - 2(T_{z_1} T_{\bar{z}_1} + T_{z_2} T_{\bar{z}_2}) + (T_{z_1}^2 T_{\bar{z}_1}^2 + T_{z_2}^2 T_{\bar{z}_2}^2 + 4T_{z_1} T_{\bar{z}_1} T_{z_2} T_{\bar{z}_2}) - \\ & 2(T_{z_1} T_{\bar{z}_1} T_{z_2}^2 T_{\bar{z}_2}^2 + T_{z_2} T_{\bar{z}_2} T_{z_1}^2 T_{\bar{z}_1}^2) + T_{z_1}^2 T_{\bar{z}_1}^2 T_{z_2}^2 T_{\bar{z}_2}^2. \end{split}$$

By (1.4), the identity $H_{\bar{z}_i}T_{z_j} = S_{z_j}H_{\bar{z}_i}(1 \le i, j \le 2)$ holds. So

$$\bar{z}_{1} \otimes \bar{z}_{2} = H_{\bar{z}_{1}} H_{\bar{z}_{2}}^{*} - 2S_{z_{1}} H_{\bar{z}_{1}} H_{\bar{z}_{2}}^{*} S_{\bar{z}_{1}} - 2S_{z_{2}} H_{\bar{z}_{1}} H_{\bar{z}_{2}}^{*} S_{\bar{z}_{2}} + S_{\bar{z}_{2}}^{*} H_{\bar{z}_{1}} H_{\bar{z}_{2}}^{*} S_{\bar{z}_{2}}^{*} + 4S_{z_{1}} H_{\bar{z}_{1}} T_{\bar{z}_{1}} T_{z_{2}} H_{\bar{z}_{2}}^{*} S_{\bar{z}_{2}} - 2S_{z_{1}} H_{\bar{z}_{1}} T_{\bar{z}_{2}} T_{\bar{z}_{2}}^{*} H_{\bar{z}_{2}}^{*} S_{\bar{z}_{2}}^{*} + 4S_{z_{1}} H_{\bar{z}_{1}} T_{\bar{z}_{2}} H_{\bar{z}_{2}}^{*} S_{\bar{z}_{2}}^{*} - 2S_{z_{2}} H_{\bar{z}_{1}} T_{\bar{z}_{2}} T_{\bar{z}_{1}}^{*} H_{\bar{z}_{2}}^{*} S_{\bar{z}_{2}}^{*} + 4S_{z_{1}} H_{\bar{z}_{1}} T_{\bar{z}_{2}}^{*} H_{\bar{z}_{2}}^{*} S_{\bar{z}_{2}}^{*} - 2S_{z_{2}} H_{\bar{z}_{1}} T_{\bar{z}_{2}}^{*} H_{\bar{z}_{2}}^{*} S_{\bar{z}_{2}}^{*} - 2S_{z_{2}} H_{\bar{z}_{1}}^{*} T_{\bar{z}_{2}}^{*} H_{\bar{z}_{2}}^{*} S_{\bar{z}_{2}}^{*} - 2S_{z_{2}}^{*} H_{\bar{z}_{1}}^{*} T_{\bar{z}_{2}}^{*} H_{\bar{z}_{2}}^{*} S_{\bar{z}_{2}}^{*} - 2S_{z_{2}}^{*} H_{\bar{z}_{1}}^{*} T_{\bar{z}_{2}}^{*} H_{\bar{z}_{2}}^{*} S_{\bar{z}_{2}}^{*} - 2S_{z_{2}}^{*} H_{\bar{z}_{2}}^{*} H_{\bar{z}_{2}}^{*} S_{\bar{z}_{2}}^{*} - 2S_{z_{2}}^{*} H_{\bar{z}_{2}}^{*} H_{\bar{z}_{2}}^{*} S_{\bar{z}_{2}}^{*} - 2S_{z_{2}}^{*} H_{\bar{z}_{2}}^{*} H_{\bar{z}_{2}}^{*} S_{\bar{z}_{2}}^{*} + S_{\bar{z}_{2}}^{*} H_{\bar{z}_{2}}^{*} H_{\bar{z}_{2}}^{*} S_{\bar{z}_{2}}^{*} - 2S_{z_{2}}^{*} H_{\bar{z}_{2}}^{*} H_{$$

