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Abstract The authors introduce the homogeneous Morrey-Herz spaces and the weak homo-

geneous Morrey-Herz spaces on non-homogeneous spaces and establish the boundedness in ho-

mogeneous Morrey-Herz spaces for a class of sublinear operators including Hardy-Littlewood

maximal operators, Calderón-Zygmund operators and fractional integral operators. Further-

more, some weak estimate of these operators in weak homogeneous Morrey-Herz spaces are also

obtained. Moreover, the authors discuss the boundedness in homogeneous Morrey-Herz spaces of

the maximal commutators associated with Hardy-Littlewood maximal operators and multilinear

commutators generated by Calderón-Zygmund operators or fractional integral operators with

RBMO(µ) functions.

Keywords Hardy-Littlewood maximal operators; Calderón-Zygmund operators; fractional

integral operators; RBMO(µ) functions; multilinear commutators; homogeneous Morrey-Herz

spaces; weak homogeneous Morrey-Herz spaces; non-homogeneous spaces.

Document code A

MR(2000) Subject Classification 42B35; 42B20; 47B47

Chinese Library Classification O177.6

1. Preliminaries

It is well known that the doubling condition on the underlying measure is a key assumption

in the harmonic analysis on Euclidean spaces or more general spaces of homogeneous type. We

recall that the measure µ is said to satisfy the doubling condition if there exists a constant

C > 0 such that µ(B(x, 2r)) ≤ Cµ(B(x, r)) for all x ∈ suppµ and r > 0, where we denote

by B(x, r) the open ball centered at x and having the radius r. However, some recent research

has revealed that the most results of classical Calderón-Zygmund operator theory are still true

with the condition that the underlying measure µ does not satisfy the doubling condition[1]−[3].

In this case the measure µ only satisfies the following growth condition, namely, there exists a

constant C0 > 0 such that

µ(B(x, r)) ≤ C0r
n (1.1)

for all x ∈ R
d and r > 0, where n is a fixed number and 0 < n ≤ d. We call the Euclidean

space, which is endowed with the usual Euclidean distance and a non-negative Radon measure
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µ only satisfying the above growth condition (1.1), a non-homogeneous space. The analysis on

non-homogeneous spaces was proved to play a striking role in solving the long open Painlevé’s

problem by Tolsa[4].

Sawano and Tanaka[5] introduced the Morrey spaces on the non-homogeneous spaces and

proved the boundedness in Morrey spaces of Hardy-Littlewood maximal operators, Calderón-

Zygmund operators and fractional integral operators. On the base of the above results, later

Yang and Meng[6] considered the boundedness in Morrey spaces of the commutators generated

by Calderón-Zygmund operators or fractional integral operators with RBMO(µ) functions . Mo-

tivated by these results, in this paper, we will introduce the homogeneous Morrey-Herz spaces

and the weak homogeneous Morrey-Herz spaces on non-homogeneous spaces and establish the

boundedness in these spaces for a class of sublinear operators including Hardy-Littlewood max-

imal operators, Calderón-Zygmund operators and fractional integral operators. We also discuss

the boundedness in homogeneous Morrey-Herz spaces of the commutators generated by Hardy-

Littlewood maximal operators or Calderón-Zygmund operators or fractional integral operators

with RBMO(µ) functions. We should point out that the Morrey spaces introduced by Sawano

and Tanaka are the subspaces of the homogeneous Morrey-Herz spaces when some special in-

dexes are taken. So in a sense our results extend the results of Sawano and Tanaka and Yang to

more extensive situation. Otherwise, when µ is the d−dimensional Lebesgue measure, Xu[7],[8]

systematically studied the boundedness of singular integral operators with rough kernel and

the boundedness of the commutators generated by some sublinear operators with rough kernel

with BMO(Rd) functions in the classical homogeneous Morrey-Herz spaces. Zhao, Jiang and

Cao[9] proved the boundedness in classical homogeneous Morrey-Herz spaces of the maximal

commutators associated with Hardy-Littlewood maximal operators and commutators generated

by Calderón-Zygmund operators with BMO(Rd) functions. Our results in this paper can be re-

garded as a natural extension of the classical results with Lebesgue measure on non-homogeneous

spaces.

