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Abstract It is proved in this paper that there is a bijection ¢ from J U J’ to § U §" which
satisfies: (1) p|J : (J,C) — (8, <) is a frame isomorphism; (2) p|J" : (J',C) — (§',<) is a
coframe isomorphism, where 7 is the ordinary topology on [0, 1], § is the ordinary L-topology on
L-unit interval I(L), and L is a frame with an order-reversing involution. This result improves
Theorem 3 in Hutton’s paper.
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1. Introduction and preliminaries

In this paper, L is supposed to be a frame with the least element 0 and the greatest ele-
ment 1, and equipped with an order-reversing involution / satisfying a V a’ = 1 for every a € L.
Again let LX be the set of all mappings (called L-subsets) from a set X to L, R the real line,
I =0, 1] the ordinary unit interval, J the ordinary topology on [0, 1], H(I) the set of all mono-
tonic decreasing mappings A : R — L satisfying A(t) = 1 for ¢ € (—00,0) and A(¢) = 0 for
t € [1,400). For any two elements A\; and A2 in H(I), define Ay ~ A2 <= A1 (t+) = A2(t+) and
A1(t=) = Xa(t—) (Vt € R), where A(t+) = \/ o, A(s) and A(t—) = A\, A(s) (A € H(I),t € R).
It can be verified that ~ is an equivalence relationship on H(I). The equivalence class containing
element A is written as [A], and the ordinary L-topology § on I(L) = H(I)/~ is generated by
the subbase {Ry, Ly | t € R}, where Ri([\]) = A(t+) and Li([A]) = (A(t=))" (V[A\] € I(L)). The
L-topological space (I(L),d) is called L-unit interval which was first defined by B. Hutton['].

Hutton also proved the following:

Theorem 111 If L is a completely distributive complete lattice with an order-reversing involu-
tion 1 satisfying aVa' =1 (Ya € L), then there exists a frame isomorphism (i.e. a bijection or one-
one correspondence which preserves both arbitrary joins and finite meets) ¢ : (J,C) — (6, <).

In this paper we will generalize the above theorem.

2. Main results and their proofs
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For each W € J, W is the union of a family {(a;,b;)}ica of disjoint nonempty intervals
(called constitution intervals of W), where « is a cardinal number not more than X (the cardinal
number of the set of all natural numbers), a; € {—o0} U[0,1),b; € {+o00} U (0,1], and we make
the convention that (—oo,b) = (z,b) = [0,b) (z < 0), (a,+00) = (a,y) = (a,1] (y > 1). We use
the equality W = | |, (ai, b;) to denote this fact, and define a mapping ¢ : 7UJ' — U’ as
follows (where J' = {[0,1] -V |V € J},and &' = {A" | A € 6}):

VI € I(D), e = { VM@ A, HEW = (e b € 7.
7 AN @+ VG-, T = 0,1] - U (as,b) € 7,

that is,

\/i(Rai A Lbi)’ itWw = Ui(aivbi) €J,

VA € I(L), o(W)= { AR, VL), if Wo=[0,1] = | ;(ai, b;) € T

This mapping has the following properties:

Theorem 2 (1) ¢ is a bijection which preserves the order-reversing involution.
(2) ¢ preserves the partial order.
(3) If AC J, then o(|JA) =V 44 ¢(A).
(4) If AC J' then (N A) = Agcap(A).
(5) fA,Be JUJ" and ANB e JUJ’, then ¢(AN B)
(6) f A\ Be JUJ" and AUB € JUJ’, then ¢(AU B)

©(A) A p(B).
¢(A) V p(B).

Proof Step 1. ¢ preserves the order-reversing involution. For any W € J'U J,if W € 7,
say W = | |;(ai, b;), then (W) = \/,(Rq, A Lp,), and thus p(W’') = ¢([0,1] — ||,(ai,b:)) =
Ni(Be, vV Ly ) = [Vi(Ra, A Ly,)|" = [p(W)]'. Similarly, o(W’) = [p(W)]" if W € J".

