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Abstract The authors introduce the homogeneous Morrey-Herz spaces and the weak homo-
geneous Morrey-Herz spaces on non-homogeneous spaces and establish the boundedness in ho-
mogeneous Morrey-Herz spaces for a class of sublinear operators including Hardy-Littlewood
maximal operators, Calderén-Zygmund operators and fractional integral operators. Further-
more, some weak estimate of these operators in weak homogeneous Morrey-Herz spaces are also
obtained. Moreover, the authors discuss the boundedness in homogeneous Morrey-Herz spaces of
the maximal commutators associated with Hardy-Littlewood maximal operators and multilinear
commutators generated by Calderén-Zygmund operators or fractional integral operators with
RBMO(u) functions.
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1. Preliminaries

It is well known that the doubling condition on the underlying measure is a key assumption
in the harmonic analysis on Euclidean spaces or more general spaces of homogeneous type. We
recall that the measure p is said to satisfy the doubling condition if there exists a constant
C > 0 such that u(B(z, 2r)) < Cu(B(z, r)) for all z € suppp and r > 0, where we denote
by B(z, r) the open ball centered at x and having the radius r. However, some recent research
has revealed that the most results of classical Calderén-Zygmund operator theory are still true
with the condition that the underlying measure p does not satisfy the doubling condition™—[3].
In this case the measure p only satisfies the following growth condition, namely, there exists a
constant Cy > 0 such that

w(B(z, 7)) < Cor™ (1.1)

for all z € R? and r > 0, where n is a fixed number and 0 < n < d. We call the Euclidean

space, which is endowed with the usual Euclidean distance and a non-negative Radon measure
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w only satisfying the above growth condition (1.1), a non-homogeneous space. The analysis on
non-homogeneous spaces was proved to play a striking role in solving the long open Painlevé’s
problem by Tolsal*.

Sawano and Tanakal® introduced the Morrey spaces on the non-homogeneous spaces and
proved the boundedness in Morrey spaces of Hardy-Littlewood maximal operators, Calderén-
Zygmund operators and fractional integral operators. On the base of the above results, later
Yang and Meng/® considered the boundedness in Morrey spaces of the commutators generated
by Calderén-Zygmund operators or fractional integral operators with RBMO(u) functions . Mo-
tivated by these results, in this paper, we will introduce the homogeneous Morrey-Herz spaces
and the weak homogeneous Morrey-Herz spaces on non-homogeneous spaces and establish the
boundedness in these spaces for a class of sublinear operators including Hardy-Littlewood max-
imal operators, Calderén-Zygmund operators and fractional integral operators. We also discuss
the boundedness in homogeneous Morrey-Herz spaces of the commutators generated by Hardy-
Littlewood maximal operators or Calderén-Zygmund operators or fractional integral operators
with RBMO(u) functions. We should point out that the Morrey spaces introduced by Sawano
and Tanaka are the subspaces of the homogeneous Morrey-Herz spaces when some special in-
dexes are taken. So in a sense our results extend the results of Sawano and Tanaka and Yang to
more extensive situation. Otherwise, when p is the d—dimensional Lebesgue measure, Xul"[®l
systematically studied the boundedness of singular integral operators with rough kernel and
the boundedness of the commutators generated by some sublinear operators with rough kernel
with BMO(R?) functions in the classical homogeneous Morrey-Herz spaces. Zhao, Jiang and
Caol” proved the boundedness in classical homogeneous Morrey-Herz spaces of the maximal
commutators associated with Hardy-Littlewood maximal operators and commutators generated
by Calderén-Zygmund operators with BMO(R?) functions. Our results in this paper can be re-
garded as a natural extension of the classical results with Lebesgue measure on non-homogeneous
spaces.

In 2 Section, we study the boundedness of Hardy-Littlewood maximal operators, Calderén-
Zygmund operators and fractional integral operators in homogeneous Morrey-Herz spaces; In
3 Section, we establish some weak type estimate of the above operators in weak homogeneous
Morrey-Herz spaces on non-homogeneous spaces; In 4 Section, we discuss the boundedness in ho-
mogeneous Morrey-Herz spaces of the multilinear commutators generated by Calderén-Zygmund
operators or fractional integral operators with RBMO (1) functions and maximal commutators as-
sociated with Hardy-Littlewood maximal operators. What should be pointed out is that one can
formally define the non-homogeneous Morrey-Herz spaces and weak non-homogeneous Morrey-
Herz spaces on non-homogeneous spaces. However, it is a pity that one still cannot obtain
the boundedness in non-homogeneous Morrey-Herz spaces for some important operators such
as Calderén-Zygmund operators, fractional integral operators and Hardy-Littlewood maximal
operators and the weak type estimate in weak non-homogeneous Morrey-Herz spaces. So we
only discuss the case of homogeneous Morrey-Herz spaces and weak homogeneous Morrey-Herz