In 2 Section, we study the boundedness of Hardy-Littlewood maximal operators, Calderón-

Zygmund operators and fractional integral operators in homogeneous Morrey-Herz spaces; In

3 Section, we establish some weak type estimate of the above operators in weak homogeneous

Morrey-Herz spaces on non-homogeneous spaces; In 4 Section, we discuss the boundedness in ho-

mogeneous Morrey-Herz spaces of the multilinear commutators generated by Calderón-Zygmund

operators or fractional integral operators with RBMO(µ) functions and maximal commutators as-

sociated with Hardy-Littlewood maximal operators. What should be pointed out is that one can

formally define the non-homogeneous Morrey-Herz spaces and weak non-homogeneous Morrey-

Herz spaces on non-homogeneous spaces. However, it is a pity that one still cannot obtain

the boundedness in non-homogeneous Morrey-Herz spaces for some important operators such

as Calderón-Zygmund operators, fractional integral operators and Hardy-Littlewood maximal

operators and the weak type estimate in weak non-homogeneous Morrey-Herz spaces. So we

only discuss the case of homogeneous Morrey-Herz spaces and weak homogeneous Morrey-Herz

spaces.
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Before stating the main results, we first give some necessary notations. In the following, unless

otherwise stated, any cube is a closed cube in R
d with sides parallel to the axes and centered

at some point of supp (µ). For any cube Q ⊂ R
d, we denote its side length by l(Q). Given

α > 1 and β > αn, we say that some cube Q ∈ R
d is a (α, β)-doubling cube if µ(αQ) ≤ βµ(Q),

where αQ denotes the cube concentric with Q and having side length αl(Q). If α and β are

not specified, all doubling cubes in this paper are (2, 2d+1)-doubling cubes. Given two cubes

Q1 ⊂ Q2, we set

KQ1, Q2
= 1 +

NQ1, Q2∑

k=1

µ(2kQ1)

l(2kQ1)n
,

where NQ1, Q2
is the first positive integer k such that l(2kQ1) ≥ l(Q2). Some basic properties of

KQ1, Q2
can be found in [10].

For any k ∈ Z, denote Bk = {x ∈ R
d : |x| ≤ 2k} and Ak = Bk\Bk−1. The notation χk(x) =

χAk
(x) is the characteristic function of the set Ak. In addition, for a function f ∈ L1

loc (µ),

denote fk = fχk.

In what follows, C > 0 always denotes a constant that is independent of main parameters

involved but whose value may differ from line to line. For any index p ∈ [1,∞], we denote by p′

its conjugate index, namely, 1/p + 1/p′ = 1.

2. The boundedness in homogenous Morrey-Herz spaces of sublinear

operators

In this section, the homogenous Morrey-Herz spaces will be introduced and the boundedness

in homogeneous Morrey-Herz spaces for a class of sublinear operators including Hardy-Littlewood

maximal operators, Calderón-Zygmund operators and fractional integral operators will be dis-

cussed.

Definition 2.1 Let −∞ < α < ∞, 0 ≤ λ < ∞, 0 < p ≤ ∞ and 0 < q < ∞. The homogeneous

Morrey-Herz space MK̇α, λ
p, q (µ) is defined by

MK̇α, λ
p, q (µ) =

{
f ∈ Lq

loc

(
R

d\{0}
)

: ‖f‖MK̇α, λ
p, q (µ) < ∞

}
,

where

‖f‖MK̇α, λ
p, q (µ) = sup

k0∈Z

2−k0λ

(
k0∑

k=−∞

2kαp‖fχk‖
p
Lq(µ)

)1/p

with the usual modifications made when p = ∞.

From the Difinition 2.1, MK̇α, 0
p, q (µ) is just the homogeneous Herz space defined in the ref-

erence [11] when λ = 0. In this case, we have established the boundedness in Herz space of

the Hardy-Littlewood maximal operators, Calderón-Zygmund operators and fractional integral

operators. Thus, for all the associate results in this section, we only consider the case of λ > 0.