Step 2. Forany A,B € J,p(ANB) = ¢(A) N ¢o(B). Suppose A,B € J, say A = | |,(a;,b;)
and B = | ];(c;,d;). Then

AN B = || J(ai, b0 (| _J(edi)] = (@i, bi) N (5, d;)]-

i J 4,J

By the join infinite distributive law, for every [A] € I(L), we have

= \/[A(max{ai, ¢ t+) A A(min{b;, d; }—)'].

Notice that if (a,b) N (¢,d) = 0, then min{d,d} < max{a,c}, A(min{b,d}—)" < A(max{a, c}+)’,
A(max{a, c}+) A A(min{b, d}—)" = 0, and thus

[p(A) A e(B)I([A]) = V (A(max{a;, ¢;}+) A Mmin{b;, d; }—)") (V[ € I(L)).
i,5;(as,bi)N(c;,d;)#0
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Furthermore, if (a;,b;) N (¢j,d;) # 0, then (a;, b;) N (¢j,d;) = (max{a;, ¢;}, min{b;,d;}), and
ANB= U[(ai,bi) N (Cj,dj)] = U (max{ai,cj},min{bi,dj}).
1,3 4,43 (ai,bi)N (¢ ,d; ) #0
As (max{ah » G } min{bi1 ) djl })m(max{aiz ) Cja }7 min{biz? djz }) C [(ail ) bil )m(aiz ) biz)]m[(cﬁ ) dj1 )ﬂ
(¢jy, djp)] = O if (i1, 1) # (i2,j2), {(max{a;, ¢;}, min(b;, d;) | (as, ;)N (cj,d;) # 0} are the consti-
tution intervals of ANB. Thus ANB = | |{(max{a;,c;}, min{b;,d;}) | 4,7, (a;,b;) N (¢cj,d;) # 0}.
By definition of ¢ we have
(AN B)([N) = V (Mmax{a;, ¢;}+) A Amin{b;, d;}—)") (V[A] € I(L)).
1,35(aqi,bi)N(c;,d;)#0
Therefore, p(A) A o(B) = (AN B).

Step 3. (proof of (3)) As ¢(\/ A) = o(0) = 071y = Vacgp(A) for A = 0, we only need to
show the case A # ().

First we consider the special case W = (a,b) and V = (¢,d). By definition of ¢, when
WV =0, o(WUV)=p(W)Vp(V), thus we only need to show the case a < ¢ < b < d. Take
an e € (¢,b), then by the distributive law and the property of the order-reversing involution of

L, we have

[p(W) Vv o(V)I([A])

[TV [ (D] = [Mat) AADB=)TV [Aet) A A(d=)']
[Mat) AAe)TV [Ae) A (Md—))']
Aat) AAd=)" = @((a, ) ([A]) = (W UV)([A]) (VA € I(L)),

Y%

e(WUV) < W)V e(V). By Step 3, for any A, B € J with A C B, we have p(4) <
@(B). It follows that (W) < oW UV), (V) < oW UV), p(W)Ve(V) < oW UV), and
(W UV)=p(W)V V). This implies that ¢(|J;_, (a:,b;)) = Vi, ¢((as, bz))

Now we consider the general case. Let A = {A;}icr C T, Ai = Uy, (a%,05), Uiy Ai =
A = | | B, where B is a collection of disjoint nonempty open intervals. Take (a,b) € B and
[e,d] C (a,b), then [c,d] C U”(a bt). As [c,d] is compact, there exists a finite subcollection

30 %
{(a1,b1), (az,b2), ..., (an,bn)}(n € N) of {(a,%)}s; such that [c,d] C U;_, (ar, bx). We have
(e, d)) < (| (ar, b)) \/ (ax, bx)) < \/ 9(Ai) < \/ @(Ai).
k=1 k=1 k=1 iel
By the join infinite distributive law, we have
hm o((c,d)) \/cp (c,d)) \/()\(c—i—) AXd=)")

c>a

= \/ Alet)) AXMd=)" = Aat) A A(d=)" = ¢((a, d))([A])-

c>a

Furthermore, let ¢ — a4+, and d — b—. Then we have
e((c, d))([A]) = Met) AMd=)" — Aat+) AAb=)" = @((a, b)) ([N)(V[A] € I(L)).