spaces.
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Before stating the main results, we first give some necessary notations. In the following, unless
otherwise stated, any cube is a closed cube in R? with sides parallel to the axes and centered
at some point of supp (u). For any cube Q C RY, we denote its side length by 1(Q). Given
a > 1and 8> a”, we say that some cube Q € R? is a (a, 3)-doubling cube if u(aQ) < Bu(Q),
where @) denotes the cube concentric with @ and having side length «l(Q). If a and 8 are
not specified, all doubling cubes in this paper are (2, 2¢*1)-doubling cubes. Given two cubes
Q1 C Q2, we set

NQi, Qs &
Kg, .0, =1+ Z 2?“@an7
where Ng, g, is the first positive integer k such that 1(2*Q1) > I(Q2). Some basic properties of
Kg,, g, can be found in [10].

For any k € Z, denote By, = {x € R?: |z| < 2*} and Ay = By\Bi_1. The notation yx(z) =
Xa,(z) is the characteristic function of the set Aj. In addition, for a function f € L} _(u),
denote fr = fxk.

In what follows, C' > 0 always denotes a constant that is independent of main parameters
involved but whose value may differ from line to line. For any index p € [1, o0], we denote by p’

its conjugate index, namely, 1/p+ 1/p’ = 1.

2. The boundedness in homogenous Morrey-Herz spaces of sublinear
operators

In this section, the homogenous Morrey-Herz spaces will be introduced and the boundedness
in homogeneous Morrey-Herz spaces for a class of sublinear operators including Hardy-Littlewood
maximal operators, Calderén-Zygmund operators and fractional integral operators will be dis-

cussed.

Definition 2.1 Let —co < a <00, 0 <A< 00,0 <p< o0 and0 < g < oco. The homogeneous
Morrey-Herz space Mng’q’\(u) is defined by

MEGM 1) = {f € Lo ®RNOD) : [ lyria g < )

where
ko

1/p
s 0 = 3 27 ( 2 2’““‘°'f><kl‘zq<m>
0

k=—o00
with the usual modifications made when p = oco.

From the Difinition 2.1, M ng’; () is just the homogeneous Herz space defined in the ref-
erence [11] when A = 0. In this case, we have established the boundedness in Herz space of
the Hardy-Littlewood maximal operators, Calderén-Zygmund operators and fractional integral

operators. Thus, for all the associate results in this section, we only consider the case of A > 0.

Theorem 2.1 Let 0 < A < 00, 0 < p < 0o and —oco < (1,2 < oo. If for all § € (B1, B2) and
some 1 < g < oo satisfying B1/q + X < a < B2/q + A, the sublinear operator L is bounded on
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L4(R4, |z|? du(z)), then the operator L is also bounded on MK;?,’;‘(H)-

Proof For all f € MKg’q’\(u), write f(z) = >272  fj(2). Then

K [ k1 17y VP
”L(f)HMK;};q*(#) <C 18(116% 9~ KA Z okap Z ||XkL(fj)HL‘I(M) +
k=—o0 _jzfoo ]
r 1ry U/p

K [e%S)
C sup 27 KA Z gkap Z Xk L) pa gy

Kez k= oo =k 2

::Dl + DQ.

We first estimate Dy. Choose as such that a—\ < a3/q < (82/¢. Then from the boundedness
on LI(R?, |z|*2 du(x)) of L, we have

K [ k+1 py 1/p
Dy < Csup 278y 2K/ 1 N7 G L(f5) | Lacge, jofes dpute)
K€z Rt et
K [ k1 py /e
< C sup 9—KA Z ok(a—az/q)p Z Hfj”Lq(]Rd, el du(e)
Kez et =
K [ kr1 Py /P
< C sup 2752 gicz/a+k(a=az/q)| f.
Kez k:Z_OO j;oo I JHLq(u)
K [ k+1 ; 1/pPy /P
< C'sup 27 KA 9(i—k)(az/q—a)+jrg—jA glop|| |1
S P P 2 2l
K k1 py /P
—KA kAp (G—k)(az/q—a+)) _
<Cap2iy 3 2| 5 ARy,
—— e