Theorem 2.1 Let 0 < λ < ∞, 0 < p < ∞ and −∞ < β1, β2 < ∞. If for all β ∈ (β1, β2) and

some 1 < q < ∞ satisfying β1/q + λ < α < β2/q + λ, the sublinear operator L is bounded on
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Lq(Rd, |x|β dµ(x)), then the operator L is also bounded on MK̇α, λ
p, q (µ).

Proof For all f ∈ MK̇α, λ
p, q (µ), write f(x) =

∑∞
j=−∞ fj(x). Then

‖L(f)‖MK̇α, λ
p, q (µ) ≤C sup

K∈Z

2−Kλ





K∑

k=−∞

2kαp




k+1∑

j=−∞

‖χkL(fj)‖Lq(µ)




p


1/p

+

C sup
K∈Z

2−Kλ





K∑

k=−∞

2kαp




∞∑

j=k+2

‖χkL(fj)‖Lq(µ)




p


1/p

:=D1 + D2.

We first estimate D1. Choose α2 such that α−λ < α2/q < β2/q. Then from the boundedness

on Lq(Rd, |x|α2 dµ(x)) of L, we have

D1 ≤ C sup
K∈Z

2−Kλ





K∑

k=−∞

2k(α−α2/q)p




k+1∑

j=−∞

‖χkL(fj)‖Lq(Rd, |x|α2 dµ(x))




p


1/p

≤ C sup
K∈Z

2−Kλ





K∑

k=−∞

2k(α−α2/q)p




k+1∑

j=−∞

‖fj‖Lq(Rd, |x|α2 dµ(x))




p


1/p

≤ C sup
K∈Z

2−Kλ





K∑

k=−∞




k+1∑

j=−∞

2jα2/q+k(α−α2/q)‖fj‖Lq(µ)




p


1/p

≤ C sup
K∈Z

2−Kλ





K∑

k=−∞




k+1∑

j=−∞

2(j−k)(α2/q−α)+jλ2−jλ

(
j∑

l=−∞

2lαp‖fl‖
p
Lq(µ)

)1/p



p


1/p

≤ C sup
K∈Z

2−Kλ





K∑

k=−∞

2kλp




k+1∑

j=−∞

2(j−k)(α2/q−α+λ)‖f‖MK̇α, λ
p, q (µ)




p


1/p

≤ C‖f‖MK̇α, λ
p, q (µ).

Now we turn to estimate D2. We choose α1 such that β1/q < α1/q < α − λ. For the

boundedness on Lq(Rd, |x|α1 dµ(x)) of L, using a similar argument to the estimate for D1, we

get

D2 ≤C sup
K∈Z

2−Kλ





K∑

k=−∞

2k(α−α1/q)p




∞∑

j=k+2

‖χkL(fj)‖Lq(Rd, |x|α1 dµ(x))




p


1/p

≤C sup
K∈Z

2−Kλ





K∑

k=−∞

2k(α−α1/q)p




∞∑

j=k+2

‖fj‖Lq(Rd, |x|α1 dµ(x))




p


1/p

≤C sup
K∈Z

2−Kλ





K∑

k=−∞




∞∑

j=k+2

2jα1/q+k(α−α1/q)‖fj‖Lq(µ)




p


1/p
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≤C sup
K∈Z

2−Kλ





K∑

k=−∞

2kλp




∞∑

j=k+2

2(j−k)(α1/q−α+λ)‖f‖MK̇α, λ
p, q (µ)




p


1/p

≤C‖f‖MK̇α, λ
p, q (µ).

Combining the estimate for D1 and D2, we obtain ‖L(f)‖MK̇α, λ
p, q (µ) ≤ C‖f‖MK̇α, λ

p, q (µ). Thus

we complete the proof of Theorem 2.1.

For f ∈ L1
loc (µ), define the Hardy-Littlewood maximal operators M by

Mf(x) = sup
Q∋x

1

l(Q)n

∫

Q

|f(y)| dµ(y). (2.1)

Then from Lemma 3.1 in the reference [11] and Proposition 7.1 in the reference [1], the operator

M is bounded on Lq(Rd, |x|β dµ(x)), where 1 < q < ∞ and −n < β < n(q−1). As an application

of Theorem 2.1, we can get the boundedness on MK̇α, λ
p, q (µ) of the Hardy-Littlewood maximal

operators M as follows.