This means that ¢((a,b)) < V,cr¢(A;). Therefore, p(UA;) = ¢(UB) = V(4 pesP((a,b)) <
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\/zEI ©(A;). By Step 3, we have ¢(A) > \/161 ©(A4;), hence @(Uzel i) = \/iel w(A4;).

Step 4. (proof of (4)) Let A C J'. By (1) and (3), ¢(NA) = ©([0,1] — U 4pen(a: b)) =
Nawyeo(Ba, vV Ly,) =11y = Naea #(A) if A=0. It A# 0, then p(NA) = p((Usen 4)) =
Vacale(A)]" = Aaca p(A)" = Aacav(A).

Step 5. ¢ is a bijection. Firstly, for any W,V € J with W —V # (), let x € W — V and
[A] = X(=o0,2]- Then [A] € I(L) and o(W)([A]) =1 # 0 = @(V)([\]) by definition of ¢. By
Step 1, ¢ is an injection. Secondly, as L is a frame with an order-reversing involution and
{(a,b) | a,b € [0,1]U{—00, +0},a < b} is a base of T, {¢((a,b)) | a,b € [0,1]U{—00, 400} and
a < b} is a base of § by Step 1 and Step 3, which means ¢ is a surjection.

Step 6. (proof of (2)) Suppose A,B € J U J’ with A C B. We consider the following four

cases:
Case 1 A,B e J. By Step 3, p(A) < p(B).
Case 2 A,B € J'. By (1) and the result of Case 1, we have p(B)" < p(A)’, i.e., ¢(A) < p(B).

Case 3 Ac J and B € J'. As ¢ is a bijection, both ¢|J’ and ¢ ~!|J’ are order-preserving,
and ¢|J’ is meet-preserves, we have p(Ay) = p((\{Bo | Bo € J', Ao C Bo}) = N{¢(Bo) | Bo €
J' Ao C Bo} = N{D | D € ¢,p(Ay) < D} = p(Ap)~ for every Ag € JUJ'. Since B € J/,
A~ C B, by the proof of Case 2, we have p(A) < p(A)” = p(A7) < p(B).

Cased Ac J and Be J. As A C B, we have ANB’ = (), and thus o(ANB’) = o(A)Ap(B’) =
©(A) A p(B) = 0x, ie., p(A)(xz) ANp(B)(x) =0 (Vz € I(L)). SinceaVa =1 (Va € L),

P(A)(x) = p(A)(a) A1 = p(A)(x) A B0 v ABY0] = [oA)(0) A (B V [l A)e) 1
(B)(2)] = [p(A)(2) A p(B)(@)] V0 = o(A)(x) A @(B)(x), p(A)() < p(B)(x) (Va € I(L)), Le.
#(4) < o(B).

Step 7 (proof of (5))

Case 1l A, Be JUJ , AnNBecJ. If A,B € J', then p(AN B) = (A) A ¢(B) by (4). If
A,B e J, then p(ANB) = ¢(A) A p(B) by Step 2. If A € J and B € J', then (AN B)° =
A°NB° = ANB° = AN B because ANB € J, and thus A ¢ B’ U B°. Since B € J/,
B',B° € J, by Step 4, p(A) < (B’ UB°) = p(B’)V ¢(B°). It follows that p(A) A ¢(B) <
(@(B) v o(B) A 9(B) = (9(B') A 9(B)) V (o(B°) A 9(B)) = (#(BY A ¢(B)) V (o(B°) A
¢(B)) = ¢(B°), and that ©(A) A ¢(B) < p(A) A p(B°) = (AN B?) = (AN B). By Step 2,
©(ANB) = (AN B°) < p(A) A p(B°) < ¢p(A) A p(B). Therefore, p(AN B) = p(A) A p(B).
Similarly, p(ANB) = p(A) Ap(B)if Aec J and B € J.