By (1.2) we have

$$H_{\bar{z}_1}H_{\bar{z}_2}^* = S_{\bar{z}_1z_2} - S_{\bar{z}_1}S_{z_2} \in \mathcal{S}.$$
(2.3)

So first five items in (2.2) are in \mathcal{S} . Since

$$T_{\bar{z}_1}T_{z_2} = T_{\bar{z}_1z_2} = T_{z_2\bar{z}_1} = T_{z_2}T_{\bar{z}_1} + H^*_{\bar{z}_2}H_{\bar{z}_1},$$

we know that

$$4S_{z_1}H_{\bar{z}_1}T_{\bar{z}_1}T_{z_2}H_{\bar{z}_2}^*S_{\bar{z}_2} = 4S_{z_1}H_{\bar{z}_1}T_{z_2}T_{\bar{z}_1}H_{\bar{z}_2}^*S_{\bar{z}_2} + 4S_{z_1}H_{\bar{z}_1}H_{\bar{z}_2}^*H_{\bar{z}_1}H_{\bar{z}_2}^*S_{\bar{z}_2}.$$

The above expression is in S by (2.3), in other words, the sixth item in (2.2) belongs to S. Similarly, the other items in (2.2) are in S. So $\bar{z}_1 \otimes \bar{z}_2 \in S$. Similarly, we can also get $\bar{z}_1 \otimes \bar{z}_1, \bar{z}_2 \otimes \bar{z}_1$ and $\bar{z}_2 \otimes \bar{z}_2$ are in S respectively.

Proof of Theorem 2 By Lemma 4 and Theorem 5.39 in [1], it suffices to prove that S is irreducible in $\mathcal{B}(L^2_a(D^n)^{\perp})$, where $\mathcal{B}(L^2_a(D^n)^{\perp})$ denotes all the bounded linear operators on $L^2_a(D^n)^{\perp}$. Suppose \mathcal{N} is a closed linear subspace of $L^2_a(D^n)^{\perp}$ which reduces S, we have to show that $\mathcal{N} = L^2_a(D^n)^{\perp}$. Firstly, we will prove that $\bar{z}_i \in \mathcal{N}$ $(1 \leq i \leq n)$.

Since \mathcal{N} is nonzero, it contains a nonzero function φ . Since the linear combinations of the functions in $\{z^{\alpha}\bar{z}^{\beta}: \alpha, \beta \text{ are multi-indices}\}$ are dense in $L^2(D^n)$, and thus there exist α, β such that $\langle \varphi, z^{\alpha}\bar{z}^{\beta} \rangle \neq 0$. Since $\varphi \in L^2_a(D^n)^{\perp}$, there exists $\beta_i > 0$, in other words, $|\beta| > 0$. Now we have

$$\langle \varphi, z^{\alpha} \bar{z}^{\beta} \rangle \bar{z}_{i} = \langle \bar{z}^{\alpha} z_{i}^{\beta_{i}-1} \prod_{j \neq i} z_{j}^{\beta_{j}}(\varphi), \bar{z}_{i} \rangle \bar{z}_{i} = \langle S_{\bar{z}^{\alpha} z_{i}^{\beta_{i}-1} \prod_{j \neq i} z_{j}^{\beta_{j}}}(\varphi), \bar{z}_{i} \rangle \bar{z}_{i}$$

$$= (\bar{z}_i \otimes \bar{z}_i) S_{\bar{z}^{\alpha} z_i^{\beta_i - 1} \prod_{j \neq i} z_j^{\beta_j}}(\varphi).$$

Following Lemma 4, $(\bar{z}_i \otimes \bar{z}_i) S_{\bar{z}^{\alpha} z_i^{\beta_i - 1} \prod_{j \neq i} z_j^{\beta_j}} \in \mathcal{S}$. Since \mathcal{N} reduces \mathcal{S} , $\langle \varphi, z^{\alpha} \bar{z}^{\beta} \rangle \bar{z}_i \in \mathcal{N}$. Because $\langle \varphi, z^{\alpha} \bar{z}^{\beta} \rangle \neq 0$, we conclude that $\bar{z}_i \in \mathcal{N}$.