Corollary 2.1 Let 0 < λ < ∞, 0 < p < ∞, 1 < q < ∞ and −n/q + λ < α < n/q′ + λ. Then

the Hardy-Littlewood maximal operators M defined by (2.1) is bounded on MK̇α, λ
p, q (µ).

Now we discuss the boundedness in homogeneous Morrey-Herz spaces of Calderón-Zygmund

operator and fractional integral operator.

Let K(x, y) be a function on R
d × R

d\{(x, y) : x = y} and satisfy that

|K(x, y)| ≤ C|x − y|−n (2.2)

for x 6= y, and if |x − y| ≥ 2|x − x′|,

|K(x, y) − K(x′, y)| + |K(y, x) − K(y, x′)| ≤ C
|x − x′|δ

|x − y|n+δ
,

where δ ∈ (0, 1] and C > 0 is a positive constant. The Calderón-Zygmund operator associated

to the above kernel K and the measure µ is formally defined by

Tf(x) =

∫

Rd

K(x, y)f(y)dµ(y). (2.3)

This integral may be not convergent for many functions. Thus we consider the truncated

operator Tε for ǫ > 0 defined by

Tǫ(f)(x) =

∫

|x−y|>ǫ

K(x, y)f(y)dµ(y).

We say that T is bounded on Lp(µ) if the operators Tǫ are bounded on Lp(µ) uniformly on ǫ > 0,

where 1 < p < ∞; see the reference [10]. Similarly, the boundedness on other function spaces of

T also means the boundedness on these spaces uniformly on ǫ > 0 of the truncated operators Tǫ.

Using Corollary 2.1, we can establish the boundedness in MK̇α, λ
p, q (µ) of Calderón-Zygmund

operator as follows.

Theorem 2.2 Let 0 < λ < ∞, 0 < p < ∞, 1 < q < ∞ and −n/q + λ < α < n/q′ + λ. If the

operator T defined by (2.3) is bounded on L2(µ), then T is bounded on MK̇α, λ
p, q (µ).
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Proof We only need to prove the truncated operators Tǫ are bounded on MK̇α, λ
p, q (µ) uniformly

on ǫ > 0. Write f(x) =
∑∞

j=−∞ fj(x). Then we have

‖Tǫ(f)‖MK̇α, λ
p, q (µ) ≤C sup

K∈Z

2−Kλ





K∑

k=−∞

2kαp




k−3∑

j=−∞

‖χkTǫ(fj)‖Lq(µ)




p


1/p

+

C sup
K∈Z

2−Kλ





K∑

k=−∞

2kαp




k+2∑

j=k−2

‖χkTǫ(fj)‖Lq(µ)




p


1/p

+

C sup
K∈Z

2−Kλ





K∑

k=−∞

2kαp




∞∑

j=k+3

‖χkTǫ(fj)‖Lq(µ)




p


1/p

:=E1 + E2 + E3.

We first estimate E1. Note that x ∈ Ak, y ∈ Aj and j ≤ k − 3, then from (2.2) we get

|Tǫ(fj)(x)| ≤ CM(fj)(x).

Thus using an argument similar to the estimate for D1 in Theorem 2.1 and combining Corollary

2.1, we obtain

E1 ≤ C sup
K∈Z

2−Kλ





K∑

k=−∞

2kαp




k−3∑

j=−∞

‖χkM(fj)‖Lq(µ)




p


1/p

≤ C‖f‖MK̇α, λ
p, q (µ).

For E2, from the boundedness on Lq(µ) (1 < q < ∞) of T , we have

E2 ≤ C sup
K∈Z

2−Kλ





K∑

k=−∞

2kαp




k+2∑

j=k−2

‖fj‖Lq(µ)




p


1/p

≤ C‖f‖MK̇α, λ
p, q (µ).