< C”f”MKg;q*(#)-

Now we turn to estimate Da. We choose «y such that 81/¢ < a1/q < a — A. For the

boundedness on LI(RY, ||t du(z)) of L, using a similar argument to the estimate for Dy, we

get
X T py 1/p
Dy <Csup 27 KAL) oFlemen/ar | ST L(f) | aee, jafes duta)
KeZ k=—o0 | i=h+2
K Moo py 1/p
<Csup 27K N gkleme/ar | N fl R afe dpe))
Kez k=—o00 |i=Fk+2
X - py 1/p

<Csup27 ¢ 37 | Y /ety p
Kez koo | j=kt2
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K - py 1/p
<C sup 275 Z okAp Z Q(j_k)(al/q_a“)HfHMKaA(M)
Kez k=—o0 j=k+2 o

SC”f”MKSL,’q)\(H) ’

Combining the estimate for D; and Dg, we obtain HL(f)”MKa,)\(#) < OHfHMKa,)\(#). Thus
we complete the proof of Theorem 2.1.

For f € L} _(u), define the Hardy-Littlewood maximal operators M by

loc
1
Mf(z) = sup e | 1F ()] dply). (2.1)
Q3 (Q) Q
Then from Lemma 3.1 in the reference [11] and Proposition 7.1 in the reference [1], the operator
M is bounded on L4(R4, |z|? du(z)), where 1 < ¢ < oo and —n < 8 < n(g—1). As an application
of Theorem 2.1, we can get the boundedness on M Kg’q)‘(u) of the Hardy-Littlewood maximal

operators M as follows.

Corollary 2.1 Let 0 < A <00, 0<p<o0o,l <qg<ooand —n/g+ A <a<n/q + A Then
the Hardy-Littlewood maximal operators M defined by (2.1) is bounded on MKI?j*qA(u).

Now we discuss the boundedness in homogeneous Morrey-Herz spaces of Calderén-Zygmund
operator and fractional integral operator.

Let K(z, y) be a function on R? x RN\ {(z, y) : = = y} and satisfy that

|K(z, y)| < Clz —y[™" (2.2)

for x # y, and if |z — y| > 2|z — 2/,
|z — 2/|°

K (o) = K@ o)l + 1Ky, ) = Ky, )] < Op =0

where 6 € (0, 1] and C' > 0 is a positive constant. The Calderén-Zygmund operator associated
to the above kernel K and the measure y is formally defined by
Tf)= | Kz, y)f(y)duly). (2.3)
R
This integral may be not convergent for many functions. Thus we consider the truncated

operator T for € > 0 defined by
L) = [ K fe)dut).
r—yY|>€

We say that T is bounded on L? () if the operators T, are bounded on L?(x) uniformly on e > 0,
where 1 < p < o005 see the reference [10]. Similarly, the boundedness on other function spaces of
T also means the boundedness on these spaces uniformly on € > 0 of the truncated operators 7.

Using Corollary 2.1, we can establish the boundedness in M Kﬁ'fq)‘(u) of Calderén-Zygmund

operator as follows.

Theorem 2.2 Let 0 < A <o00,0<p<oo,1<g<ooand —n/qg+ A <a<n/¢+ A\ If the
operator T defined by (2.3) is bounded on L*(p1), then T is bounded on MKZ?j’qA(u).
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Proof We only need to prove the truncated operators T, are bounded on MK gq)‘(u) uniformly
on e > 0. Write f(z) =>272  fj(z). Then we have

K M s qpry /P
IT )i 2 SCsup 2788 37 250 | 37 el o | ¢+
k=—o00 j=—00
X [ o qpy /P
C sup 27 KA Z gkor Z IXkTe(f5)| () +
Kez k——o00 j=k—2
K N qry /P
C sup 2~ KA Z gkor Z Xk Te(fi)l La ()
Kez k=—o0 | i=F+3 ]
=E; + Ey + Es.

We first estimate E;. Note that x € Ay, y € A; and j < k — 3, then from (2.2) we get

I Te(fj)(x)] < CM(f;) ().