For $j \neq i$, since $\bar{z}_j \otimes \bar{z}_i \in \mathcal{S}$ and $(\bar{z}_j \otimes \bar{z}_i) \bar{z}_i = \bar{z}_j$, we have $\bar{z}_j \in \mathcal{N}$.

Now suppose $\psi \in L^2_a(D^n)^{\perp}$ and $\psi \perp \mathcal{N}$. For any multi-indices α, β , if $|\beta| = 0$, it is obvious that $\langle \psi, z^{\alpha} \bar{z}^{\beta} \rangle = 0$. If not, then there exists $\beta_i > 0$ such that

$$\langle \psi, z^{\alpha} \bar{z}^{\beta} \rangle \bar{z}_{i} = (\bar{z}_{i} \otimes \bar{z}_{i}) S_{\bar{z}^{\alpha} z_{i}^{\beta_{i}-1} \prod_{j \neq i} z_{j}^{\beta_{j}}}(\psi)$$

Since \mathcal{N} reduces \mathcal{S} and $\bar{z}_i \in \mathcal{N}$, we have $\langle \psi, z^{\alpha} \bar{z}^{\beta} \rangle = 0$. Thus ψ is zero almost everywhere on D^n , in other words, $\mathcal{N} = L^2_a (D^n)^{\perp}$. So we conclude that \mathcal{S} is irreducible in $\mathcal{B}(L^2_a (D^n)^{\perp})$.

Theorem 3 $\mathcal{K} = \operatorname{semi}\mathcal{I}(C(\overline{D^n})).$

Proof For $f, g \in C(\overline{D^n})$, then H_f and H_g are compact. By (1.2) we have

$$S_{fg} - S_f S_g = H_f H_{\bar{g}}^*.$$

Thus semi $\mathcal{I}(C(\overline{D^n})) \subseteq \mathcal{K}$. Combining Theorem 2, we conclude that $\mathcal{K} = \text{semi}\mathcal{I}(C(\overline{D^n}))$.

Following Theorems 1 and 3, we have the short exact sequence

$$(0) \longrightarrow \mathcal{K} \longrightarrow \mathcal{I}(C(\overline{D^n})) \longrightarrow C(\overline{D^n}) \longrightarrow (0).$$

If f is a measurable function on D^n , then we denote by $\mathcal{R}(f)$ the essential rang of f, and by $\sigma(S_f)$ and $\sigma_e(S_f)$ respectively the spectrum and essential spectrum of S_f . For a subset E of the complex plane, let h(E) denote the closed convex hull of E.

Since the proofs of the following theorems are similar to those in [4], we omit them here.

Theorem 4 If $f \in L^{\infty}(D^n)$, then $\mathcal{R}(f) \subset \sigma(S_f) \subset h(\mathcal{R}(f))$.

Theorem 5 If $f \in L^{\infty}(D^n)$, and H_f and $H_{\bar{f}}$ are compact, then $\sigma_e(S_f) = \mathcal{R}(f)$.

References

- DOUGLAS R G. Banach Algebra Techniques in Operator Theory [M]. Academic Press, New York-London, 1972.
- [2] YAN Congquan, SUN Shunhua. The automorphism group of the Toeplitz algebra on H²(T²) [J]. Sci. China Ser. A, 2000, 43(3): 225–233.
- [3] MCDONALD G, SUNDBERG C. Toeplitz operators on the disc [J]. Indiana Univ. Math. J., 1979, 28(4): 595–611.
- [4] STROETHOFF K, ZHENG Dechao. Algebraic and spectral properties of dual Toeplitz operators [J]. Trans. Amer. Math. Soc., 2002, 354(6): 2495–2520.
- [5] STROETHOFF K, ZHENG Dechao. Products of Hankel and Toeplitz operators on the Bergman space [J]. J. Funct. Anal., 1999, 169(1): 289–313.