Finally, we estimate E3. Note that x ∈ Ak, y ∈ Aj and j ≥ k + 3. Then from (2.2) and

the Hölder inequality we conclude that |Tǫ(fj)(x)| ≤ C2−jn/q‖fj‖Lq(µ). Therefore an argument

similar to the estimate for D2 in Theorem 2.1 leads to

E3 ≤C sup
K∈Z

2−Kλ





K∑

k=−∞

2kαp




∞∑

j=k+2

2(k−j)n/q‖fj‖Lq(µ)




p


1/p

≤C sup
K∈Z

2−Kλ





K∑

k=−∞

2kλp




∞∑

j=k+2

2(k−j)(n/q+α−λ)




p


1/p

‖f‖MK̇α, λ
p, q (µ)

≤C‖f‖MK̇α, λ
p, q (µ).

The estimates for E1, E2 and E3 tell us that there exists a constant C > 0 independent of ǫ

satisfying

‖Tǫ(f)‖MK̇α, λ
p, q (µ) ≤ C‖f‖MK̇α, λ

p, q (µ)

for all ǫ > 0. Thus the proof of Theorem 2.2 is completed.
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Given 0 < l < n, the fractional integral operator Il of order l is defined by

Il(f)(x) =

∫

Rd

f(y)

|x − y|n−l
dµ(y). (2.4)

Then from the boundedness on (Lp(µ), Lq(µ)) of the fractional integral operator Il, where

1 < p < n/l and 1/q = 1/p − l/n[1], and an completely similar argument to Theorem 2.2,

we can also prove the boundedness in homogeneous Morrey-Herz spaces of the fractional integral

operator as follows.

Theorem 2.3 Let 0 < λ < ∞, 0 < l < n, 1 < q1 < n/l, 1/q2 = 1/q1 − l/n, 0 < p1 ≤ p2 < ∞

and −n/q1 + l + λ < α < n/q′1 + λ. Suppose the fractional integral operator Il is as in (2.4).

Then Il is bounded from MK̇α, λ
p1, q1

(µ) into MK̇α, λ
p2, q2

(µ).

Theorem 2.4 Let 0 < λ < ∞, 0 < l < n, 1 < q1 < n/l, 1/q2 = 1/q1(1 − lp1/n), 0 < p2 < ∞,

0 < p1 ≤ min{q1, p2}, −n/q1 + l + λ < α1 < n/q′1 + λ and α2 = α1 + l(p1/q1 − 1). Suppose

the fractional integral operator Il is as in (2.4). Then Il is bounded from MK̇α1, λ
p1, q1

(µ) into

MK̇α2, λ
p2, q2

(µ).

3. The boundedness in weak homogeneous Morrey-Herz spaces of sub-

linear operators

In order to consider the boundedness of Calderón-Zygmund operators and fractional integral

operators at the endpoint case of the homogeneous Morrey-Herz spaces, Xu[7] introduced the

weak homogeneous Morrey-Herz spaces. In this section, motivated by the results of Xu, we will

introduce the weak homogeneous Morrey-Herz spaces on non-homogeneous spaces and establish

the weak type estimate in weak homogeneous Morrey-Herz spaces of the Hardy-Littlewood radial

maximal function, Calderón-Zygmund operators and fractional integral operators.

Definition 3.1 Let −∞ < α < ∞, 0 ≤ λ < ∞, 0 < p ≤ ∞ and 0 < q < ∞. The weak

homogeneous Morrey-Herz space WMK̇α, λ
p, q (µ) is defined by

WMK̇α, λ
p, q (µ) =

{
f : f is measurable on R

d and ‖f‖WMK̇α, λ
p, q (µ) < ∞

}
,

where

‖f‖WMK̇α, λ
p, q (µ) = sup

γ>0
γ sup

K∈Z

2−Kλ

(
K∑

k=−∞

2kαpµ({x ∈ Ak : |f(x)| > γ})p/q

)1/p

with the usual modifications made when p = ∞.

For the weak type estimate in the weak homogeneous spaces of Hardy-Littlewood maximal

function, we have the following result.

Theorem 3.1 Let 0 ≤ λ < ∞, 0 < p < ∞ and −n + λ < α < λ. Suppose the Hardy-

Littlewood radial maximal function M is as in (2.1). Then M is bounded from MK̇α, λ
p, 1 (µ) into

WMK̇α, λ
p, 1 (µ).
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Proof In order to prove Theorem 3.1, we only need to find a constant C > 0 such that

γ sup
K∈Z

2−Kλ

{
K∑

k=−∞

2kαpµ({x ∈ Ak : |Mf(x)| > γ})p

}1/p

≤ C‖f‖MK̇α, λ
p, 1

(µ) (3.1)

for all γ > 0.