Thus using an argument similar to the estimate for D; in Theorem 2.1 and combining Corollary

2.1, we obtain

K k-3 Py /P
E < CIS‘{UE% 2~ KA Z okap Z % M (f5) |l a0 < CHfHMKg;q*(#)-
k=—o0 j=—o00

For E,, from the boundedness on L(y) (1 < g < 00) of T, we have

py 1/p
K k+2
By < Csup 2838 37 257 | S™ g <Ol arkce 2y
Kez k=—o00 j=k—2 o

Finally, we estimate E3. Note that x € A, y € A; and j > k + 3. Then from (2.2) and
the Holder inequality we conclude that |T.(f;)(z)| < C279"/9||f;||pa(,). Therefore an argument

similar to the estimate for Dy in Theorem 2.1 leads to

K o py 1/p
E; <C sup 2~ %* Z okep Z 2(kfj)n/quj||Lq(u)
Kez k=—o0 | j=k+2
K e py 1/p
<C sup 275X Z 2RAP Z 2(k=d)(n/ata=2) (FAIBYS-2 Y
Kez k=—o0 j=k+2 1

SOHJCHMK;X;QA(#)-

The estimates for Eq, Eo and E3 tell us that there exists a constant C' > 0 independent of €
satisfying

TP nrieg 2y < CUFarics 2

for all € > 0. Thus the proof of Theorem 2.2 is completed.
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Given 0 < [ < n, the fractional integral operator I; of order [ is defined by
f)

IleC:/ ——=—— du(y). 2.4

O =L (24)

Then from the boundedness on (LP(u), L(u)) of the fractional integral operator I;, where

1 <p<mnf/land 1/q¢ = 1/p — 1/nl1), and an completely similar argument to Theorem 2.2,

we can also prove the boundedness in homogeneous Morrey-Herz spaces of the fractional integral

operator as follows.

Theorem 2.3 Let 0 < A< o0,0<l<n, 1<q <n/l,1/ga=1/q1 —1/n, 0 <p; <ps < o0
and —n/q1 + 1+ X < a < n/q], + A. Suppose the fractional integral operator I, is as in (2.4).
Then I; is bounded from MK (u) into MK%?* (1).

P1,q1 P2, q2

Theorem 2.4 Let 0 < A <o0,0<l<n,1<qg <n/l,1/go=1/q1(1—1Ip1/n), 0 < pa < o0,
0 < p1 < min{q1,p2}, —n/g1 +14+ A< a1 <n/¢) + X and as = a1 +(p1/q1 — 1). Suppose
the fractional integral operator I; is as in (2.4). Then I; is bounded from MKO”’)‘(/J,) into

. P1,q1
MEG23 ().

3. The boundedness in weak homogeneous Morrey-Herz spaces of sub-
linear operators

In order to consider the boundedness of Calderén-Zygmund operators and fractional integral
operators at the endpoint case of the homogeneous Morrey-Herz spaces, Xul” introduced the
weak homogeneous Morrey-Herz spaces. In this section, motivated by the results of Xu, we will
introduce the weak homogeneous Morrey-Herz spaces on non-homogeneous spaces and establish
the weak type estimate in weak homogeneous Morrey-Herz spaces of the Hardy-Littlewood radial

maximal function, Calderén-Zygmund operators and fractional integral operators.

Definition 3.1 Let —co < a < 00, 0 < A < 00,0 < p<ooand0 < g < oo. The weak
homogeneous Morrey-Herz space W MK g'qu(u) is defined by

o A _ . . d
WMEKy (1) = {f : f is measurable onR" and HfHWMKpay,qx(#) < oo} ,

where

K 1/P
||f||WMK;;;qA(#) = supy sup 2~ K2 ( Z 2kapu({x €A |f(z)| > 7})p/q>

>0 KEZ i

with the usual modifications made when p = oco.
For the weak type estimate in the weak homogeneous spaces of Hardy-Littlewood maximal

function, we have the following result.

Theorem 3.1 Let 0 < A < 00, 0 < p < oo and —n+ A < a < A. Suppose the Hardy-
Littlewood radial maximal function M is as in (2.1). Then M is bounded from MKg’l’\(u) into
WMEY ) ().
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Proof In order to prove Theorem 3.1, we only need to find a constant C' > 0 such that

K 1/p
7 sup 27 KA { Z 25 u({z € Ay : [Mf(z)] > 'Y})p} < C”f”MK;;l*(#) (3.1)

KeZ oo
for all v > 0.
Write
= > i@
j=—00
then

KeZ

K 1/p
7 sup 274 { > 2Pu{z € Ay |Mf(z)| > 7})”}

k=—o0
K k1 e
< Cysup 2752 Z 2MP({x € Ay : Z fi)@)| > ~})P +
Kez k=—o00 j=—00
X 1/p
Cy sup 2752 Z okap ({2 € Ay : Z fi)@)| >~})P
KeZ k——oco j=k+2
=F; + Fo.