Case 2 A, Be JUuJ', AnNB e J'. By Step 4, it suffices to show the case that A € J, B e J’
and ANB € J'. As ¢ preserves the partial order, p(ANB) < ¢(A) Ap(B). Thus we only need to
show (AN DB) > ¢(A) Ap(B). Firstly, since A € J and ANB € J', we have p(ANB) > ¢((AN
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B)?7) = (AN B°)7) = [p(ANB?)]” = [p(A) Ap(B?)]” = N{C € 0" | p(A) A p(B?) < C}.
Secondly, for every C' € ¢ satisfying ¢(A) A ¢(B°) < C and every D < p(A) A ¢(B), we have
D° < [p(A) A p(B)]° = p(A) A p(B°), D° < C, and D < D~ < C since C is closed. Therefore,
w(A)Ap(B) < C. Since C is arbitrary, p(A)Ap(B) < A{C €' | o(A)Ap(B°) < C} = p(ANB).

Step 8 (proof of (6)) We only need to consider the following four cases:

Case 1 A, B € J'. By Step 2 and the fact that ¢ preserves the order-reversing involution, we
have p(A U B) = ¢(A4) V ¢(B).

Case2 Ac J,Be J',and AUB € J'. By Case 1 of Step 7 and the fact that ¢ preserves the
order-reversing involution, we have ¢(AU B) = ¢(A) V ¢(B).

Case 3 A, Be J. Then p(AUB) = ¢(A) V ¢(B) by Step 3.

Case 4 Ac J,Be J',and AUB € J. By Case 1 of Step 7 and the fact that ¢ preserves
the order-reversing involution, we have p(A U B) = ¢(A) V ¢(B). This completes the proof of
Theorem 2. O

Let A € 6. As R, ([A\]) A Ly([\]) = 0 for all [A] € I(L) and all a,b € [0, 1] with a > b, we can
write A = \/{Ru, ALy, | s € Sa}, where as < by for all s € Sa. The set G4 = {(as,bs) | s € Sa}
is called a collection of open intervals of A, Hence, for every B € &, B can be denoted by
B =\{Ro, NLy, |t € T} = N{R,, V Ly, | t € Tp}, where a; < by, a; < 1, by > 0. Define a
mapping ¥ : U8 — J U T’ as follows:

oy = | Usesa(as00), if A=\/{Ra, AL, |s€Sa}eod
Nier, 0, 1] = (as, b)), i A= A{RL, V Ly |teTa}ed.

Then we have the following
Proposition 1 9 :6U¥§ — J U J’ is the inverse mapping of ¢ : FUJ' — dU .

Proof Firstly, op(W) = ¢(e(W)) = (V;(Ra, ALs,)) = U, (@i, b;) = Wit W = | |,(a;, b;) € T,
and ¢ o (W) = d(e(W)) = ¢(A;(By, V Ly,)) = (L[0,1) = (ai, b)) = Wit W = [0,1] —
Ll(as,bs) € 7", Secondly, 0 $(4) = 9(1:(4)) = pU,cs, (@s:8:) = Ve, (Ra, A Ln,) = A it
A=\/{Ry, NLyp, |t € Sa} € 6 by Step 3 in the proof of Theorem 2, and p o (B) = p(¢(B)) =

P(Miery (10, 1] = (ar, b)) = ([0, 1] = Usery, (a1, 1)) = o(Uyer, (a1, 1)) = [Vier, (Ra, AL, )| =
Bif B= N\{R,, VL, |teTg} e Therefore, =" = 1.