Write

f(x) =

∞∑

j=−∞

fj(x),

then

γ sup
K∈Z

2−Kλ

{
K∑

k=−∞

2kαpµ({x ∈ Ak : |Mf(x)| > γ})p

}1/p

≤ Cγ sup
K∈Z

2−Kλ





K∑

k=−∞

2kαpµ({x ∈ Ak : |M(

k+1∑

j=−∞

fj)(x)| > γ})p





1/p

+

Cγ sup
K∈Z

2−Kλ





K∑

k=−∞

2kαpµ({x ∈ Ak : |M(

∞∑

j=k+2

fj)(x)| > γ})p





1/p

:= F1 + F2.

On the one hand, applying the fact that M is bounded from L1(µ) into weak L1(µ), we get

the estimate for F1

F1 ≤ C sup
K∈Z

2−Kλ





K∑

k=−∞

2kαp




k+1∑

j=−∞

‖fj‖L1(µ)




p


1/p

≤ C sup
K∈Z

2−Kλ





K∑

k=−∞




k+1∑

j=−∞

2(k−j)α+jλ2−jλ

(
j∑

l=−∞

2lαp‖fl‖
p
L1(µ)

)1/p



p


1/p

≤ C sup
K∈Z

2−Kλ





K∑

k=−∞

2kλp




k+1∑

j=−∞

2(j−k)(λ−α)‖f‖MK̇α, λ
p,1 (µ)




p


1/p

≤ C‖f‖MK̇α, λ
p, 1

(µ).

On the other hand, for F2, we first have
∥∥∥∥∥∥
χkM




∞∑

j=k+2

fj



∥∥∥∥∥∥

L1(µ)

≤ C

∞∑

j=k+2

2−jn‖fj‖L1(µ)µ(Ak) ≤ C

∞∑

j=k+2

2(k−j)n‖fj‖L1(µ).

Then using an estimate similar to F1, we obtain F2 ≤ C‖f‖MK̇α, λ
p, 1

(µ).

The estimates for F1 and F2 yield (3.1). This completes the proof of Theorem 3.1.

Note that the Calderón-Zygmund operator T is bounded from L1(µ) into weak L1(µ) and the

fractional integral operator Il is bounded from L1(µ) into weak Ln/n−l(µ), where 0 < l < n[13].

Applying an argument completely similar to Theorem 3.1, we prove the weak type estimates of
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Calderón-Zygmund operator and the fractional integral operator in the following respectively.

Theorem 3.2 Let 0 ≤ λ < ∞, 0 < p < ∞ and −n+λ < α < λ. Suppose the Calderón-Zygmund

operator T is as in (2.3). Then T is bounded from MK̇α, λ
p, 1 (µ) into WMK̇α, λ

p, 1 (µ).

Theorem 3.3 Let 0 ≤ λ < ∞, 0 < l < n, 1/q = 1−l/n, 0 < p1 ≤ p2 < ∞ and −n+l+λ < α < λ.

Suppose the fractional integral operator Il is as in (2.4). Then Il is bounded from MK̇α, λ
p1, 1(µ)

into WMK̇α, λ
p2, q(µ).

4. The boundedness in homogeneous Morrey-Herz spaces of commuta-

tors

In this section, we will establish the boundedness in homogeneous Morrey-Herz spaces of

the maximal commutators associated with the Hardy-Littlewood radial maximal function and

the multilinear commutators generated by Calderón-Zygmund operators or fractional integral

operators with RBMO(µ) functions.

Therefore, we first recall the space RBMO(µ) with the nondoubling measure µ which was

introduced by Tolsa[10].