On the one hand, applying the fact that M is bounded from L'(u) into weak L' (u), we get

the estimate for F;

K . py 1/p
F; < Csup 2752 Z okep Z 151l Lt )
Kez k=—o00 j=—00
k+1 J vy e
< 02116%2_}{)\ Z 2 (k— ])Ot+]>\2 A ( Z 2lap||fl|i1(#)>
k=—o00 | j=—00 l=—o0
k+1 py 1/p
—KX kXp (—k) (A=) .
< CIS(Ué%Q kz 2 } 2 ||f||MK;¢’,1>\(#)
=—00 _]——oo
< C”f”MKQ M
On the other hand, for Fa, we first have
M| D <C D 2 fillwu(A) O 3 25 flu-
j=k+2 L1 () j=k+2 J=k+2

Then using an estimate similar to F, we obtain Fa < CHfHMK;*ﬁ(u)'

The estimates for Fy and Fg yield (3.1). This completes the proof of Theorem 3.1.

Note that the Calderén-Zygmund operator T is bounded from L!(u) into weak L'(u) and the
fractional integral operator I; is bounded from L!(y) into weak L™™~!(u), where 0 < | < nl13l.

Applying an argument completely similar to Theorem 3.1, we prove the weak type estimates of
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Calderén-Zygmund operator and the fractional integral operator in the following respectively.

Theorem 3.2 Let0 < A < 00,0 < p <ooand —n+X < a < A Suppose the Calderén-Zygmund
operator T is as in (2.3). Then T is bounded from MKg’lA(u) into WMKg’lA(u).

Theorem 3.3 Let 0 < A < o00,0<1<n,1/g=1-1/n,0 < p; <p3 <ooand —n+l+X < a < A
Suppose the fractional integral operator I; is as in (2.4). Then I; is bounded from MK® ’\( )

p1,1
a, A
into WM Kp2 q( ).

4. The boundedness in homogeneous Morrey-Herz spaces of commuta-
tors

In this section, we will establish the boundedness in homogeneous Morrey-Herz spaces of
the maximal commutators associated with the Hardy-Littlewood radial maximal function and
the multilinear commutators generated by Calderén-Zygmund operators or fractional integral
operators with RBMO(y) functions.

Therefore, we first recall the space RBMO(1) with the nondoubling measure p which was

introduced by Tolsal?).

Definition 4.1 Let p > 1 be some fixed constant. We say that a function b € L} _(u) is in
RBMO(u) if there exists some constant B > 0 such that for any cube @ centered at some point

of supp (1),

aup pQ/| 5Ol da(z) < B < oc

and for any two doubling cubes Q1 C Q2, Img, (b) — mq, (b)| < BKq, ¢,, where Q denotes the
smallest doubling cube which is like 2*Q(k € NU{0}) and mg(b) denotes the mean of b over the
cube @, that is,

1
mz(b) = —— b(z) du(x).
50) M(Q)/@()u()

The minimal constant B as above is the RBMO(u) norm of b and is denoted by ||b||..

Theorem 4.1 Let b € RBMO(u), 0 < A< 00,0 <p<o0o,l<g<ooand —n/g+A<a<
n/q + X. The maximal commutator M, is defined by

My(f)(z) = sup 77 / [b() = b(W)IIf (y)] du(y)- (4.1)

QBx

Then M, is bounded on MK;‘;‘(M)

Proof By the homogeneous property we can suppose ||b||« = 1. Write

> i)

j=—o0
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then
K M ks qry /P
1My ()l g o2 SCIS(UE% S5 1N e Mo ()l Lo +
k=—o0 j=—00
K [ a2 qpy /P
Csup 4 S 287 | S i My(f)l| o +
KeZ | p=—c j=k—2
K . qpy /P
Csup ¢ Y 277 1 N e My(f5) | oy
KeZ | k=—o | j=k+3 |
=Gy + Go + Gs.