The mapping ¢~ ! = : U — J U J’ has the following properties:
Theorem 3 (1) ¢~ ! preserves the order-reversing involution.
(2) Both ¢~ |6 and ¢~'|§" preserve the partial order.

(3) ¢~ 1|8 preserves arbitrary joins, and ¢ |8’ preserves arbitrary meets.

(4) 1|0 preserves finite meets, and ¢~ '|§' preserves finite joins.

Proof (1) Takean A € §Ud. If A = \{Ra, ALy, | s € Sa} € § (where as < bs, as < 1,
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and by > 0), then ¢™'(A4) = U,es, (as,bs), and thus o™ (A") = ™[V g, (Ra, A Lp,))') =
e Nsesa (B, V L)) = [0,1] = Ues, (as,bs) = [p7 ' (A))'. Similarly, o™ H(A") = [¢~1(A)]" if
AeJ.

(2) Firstly, for every A = Vg, (Ra; A Ly,) € 0 and B = \ 5, (Re; A La;) € 6 with
A < B, we have @71(3) = <P71(A v B) = wil([\/ieSA(Rai A Lbl)] v [\/jeSB(RCj A Ldj)]) =
Uies, (@i )] U [Ujes, (6, di)] = ¢ 71 (A) V¢~ 1(B). Thus ¢~'(A) < ¢~ !(B). Secondly, for
A, B € § with A < B, since ¢! preserves the order-reversing involution, we have A’, B’ € §
and B’ < A’. Thus ¢ 1(B) = o 1(B") < p Y (A') = o 1 (A), ie., o H(A) < ¢ Y(B).

(3) Suppose that A ={A4; |ie I} = {\/JESA (R af? /\Lb;i)) | i€ I} Cd, where 0 < a;l) <
bg_l) <1 (Vi eI,Vj € Sa,). By definition of o1, (p_l(\/ A) = (p_l(\/iel VjGSAi (Ray) ALb§i))) =
Uier Ujes,, (a JZ : ]l)) U; ¢ ' (4;). Since ¢! preserves the order-reversing involution, ¢~*|¢’
preserves arbitrary meets.

(4) Suppose that A = \/,c5 (Ra; A Lb,) € 6 and B = /g, (Re; A La;) € 6. By the join
infinite distributive law,
HAAB) = ([ (Ra, ALL)IAT N (Re; A Lg,)))
1€ES A JESE

=¢'( \/ (Ra, ALy, NRe, A L))
1€SA,J

= 9071( \/ (Rmax{ai,cj} A Lmin{bi,dj})

1€54,JE€ESB
_1(\/{Rmax{ai,cj} A Liningp,,a,} | max{a;, c;} < min{b;, d;},i € Sa,j € Sp})
= U{ max{a;, ¢; }, min{b;,d;}) | max{a;,c;} < min{b;,d;},i € Sa,j € Sp}
—U{ ai, b)) N (cj,d;) | (@i, bi) N (cj,dj) #0,i€ Sa,j€ S}
= [ @0 n[ | (¢j,dj)] = ¢ (A) N (B).
i€Sa j€SB

Since ¢! preserves the order-reversing involution, ¢ ~1]§’ preserves finite joins.
Proposition 2 Mappings ¢ and ¢~! preserve existent joins and meets.

Proof Suppose that {A;}ic; € JUJ', and |J,c; Ai € JUJ'. Since ¢ preserves the partial order,

(UZGIA ) > \/161 ©(4;). Next we prove w(UZeIA ) < \/161 w(A4;). For every A > \/16] w(A),
we have A > p(A;) (Vi € I), since p~! preserves the partial order, then for every i € I,

e HA) = p o p(A;) = Ai. So ¢ (A) > ;e Ai- Since ¢ preserves the partial order, A =

o9 (A) = ¢(U;e; Ai)- Therefore, SD(UZGI i) < Vierp(Ai). So, o(U;er Ai) = Viep p(Ai).
Similarly, ¢ preserves existent meets, ¢~ preserves existent joins and meets.
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