Definition 4.1 Let ρ > 1 be some fixed constant. We say that a function b ∈ L1
loc (µ) is in

RBMO(µ) if there exists some constant B > 0 such that for any cube Q centered at some point

of supp (µ),

sup
Q

1

µ(ρQ)

∫

Q

|b(x) − mQ̃(b)| dµ(x) ≤ B < ∞

and for any two doubling cubes Q1 ⊂ Q2, |mQ1
(b) − mQ2

(b)| ≤ BKQ1, Q2
, where Q̃ denotes the

smallest doubling cube which is like 2kQ(k ∈ N∪{0}) and mQ̃(b) denotes the mean of b over the

cube Q̃, that is,

mQ̃(b) =
1

µ(Q̃)

∫

Q̃

b(x) dµ(x).

The minimal constant B as above is the RBMO(µ) norm of b and is denoted by ‖b‖∗.

Theorem 4.1 Let b ∈ RBMO(µ), 0 < λ < ∞, 0 < p < ∞, 1 < q < ∞ and −n/q + λ < α <

n/q′ + λ. The maximal commutator Mb is defined by

Mb(f)(x) = sup
Q∋x

1

l(Q)n

∫

Q

|b(x) − b(y)||f(y)| dµ(y). (4.1)

Then Mb is bounded on MK̇α, λ
p, q (µ).

Proof By the homogeneous property we can suppose ‖b‖∗ = 1. Write

f(x) =
∞∑

j=−∞

fj(x),
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then

‖Mb(f)‖MK̇α, λ
p, q (µ) ≤C sup

K∈Z





K∑

k=−∞

2kαp




k−3∑

j=−∞

‖χkMb(fj)‖Lq(µ)




p


1/p

+

C sup
K∈Z





K∑

k=−∞

2kαp




k+2∑

j=k−2

‖χkMb(fj)‖Lq(µ)




p


1/p

+

C sup
K∈Z





K∑

k=−∞

2kαp




∞∑

j=k+3

‖χkMb(fj)‖Lq(µ)




p


1/p

:=G1 + G2 + G3.

We first estimate G1. Note that k − j ≥ 3 and x ∈ Ak, then from (4.1) and some simple

geometric computation we obtain

Mb(fj)(x) ≤
C

2kn

∫

Rd

|b(x) − b(y)||fj(y)| dµ(y). (4.2)

Denote by Qj the smallest cube centered at the origin and containing Aj . Furthermore, we

write bj = m
Q̃j

(b). Then from (4.2), the Hölder inequality and Corollary 3.5 in the reference

[10], we have

‖χkMb(fj)‖Lq(µ) ≤C2−kn

{∫

Ak

[∫

Aj

|b(x) − b(y)| |f(y)| dµ(y)

]q

dµ(x)

}1/q

≤C2−kn ‖fj‖L1(µ)

[∫

Ak

|b(x) − bj |
q dµ(x)

]1/q

+

C2kn(1/q−1) ‖fj‖Lq(µ)

[∫

Aj

|b(y) − bj|
q′

dµ(y)

]1/q′

≤C ‖b‖∗ (k − j)2(j−k)n(1−1/q) ‖fj‖Lq(µ) , (4.3)

where we used the fact that K
Q̃j , Q̃k

≤ C(k − j). It follows from (4.3) and α < n/q′ + λ that

G1 ≤C sup
K∈Z

2−Kλ





K∑

k=−∞

2kαp




k−3∑

j=−∞

(k − j)2(j−k)n/q′

‖fj‖Lq(µ)




p


1/p

≤C sup
K∈Z

2−Kλ





K∑

k=−∞

2kλp




k−3∑

j=−∞

(k − j)2(j−k)(n/q′−α+λ)2−jλ

(
j∑

l=−∞

2lαp‖fj‖
p
Lq(µ)

)1/p



p


1/p

≤C sup
K∈Z

2−Kλ





K∑

k=−∞

2kλp




k−3∑

j=−∞

(k − j)2(j−k)(n/q′−α+λ)‖f‖MK̇α, λ
p, q (µ)




p


1/p

≤C‖f‖MK̇α, λ
p, q (µ).
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Next we estimate G2. Noting that Mb is bounded on Lq(µ), where 1 < q < ∞[14], we get

G2 ≤ C sup
K∈Z

2−Kλ





K∑

k=−∞

2kαp




k+2∑

j=k−2

‖fj‖Lq(µ)




p


1/p

≤ C sup
K∈Z

2−Kλ





K∑

j=−∞

2jαp‖fj‖
p
Lq(µ)





1/p

≤ C‖f‖MK̇α, λ
p, q (µ).