We first estimate G;. Note that k —j > 3 and x € Ay, then from (4.1) and some simple

geometric computation we obtain
c
M£)@) < g [ @) = b1 )] o) (42)

Denote by @; the smallest cube centered at the origin and containing A;. Furthermore, we

write b; = mg. (b). Then from (4.2), the Holder inequality and Corollary 3.5 in the reference

[10], we have

e Mo ()] oy <C27F {/A [/A

J

q 1/q
b(@) — b(w)! 7w du<y>] du(x)}
1/q
<2 gy | [ ) = bt anta)|
1/4

J

2N Fil oy VA [b(y) — b;|* dp(y)

<Cbll, (k= §)20 0010 o (4.3)

where we used the fact that K5 5, < C(k — j). It follows from (4.3) and o < n/q’ + X that

K r k—3 p 1/P
Gy <C sup 275> okap k— )2—kn/d ¢,
1SCmp2Ry 3 2 3 (k) 163l

. l/p p
K k—3 J
<C sup 27K Z okAp Z (k — §)2U-R(/d' —atX)9=j) ( Z 2lo‘p|fj|iq(#)>

KeZ

1/p

k=—o00 | j=—00 l=—o00
K [ k-3 py /P
<C sup 2~ K> kAP k — )20—k)(n/d —a+)) .
o KE% k:z—oo ];oo( ]) ||f||MKp,q (r)

<Clfllarscz: o



Boundedness of some operators and commutators on non-homogeneous spaces 381

Next we estimate Gy. Noting that M; is bounded on L9(p), where 1 < ¢ < col'¥, we get

py 1/p
K k+2
Gy < C sup 275> Z 2hep Z 151l La ()
Kez k=—oc0 Jj=k—2

1/p

K
—KX\ jap P
SCIS;IG%2 Z 2 HfJHLq(M)
j=—o00
< Ol larics:2 o
Finally, we estimate Ggz. Similar to the estimate for (4.3) we easily obtain

Xk Mo (F)ll agy < C25D™ (G — k)| £l Lo uy-

And note that a > —n + [ + A, hence

% - py L/p
G3 S C sup 27K)\ 2k)\p ,] —k 2(kfj)(n/q+a7>\)2fj)\2ja f .
sup k;m j_zk;rg( ) 151l o)

< OHfHMKg;q*(#)-

The estimates for G1, G2 and G3 indicate that HMb(f)”MKpay,q/\(‘u) < C|\f|\MK§,qA(#). And we
complete the proof of Theorem 4.1. O

Applying the similar method in Theorem 4.1, we prove the boundedness in homogeneous
Morrey-Herz spaces of the multilinear commutators generated by Calderén-Zygmund operators
with RBMO() functions.

Let m € N, b; € RBMO(p), for i = 1,2,...,m. Write b= (b1,ba,...,by). The multilinear
commutator Ty generated by Calderén-Zygmund operators with RBMO(u) functions is defined
by

Ty(f) (@) = [bm, b1, .-, [b1, T]---]](f) (), (4.4)
where
b, T1f () = b(x)T f(x) — T (bf)(z).

And T stands for a weak limit as ¢ — 0 of some subsequence of uniformly bounded operators T,
on L?(1)19. Tt can be verified that T is still bounded on L?(u) and for some function f € L?(y)
with compact support,

Tf@)= | K@ n)fduw), paexe R\ supp f,

where the kernel function K is as in (2.3).

Theorem 4.2 Let 0 < A< 00,0<p<o0,l<g<ooand —n/g+\<a<n/q¢+ A\ Suppose
the multilinear commutator Ty is as in (4.4). Then Ty is bounded on MKZ?‘;q)‘ ().
Accordingly, we can also prove the boundedness in homogeneous Morrey-Herz spaces of the

multilinear commutators generated by fractional integral operators with RBMO(u) functions.



382 GUO Y and MENG Y

Theorem 4.3 Let m € N, b; € RBMO(p) for i = 1,2,...,m. The multilinear commutator I, y
is defined by

10 = [ TTie) bl JW) ). (45)

x -yl

Then I, ; is bounded from MK;{,/\ql(/‘) into MKS;’,’\%(N% where 0 < XA < 00, 0 <1 < n,

l<q <n/l,1/ge=1/q1 —1/n,0<p; <ps <ooand —n/q +1+ I <a<n/q +

Theorem 4.4 Let 0 < A <o00,0<l<n,1<q <nfl,1/ga=1/q1(1 —Ip1/n), 0 < pa < 0o,
0 < p1 < min{g,p2}, —n/1+1+ X < a1 < n/¢y + X and as = a1 + l(p1/q¢1 — 1). Sup-
pose the multilinear commutator I 3 is as in (4.5). Then I, 3 is bounded from MKZ?‘I{’;; (u) to
MK ().

P2,q2

Remark Since the established results in the reference [11] contain the boundedness in ho-
mogeneous Herz spaces of the maximal commutators associated with the Hardy-Littlewood ra-
dial maximal function and the commutators generated by Calderén-Zygmund operators with

RBMO(u) functions, we only consider the case A > 0 in this section.
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