Finally, we estimate G3. Similar to the estimate for (4.3) we easily obtain

‖χkMb(fj)‖Lq(µ) ≤ C2(k−j)n/q(j − k)‖fj‖Lq(µ).

And note that α > −n + l + λ, hence

G3 ≤ C sup
K∈Z

2−Kλ





K∑

k=−∞

2kλp




∞∑

j=k+3

(j − k)2(k−j)(n/q+α−λ)2−jλ2jα‖fj‖Lq(µ)




p


1/p

≤ C‖f‖MK̇α, λ
p, q (µ).

The estimates for G1, G2 and G3 indicate that ‖Mb(f)‖MK̇α, λ
p, q (µ) ≤ C‖f‖MK̇α, λ

p, q (µ). And we

complete the proof of Theorem 4.1. 2

Applying the similar method in Theorem 4.1, we prove the boundedness in homogeneous

Morrey-Herz spaces of the multilinear commutators generated by Calderón-Zygmund operators

with RBMO(µ) functions.

Let m ∈ N, bi ∈ RBMO(µ), for i = 1, 2, . . . , m. Write ~b = (b1, b2, . . . , bm). The multilinear

commutator T~b generated by Calderón-Zygmund operators with RBMO(µ) functions is defined

by

T~b(f)(x) = [bm, [bm−1, . . . , [b1, T ] · · · ]](f)(x), (4.4)

where

[b, T ]f(x) = b(x)Tf(x) − T (bf)(x).

And T stands for a weak limit as ǫ → 0 of some subsequence of uniformly bounded operators Tǫ

on L2(µ)[10]. It can be verified that T is still bounded on L2(µ) and for some function f ∈ L2(µ)

with compact support,

Tf(x) =

∫

Rd

K(x, y)f(y)dµ(y), µ-a. e. x ∈ R
d\ supp f,

where the kernel function K is as in (2.3).

Theorem 4.2 Let 0 < λ < ∞, 0 < p < ∞, 1 < q < ∞ and −n/q + λ < α < n/q′ + λ. Suppose

the multilinear commutator T~b is as in (4.4). Then T~b is bounded on MK̇α, λ
p, q (µ).

Accordingly, we can also prove the boundedness in homogeneous Morrey-Herz spaces of the

multilinear commutators generated by fractional integral operators with RBMO(µ) functions.
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Theorem 4.3 Let m ∈ N, bi ∈ RBMO(µ) for i = 1, 2, . . . , m. The multilinear commutator Il;~b

is defined by

Il;~b(f)(x) =

∫

Rd

m∏

i=1

[bi(x) − bi(y)]
f(y)

|x − y|n−l
dµ(y). (4.5)

Then Il;~b is bounded from MK̇α, λ
p1, q1

(µ) into MK̇α, λ
p2, q2

(µ), where 0 < λ < ∞, 0 < l < n,

1 < q1 < n/l, 1/q2 = 1/q1 − l/n, 0 < p1 ≤ p2 < ∞ and −n/q1 + l + λ < α < n/q′1 + λ.

Theorem 4.4 Let 0 < λ < ∞, 0 < l < n, 1 < q1 < n/l, 1/q2 = 1/q1(1 − lp1/n), 0 < p2 < ∞,

0 < p1 ≤ min{q1, p2}, −n/q1 + l + λ < α1 < n/q′1 + λ and α2 = α1 + l(p1/q1 − 1). Sup-

pose the multilinear commutator Il;~b is as in (4.5). Then Il;~b is bounded from MK̇α1, λ
p1, q1

(µ) to

MK̇α2, λ
p2, q2

(µ).

Remark Since the established results in the reference [11] contain the boundedness in ho-

mogeneous Herz spaces of the maximal commutators associated with the Hardy-Littlewood ra-

dial maximal function and the commutators generated by Calderón-Zygmund operators with

RBMO(µ) functions, we only consider the case λ > 0 in this section.
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